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Recently R.S. INGARDEN and L. TAMASSY ([3], [4]) consider a Min-
kowski plane having a parabola as the indicatrix and taking for its origin
the vertex of the parabola. They come up with the interesting idea from
a remarkable geometrical structure as a mathematical representation of
the space-time of thermodynamical states given by INGARDEN [2]. This
structure is regarded as a Finsler space with a special Kropina metric ([5],
§16) and C. SHIBATA [9] has studied it from the standpoint of Finsler
geometry.

In the present paper we shall consider two kinds of Finsler planes
which are locally Ingarden-Tamadssy’s Minkowski plane. The metrics of
these Finsler planes give remarkable examples of 1-form metrics [8] and of
Finsler spaces having logarithmic spirals as geodesics [1].

In the twc-dimensional case we have an important scalar I, called the
main scalar, which may be regarded as the degree of Finslerian slippage
from Riemannian space. In a previous paper [7] we have met with a little

strange circumstances; this scalar has the upper limit 3/v/2 in some Finsler
planes having typical curves as the indicatrices. We have the interesting
fact that the Finsler planes in the present paper have the constant I =

3/V/2.

§1. Parabolic Finsler plane of the first kind

Let R? be a euclidean plane having an orthonormal coordinate system
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(z,y) with the origin O and é(z,y) a positive-valued function on 7 =
R? — {0O}.
We shall define a Finsler metric on 7 as follows. For an arbitrary

point P(z,y) of m (Fig.1) we take two points Fj, F; and two straight lines
f1, f2 such that

(1) PF; and PF;, are orthogonal to OP and their euclidean lengths are
equal to the §(z,y)-fold of OP.
(2) f1 (resp. f2) is parallel to OP and through F; (resp. F}).

We may choose F; and F;, as

Fl(x - 6(1": y)y, B 6(1'& y):r)! FZ(x . 6(:53 y)ya y— 6(1:: y)x)'
Then we have the equations
fi ryu—zv —6(z,y)(z* +y*) =0,
f2 i yu—zv +8(z,y)(2? + y*) =0,

in the current coordinates (u,v).
Now we shall take indicatrix I(P) at the point P(z,y) as two parabo-
las ¢;, : = 1,2, having the focus F; and the directrix f; respectively, and

the Finsler plane as thus obtained will be called the parabolic Finsler plane
of the first kind.

Remark 1. In Ingarden-Tamadssy’s theory the “irreversibility” is empha-
sized from the standpoint of physics, so the indicatrix is only one parabola.
But, from the standpoint of geometry, it will be better to take two sym-
metric parabolas as the indicatrix.

We shall find the fundamental function of the Finsler plane. For
instance, ¢; is given by the equation

Viu =2+ 89 + (v —y—82)? = {~yu +zv +8(z* +v")}/Va? + 4%,

paying attention to the fact that the term in {...} is positive on ¢;. By
squaring this we get the equation of ¢;:

¢ : {zu +yv — (2% + ¥*)}* + 48(2* + y*)(yu — zv) = 0.

Then, putting u = ¢ + 7, v = y + ¥ ([1]; [5], Example 16.3) the above is
rewritten in the form

(zz + yy)? + 46(2* + y?)(yz — zy) =0,

and applying Okubo’s method ([5], Example 16.4), that is, substituting
(z/L, y/L) for (z,y) in the above, we obtain the fundamental function
L(z,y;z,y) as follows:

L(z,y;%,9) = (z3 + yy)*/46(z,y)(z* + y*)(—yZ + 7).

Let us remark that the term (—yz + zy) is positive on ¢;.
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Similarly the equation of another parabola ¢, gives us

L(z,y;,9) = (e +yy)*/46(z,y)(z* + y*)(y — zp).
Consequently we have

Proposition 1. The metric function of the parabolic Finsler plane of
the first kind is given by

Ly(z,y;2,9) = (z2 + yy)* /46(z,y)(z* + y?) |yz — =Y.

Remark 2. We find two differential 1-forms zz + yy, yz — zy and the
quadratic form % + y? in all the 2-dimensional examples appearing in the
paper [1]. Each of those examples contains z? + 42, while our L; consists
of 2z + yy and y& — zy alone.

§2. Parabolic Finsler plane of the second kind

Next, we shall define another Finsler metric on 7 in a similar way.
Take two points F3, Fy (Fig. 2) and two straight lines fs, fs such that
(1) F3 and Fy are on the line OP and the euclidean lengths of PF; and

PF; are equal to the é(z, y)-fold of OP.

(2) fs (resp. fy) is orthogonal to OP and through Fy (resp. F3).

We may choose F3 and Fj as
F3((1 =6)x,(1-4)y), Fy((1+8)z,(1+9d)y).
Then we have the equations
firautyv —(1+468)(* +y*) =0,
foizu+yo—(1=6)(z® +y?) =0.

Now we rhall take the indicatrix I(P) at P as two parabolas ¢;,
1 = 3,4, having the focus F; and the directrix f; respectively. The Finsler
plane as thus obtained will be called the parabolic Finsler plane of the
second kind. Then the equations of ¢ and ¢4 are given by

(yu — 2v)? £46(2® + y*)(zu + yv — 22 — y?) = 0,
and similarly to the first kind we obtain the

Proposition 2. The metric function of the parabolic Finsler plane of
the second kind is given by



320 Makoto Matsumoto

Ly(z,y; ,9) = (v& — z9)?/48(z, y)(z* + y?)|ed + yyl.

Remark 3. We observe that the differential 1-forms zz + yy and yz — zy
interchange with each other in L; and L,. Hence these 1-forms may be
said to be orthogonal to each other and one indicatrix is obtained from
the other by a right-angle rotation around the point P.

Figure 1. Figure 2.

.§3. Examples of 1-form metrics

We shall introduce two differential 1-forms

A = (zdz + ydy)/(z* +y*) = d(log /2% +y?),

3.1
Ve p = (zdy — ydz)/(2* + y*) = d(Arctan(y/z)).

In our parabolic Finsler planes we are concerned with a positive-valued
function é(z,y), which will be called the density at the point P(z,y). If

we put a! = a!(z)dz' = \/46 and a® = d?(z) dz' = p/46, then we have

(7], 8])

Proposition 8. The metrics L, and L, of the parabolic Finsler planes
are 1-form metrics of the forms

Ly = (a')?/ 1’|, Lz=(a®)*/ld'],
where we put a' = \/46 and a® = p/46.
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As is well-known, the main scalar I ([5], §28; [7]) is an important
scalar of a two-dimensional Finsler space. The scalar of a Finsler space
with 1-form metric has been completely studied by the author with H.
SHIMADA [8]. In particular we observe that the metrics of the parabolic
Finsler planes, as given in Proposition 3, belong to one of the special
classes of 1-form metrics whose main scalars are constant ([5], (28.28)(i)),
as originally given by L. BERWALD. Thus we have

Theorem 1. The square of the main scalar I of the parabolic Finsler
planes is identically equal to 9/2.

Remark 4. In the paper [4] the main scalar is taken as —3/1/2, but its al-
gebraic sign is not essential from the standpoint of geometry ([5], Theorem
28.4). Next, in Ingarden-Tamassy’s papers, the parabola as the indicatrix
is given by y = z? in (3], while it is y = 22/2 or y = (K/2)z? in [4]. In the
present paper we introduced the notion of density é(z, y), paying attention

to the difference above, but it makes no difference to the main scalar. (Cf.
Theorem 2.)

For a Finsler space with 1-form metric L(a®), a® = af(z)y’, the I-
form Finsler connection F1 = (T,%(z), To%j, C;%) is essential [8]. The
connection coefficients I';%(z) are defined by

T;'%(z) = b (a5 /0z*),

where (b)) is the inverse matrix of (a?). In case of our parabolic planes
we have from (3.1)

. @)= (25 ), e=(4 prid)
z = 1/46(z% + y?),
and then the T are given by
I =T = —z/(2® +y?) - 6:/6, T2'3=-T12% =z/(2? +y?),
Ti'z =To% = —y/(2® + %) — §,/8, T1% = -To'y = y/(c® + ).
Thus the connection F'1 has the (h)h-torsion tensor T; b= L% — Fkij:
Tily ==8,06, Ti% =878

If the (h)h-torsion tensor T vanishes, then the space belongs to the class of
locally Minkowski spaces [6], called T-Minkowski. In a locally Minkowski
space we have an adapted coordinate system (z') in which the fundamental
function is written in (z') alone ([5], Definition 24.1). Therefore we have
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Theorem 2. The parabolic Finsler planes are T-Minkowski, if and
only if the density §(z,y) is constant. Then their metrics are written as

Ly=€/48lil, L2 =1 /46],
where the adapted coordinate system (£,n) is obtained from (z,y) by the
transformation £ = log \/z? + y%, n = Arctan(y/z).

For general L; and L, we get T-Minkowski metrics § L; and 6 L, which
have § = 1. Therefore we have the following

Corollary. A parabolic Finsler plane is conformal to a T-Minkowski
parabolic Finsler plane of the same kind having a constant density §é.

Remark 5. These forms of L, and L, in Theorem 2 are remarkable, because
the metric of Ingarden-Tamassy’s Minkowski plane is just given in the
above forms. :

We shall continue to be concerned with the T-Minkowski parabolic
Finsler planes. If we refer to the polar coordinates (p,) defined by

z = pcosB, y = psin6, then we get (£,n) = (log p,8) and (£,7) = (5/p,6).
Thus we recall Hojo’s Theorem [1]: If a two-dimensional Finsler metric

L on = is given by L = f(pb, p)/p, then its geodesics are represented by
logarithmic spirals. Since L is, of course, assumed to be positively homo-

geneous of degree one, the above condition is rewritten as L = f(6, p/p).
Consequently we have

Theorem 3. Any geodesic of the T-Minkowski parabolic Finsler pla-
nes is a logarithmic spiral with the pole O.

84. Right angle

We shall find the right angle in our parabolic metric L = % /v, where
a' =  and a* = 4. To do so, we consider the Berwald frame (¢, m)

([5], §28). If we put L, = OL/0a®, we have &' = y*/L = (y/B*)(z,y) and
¢; = Lya$, that is, from (3.1)
(4.1) (€:) = (B2/7*)(vz + §/48, vy — 2/48).
Next, the fundamental tensors g;; = (82L?/91'927)/2 are given by
g = (822 [v*)(6v%2* + 8Byzy + 36%y?),
g22 = (822%/v*)(67*y* — 8Byzy + 38%2?),

where ¢, is not needed in the sequel. Then the equations

(m1)? = g1 = (01)%, (m2)? = g22 — (£2),

(4.2)
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and ¢'m; = 0 give

(4.3) (mi) = (V2 Bz/467%)(~9, %)

Further ¢;m* = 0 and m;m* = 1 lead us to
(4.4) (m') = (467/V28%)(—yy + £/48, vz + §/46).

Consequently this (m') is orthogonal to (£') = (v/4%)(z,y). If we use
the vector b, = (—44y,46z) in (3.2), we have another expression of (m*):

(4.4)) m' = {€' + (v/)*b3}/ V2.
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