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An asymptotic approach to the multiple machine
interference problem with Markovian environments

By J. SZTRIK (Debrecen) and B.D. BUNDAY (Bradford)

Abstract. This paper is concerned with a queueing model to analyse the asymp-
totic behaviour of the machine interference problem with N heterogeneous machines
and one operative. The machines and the repair facility are assumed to operate in
independent random environments governed by ergodic Markov chains. The running
and repair times of a machine are supposed to be exponentially distributed random
variables with parameter depending on the index of the machine and state of the corre-
sponding random environment. Assuming that the repair rates are many times greater
than the corresponding failure rates ( “fast” service ), it is shown that the time until
the number of stopped machines reaches a certain level converges weakly, under appro-
priate norming, to an exponentially distributed random variable. Furthermore, some
numerical examples illustrate the problem in question in the field of textile winding.

Introduction

The problem of calculating the running efficiency and the operative
utilization in situations where a group of identical machines, subject to
random breakd >wns, are maintained by one or more operatives, has been
treated by a number of authors. They have used a variety of approaches
and have made different assumptions about the statistical distributions of
running time between breakdowns and repair time. For an extensive bib-
liography on the basic homogeneous finite-source models, reference may
be made to CARMICHAEL [6], STECKE and ARONSON [16]. In recent years
the machine interference model has been used, for example, for the math-
ematical description of computer terminal systems, cf. TAKAGI [21], or for
modelling production systems in textile winding, see BUNDAY [4]. More
recently several authors have tackled the problem for non-identical set
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of machines. The major problem when considering different types of ma-
chines is that it is neccesary to keep track of where each individual machine
is in the system. Among those contributing are BUNDAY and KHORRAM
[5], SzTRIK [18-19], TosIRISUK and CHANDRA [22] in which an up-to-date
bibliography can be found on this topic. In these papers the main aim
has been to predict the steady-state operational measures, such as ma-
chine availability, operative utilization, mean waiting time, average queue
length.

In this study an asymptotic approach ( when the repair rates are
many times greater than the corresponding failure rates ) is presented to
analyse the distribution of the time until the number of stopped machines
reaches a certain level. This method is quite common in reliability theory;
see among others ANISIMOV and SZTRIK (3], SZTRIK [20], GERTSBAKH
[9-10], KEILSON [11]. Realistic consideration of certain stochastic systems,
however, often requires the introduction of a random environment where
system parameters are subject to randomly occuring fluctiations. This
situation may be attribute to certain changes in the physical environment,
or sudden personnel changes and work load alterations. Computational
problems of birth- and-death models in random environments, sometimes
called Markov-modulated processes, have been the subject of several works
(c.f., GAVER et al. [7], NEUTS [12-13], PURDUE [14], SENGUPTA [15],
STERN and ELWALID [17]). Necessary and sufficient conditions for the
stability of a single server exponential queue with random fluctuations in
the intensity of the arrival processes have also been derived (c.f., GELENBE
and ROSENBERG [8]).

This paper is concerned with a queueing model to analyse the machine
interference problem with N heterogeneous machines and one operative.
The machines and the repair facility are assumed to operate in independent
random environments governed by ergodic Markov chains. The runnin
and repair times of a machine are supposed to be exponentially distribute
random variables with parameter depending on the index of the machine
and state of the corresponding random environment. Assuming that the
repair rates are many times greater than the corresponding failure rates
(“fast” service), it is shown that the time until the number of stopped ma-
chines reaches a certain level converges weakly, under appropriate norming,
to an exponentially distributed random variable. Furthermore, some nu-

merical examples illustrate the problem in question in the field of textile
winding.

2. Preliminary results

This section presents a brief survey of results ( c.f., ANISIMOV et al.
[2] ) to be applied in the next section.

Let (X.(k),k > 0) be a Markov chain depending on a small parameter
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e > 0, and let its state space be

m+1

LI X, XX =0, ids

g=0

with m+2 levels of states, 7,7 = 0,1,...,m+1. Assume that the transition
matrix (pg(i(q),j(‘))), (9 ¢ X¢s i® e X, ¢2=0,1,...,m + 1 satisfies
the following conditions:
1. p(i(9,5) 5 po(i®, ) as e — 0, (9 ;O e X,, and matrix
I = (pg(i(o),j(o))) is irreducible;
2. p(il®,j(a+)) = 5a(q)(i(q)’j(q+1)) + o(e), i € Xq,j(""'l) € Xgt+1,
where a(?(:(9), j(4+1)) is an appropriate transition matrix;
3. pe(i®, f10) > 0,25 € - 0,49, f9 € X, ¢ > 1;
4. p(i9,f()=0,iD e X, fD e X,,z-q¢>2.
In the sequel the set of states X is called the ¢-th level of the chain,
=0,...,m + 1. Let us single out the subset of states

m

(am) = U Xg.

q=0

Denote by {m.(i?), i(? € X,}, ¢ = 1,...,m the stationary distribution
of a chain with transition matrix

( pe (19, ()
¥ o

E pg(g(Q),k{m‘i‘l)
k(m+‘)EXm+1

)), (@) € X,, j(z) € X., g,z <m.

Furthermore, denote by g.((am,)) the steady state probability of exit from
(am), that is

ge((am)) = Z Wc(i(m)) Z PE(i(m):j(m+l))-

i(m)e X, FMm+) EeXm 41

Denote by {m(i(?),:(®) € X;} the stati;)nary distribution corresponding
to Py and let

7o = {m(i?,i” € Xo}, 79 = {7.(:\?),:? € X},
be row vectors. Finally, let the matrix
A - (a(")(im,j(”l))), A9 ¢ X jltD) ¢ Xosasit =0, 00

defined by condition 2. Conditions 1-4 enable us to compute the main

terms of the asymptotic expression for #.” and ge({(am)). Namely, we
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obtain
fri") =eImg AV AM A~ 4 o) ¥= .08
ge({am)) = €™ 7A@ AM | A(™] 4 o(e™1),

(1)

where 1 = (1,...,1)* is a column vector, (c.f., ANISIMOV et al. [2], pp.
141-153).

Let (ne(t), t > 0) be a Semi Markov Process (SMP) given by the
embedded Markov chain (X.(k), £ > 0) satisfying conditions 1-4. Let the

times 7.(j(*), k(*))— transition times from state j(*) to state k(*)— fulfil
the condition

Eexp{iﬂﬂ,r,(j(’],k(‘)} =1+ aj{a)k(z)(9)6m+1 +o(e™), (I =-1),

where [, is some normalizing factor. Denote by §2.(m) the instant at
which the SMP reaches the (m + 1)-th level for the first time, exit time
from (apm), provided 7.(0) € (a;,). Then we have:

Theorem 1. ( c.f., ANISIMOV et al. [2], pp. 153 ) If the above 1-4
conditions are satisfied then

lim E exp{if8.Qe(m)} = (1 — A(9))™",

where

g m(j(o))Po(j(o),k(o))ajmkm(@)
7@ k(M e X,

A6) = T AOAM AT

Corollary 1. In particular, if (o) () (8) = 10mj(a)(2) then the limit
is an exponentially distributed random variable with mean

S To (j(o))Po (9, k(ﬂ))m,-(n)uo)
79 k(@ e X,

7A@ AM) | A(m)]

3. The Queueing Model

Let us consider the machine interference problem with N heteroge-
neous machines which are looked after by one operative. The machines
are assumed to operate in a random environment governed by an ergodic
Markov chain (£;(t), t > 0) with state space (1,...,r;) and with transition
density matrix (a;j, ¢,j = 1,...,71, aii = ), aij). Whenever the environ-

J#
mental process is in state ¢ the probability that machine p breaks down in
the time interval (¢,¢ + h) is Ap(2)h + o(h). Each machine is immediately
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repaired if the operative is idle, otherwise a queueing line is formed. The
service discipline is First Come-First Served (FCFS). The repair facility
is also supposed to operate in a random environment governed by an er-
godic Markov chain (£2(t), ¢ > 0) with state space (1,...,r2) and with
transition density matrix (biq, k,q = 1,...,72, bk = Y big). Whenever
9#k
the environmental process is in state k and there are s machines stopped,
s = 1,..., N, the probability that the repair of machine p is completed
in time interval (t,t + k) is pp(k,s;€)h + o(h). After being repaired each
machine immediately starts operating. All random variables involved here
anlcll the random environments are supposed to be independent of each
other.

Let us consider the system under the assumption of “fast” repair,
i.e., pp(k,s;6) = oo as ¢ — 0. For simplicity let u,(k,s;e) = p,(k,s)/e,
p=1,...,N. Denote by Y,(t) the number of stopped machines at time ¢,
and let

Qe(m)=inf{t: ¢t > 0,Y.(t) =m +1/Y.(0) < m},

that is, the instant at which the number of stopped machines reaches the
(m + 1)-th level for the first time, provided that at the beginning their
number is not greater than m;m =1,...,N — 1.

Denote by (7 (1), $ = 1,000,171, (¥ 2), k =1,...,rz) the steady-state
distributions of the governmg Markov cha.ms (fl(t) t > 0), (&(), t > 0),

respectwely and let V; be the set of all variations of order s of integers
1,...,N. Now we have:

Theorem 2. For the system in question under the above assumptions,
independently of the initial state, the distribution of the normalized ran-
dom variable e™().(m) converges weakly to an exponentially distributed
random variable with parameter

A = EZ“(” (2) Z ,\;il) L _%_.

=1 k=1 (Pl,---:Pm+1)GV;r"+l

PROOF. It is easy to see that the process
Ze(t) = (&a(t), &2(2), Ye(t);m1(2)s - -, Yy (0)(2))
is a multi-dimensional Markov chain with state space
Bl bnipr i) i=1 .0 b=l,....0%
(P1,--.,Ps) € V§, s=0,...,N),

where 71(t), ..., 7y, (1)(t) denote the indices of failed machines at time ¢ in
the order of their breakdowns, and by definition py = {0}. Furthermore,
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let
(am) =((i,k,8;p1,...,pm), t = 1,---,7'1, k= 1,...._,1‘2,
(Pla---,Pm) & V;{{n)

Hence our aim is to determine the distribution of the first exit time
of Z.(t) from (a,,), provided that Z.(o) € (a,,). It can easily be verified

that the transition probabilities for the embedded Markov chain as ¢ — 0
are

a,'j

pC[(?”k?O; 0)?(.}) k']O;O)] = N ]
aii + bk + Y, Ap(2)
p=1
o o £ Bl big
pE[(zskaOa 0)3(7’1%01 0)] s N )
aii + bkk — Z ,\p(z
p=1

pt[(iakis;pla i )pa)a(jakvs;plv e sp-?)] - 0(1)1
Ps[(iak,S;Pla--- 5pa)a(iaq'13;p11-" aps)] = 0(1): D T

pel(iy k,0;0), G, b, 1ip)) = ——228)_

aii + bk + 2 Ap(2)
p=1

. . 841 €
ps[(zakas;pls---eps)a(zakvg+1;p11"-)p3+1)]"‘ p ?k( ))(1 0(1))}
Hp,

fjor s=0,...,N =1,
pe((i, k,8;p1,5...,Ds), (3, ky8 — 1;p2,...,ps)] =1 =0(1), fors=1,...,N.

This agrees with the conditions 1-4, but here the zero level is the set
((hkaoao)s(zakalap)s 1= L...,7q, k= 1,...,?'2, P= 11"'1N)1
while the g-th level is the set

((i,k,q+1;p1,-..,Pq+1),i=1,...,T1, k=1 < T2,
(P1s-.yPg+1) € Vq“)-

Since the level 0 in the limit forms an essential class, the probabilities
wo(f, &,0;0), mp(s, &, 1;p) t = L,0vi s b= L...,m3, p=1,...,]N satisfy
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the following system of equations

(2) 70(j,2,0;0) = Y mo(i,q,0; O)au/(a.,+bqq+2)~p(z))

i#]

+ ) mo(j, k, 0;0)brg/(ajj + bex + Z Ap(7)) + ZWO(J ¢,1;p)

k#q

N
(3) ﬁﬂ(jsqs lsp) = Wﬂ(j$ q, 0!0)’\?(])/(033 + bqq + Z /\a(J))

=1

It is clear that

1
(4) ( ) = Zﬂ'“)au, wgz)bqq — wa)bkq.

i#) k#q
It can easily be verified, that the solution of (2),(3) subject to (4) is

N
mo(i,k,0;0) = Bﬂfl)?riz)(aﬁ + bk + E Ap(2)),

(i, k,1;p) = Br VrP A (),

where B is the normalizing constant, i.e.,

r, ra N
1/B=YY 7V Plaii + bux + 2 A,(9))-

i=1 k=1 p=1

](By L;séng formula (1) it is easy to show that the probability of exit from
am) is

1. Ty

am _emBZZW(l) (2) Z:
i=1 k=1 (Pl,---,Pm+1)€V;‘+l
-
e )1‘[ 20014 1),
Pl( )

Taking into account the exponentiality of 7.(j, k, s;p1,...,p,) for fixed 6
we have

= o . 6
E exp{ic™87.(j, k,0;0)} = 1 + €™ (1 +0(1)),
ajj + bk + 2 Ap(7)
p=1
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Eexp{ic™0r.(3,k,8;p1,:..sPs)} =14+ 0(e™), 8>0.

Notice that 3. = ¢™ and therefore from Corollary 1 we immediately get the
statement that e™Q.(m) converges weakly to an exponentially distributed
random variable with parameter

T Apesa (1)
(1)) _ ol
A= ZZ“ 3 A,l(;)Hm,
- (Pl:--—|Pm+1)EVR?+1 s=1""P1

which completes the proof.

Consequently, the distribution of the time until the number of stopped
machines reaches the (m + 1)-th level for the first time, can be approxi-
mated by

P(Qe(m) > t) = P(e™Qe(m) > e™t) = exp(—e™At),

i.e., Q.(m) is asymptotically an exponentially distributed random variable
with parameter ée™A. In particular, for m = N — 1, which means that
there is no operating machine, we have

L | T2 N-1 .
- A
A* =N =13 ) Calin? 5 A (i) T1 —-—-——”a(?)
el (P PN-1)EVR ! 1 FH

(5)

r, r N ﬁ
SO IR I

ZE RS o

In homogeneous case, that is when A\,(2) = A(2), pp(k,s) = u(k,s),
p=1,...,N we get

(6) -N'ZZ (1)) /\('j)N
S H p(k, 8)/~€

In particular, when there are no random environments (5) yields

N ﬁ /\a
™) =7 =3
H Hp(s 3)/5
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where A, = A(8), § = 1,...,71, pip(.s8) = pip(k,8), k = 1,...,73, (sece
Sztrik [20]). Hence, by using (5) the steady-state probability Qw that at
least one machine works is

1
eN-1)

1 ]
Sieis + ON

(8) Qw =

where By denotes the mean period of time during which all machines are
stopped, that is

N ™

oL Enaee ) G T o)
s=1

In the case when there are no random environments from (8) we obtain

1 A
(9) G = 1/(1 +(V -1 ) = )
el ! ﬂp(.,S)/S

s=

Finally, for the simplest case we have

(10) Qw = 1/(1+N!(fE)N)'

4. Some Numerical Results and Applications in Textile Winding

In the context of the production department on the factory floor, most
manufacturers will seek to establish a constant and optimal environment
in which the various processes can be carried out. They will try to avoid
the random environment. However, we do not live in the ideal world and
variations in the repair rate and the breakdown rate will occur in spite of
their best efforts. Machine operatives will feel “below par” with physical
or mental problems from time to time and this in turn will affect their work
rate. Their attitude to work at the start of a shift will be very different
from their attitude just prior to the tea-break, just after the tea-break and
again before the end of their shift. Of course, one could argue that the
latter changes are more deterministic than random, although variations
among workers will tend to make the overall effect more random than it
might appear to be at first sight. The use of robots, and there is a marked
trend in this direction in many industries, seeks to avoid these effects. The
machinery used will suffer from minor faults due to wear and tear. These,
although they may not in themselves constitute a breakdown, will have
an adverse effect on the stoppage rate of the process. Another reason for
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variability in the stoppage rate arises from the quality of the raw materials
used. This material may have been produced at an earlier stage in the
production process, and unless very stringent quality control procedures
have been used some variability is inevitable. In the particular case of the
textile industry, especially where natural fibres such as wool or cotton are
being used, variability between batches of raw yarns is difficult to avoid.
Although it is not possible to generalise, because of the great variety of
industrial production processes which exist, if the unit of time is taken to
be the average repair time, then the average run time between successive
stoppages due to yarn breaks of a single machine might be anything from
about 20 time units to 100 time units. The idea o? “fast” repair would
therefore seem to be reasonable. However, the factors mentioned earlier
could easily cause deviations of the order of 1050% of these times. We do
not underestimate the practical difficulties of modelling these features of
real manufacturing processes. The random environment idea would seem
to be a first step in the right direction. In this section some numerical
examples are given to illustrate the problem in question and the asymptotic
results are compared to the classical exact formulae as well as the numerical
ones obtained by GAVER et al. [7].

Case 1. In this section we illustrate how “good” the asymptotic results are
by comparing them to the exact ones. Here p = L—’}—e and Pw = 1-N!pV P,

( from Palm-formula ). Using (10) we get the following results.

N=5 N=10
p Py Qw Pw Qw

0.631901845

8.26446281 E-3

0.632120555

2.75573116 E-7

2-1 0.862385321 0.210526316 0.864663592 2.82107342 E-4
g 0.976671851 0.895104895 0.981632201 0.224180395
e 0.998245819 0.996351253 0.999588836 0.996631800
g4 0.999918676 0.999885572 0.999998546 0.999996700
- 0.999996963 0.999996424 0.999999998 0.999999997
T 1 1 1 1
N=15 N=20

p Pw Qw Pw Qw

1 0.632120559 7.64716373 E-13 0.632120559 4.11031762 E-19
271 0.864664717  2.50582255 E-8  0.864664717  4.30998041 E-13
2-2 0.981684271 8.20434288 E-4 0.981684361 4.51933998 E-T
e 0.999661753 0.9641165497 0.999664506 0.321522100
2—4 0.999999759 0.9999988660 0.999999870 0.999997987

1

1

1

1
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N=25 N=30
p Pw Qw Pw Qw

1 0.632120559 6.44695028 E-26 0.632120559 3.76998763 E-33
gl 0.864664717 2.16323755 E-18 0.864664717 4.04799339 E-24
- 0.981684361 7.25862072 E-11 0.981684361 4.34649981 E-15
e 0.999664537 2.42967127 E-3 0.999664537 4.66699685 E-6

2 0.999999886 0.9999987764 .0.999999887 0.999800486
- 1 1 1 1

Table 1

We can see how Qw depends on N,p and how accurate it is. It

should be noted that the greater the N the less the p for an acceptable
approximation.

Case 2. In this section the machines operate in a random environment. We
compare the asymptotic result to the numerical one obtained by GAVER et
al. [7] and show how it depends on the intensities of the governing Markov

chain. Here Qw = 1— ge({a)) and Pw is the steady-state probability that
at least one machine works obtained by GAVER et al. [7]. By using the
notation of (6) we have the following parameters

N=5 m=4 n=2 rn=1
All) =0.12 u(1;8)/e =1.00 ﬂ_gl) =2/3 17(2) —1
M2) =006 p(2s)/e=100 xV=1/3 s=1,...,5

By the help of (8) we obtain

a1 azz Qw 1/A* Py Qw
50 100 0.99798 494.61 0.99932 0.99997
0.5 1 0.99798 494.61 0.99925 0.99879
0.05 0.1 0.99798 494.61 0.99908 0.99810

Table 2
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We can observe that the corresponding probabilities are exact up to
almost 3 digits while the mean failure-free operation time is very small
compared to GAVER et al. [7] where 1/A = 1500.

Case 3. In this section we approximate the results of GAVER et al. [7] by
changing the service rate.

p(l;s)/e =130 u(2;s)/e=130 s=1,...;6

the other parameters are the same as Case 2. We have
an azz Qw 1/A* Pw Qw
50 100 0.99946 1412.68 0.99932 0.99999
0.5 1 0.99946 1412.68 0.99925 0.99958
0.05 0.1 0.99946 1412.68 0.99908 0.99934

Table 3

This example illustrates the situation when the repair rate is 1.3. We
get almost the same results as GAVER et al. [7] but here the formulae are
much simpler and we do not need numerical procedures.

Case 4. In this section we deal with the case when there are no random
environments, the machines have different failure rate and the same repair
rate. Py denotes the steady-state probability that at least one machine
works, found in SzZTRIK [18]. By using the notation of (7) we have the
following parameters

Ne=d m=3J
/\1=1 /\2=2 /\3:"-3 /\4-—_-4
als8)=p s8=1...,4
With the aid of (7), (9) we get

u/e  1/A* Qw Py

1 34T E -3 1.73310225 E -3 0.398119122
) .22 0.307692308 0.848101266
10 3.47 0.945537065 0.981161695
20 27.77 0.996412914 0.997902220
30 93.75 0.999289394 0.999500250

Table 4
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We can see how the asymptotic value approaches the exat value.

Case 5. In this section we consider a general setup assuming that the

operative works faster seeing a longer queue. We have the following pa-
rameters.

N=d m=8 =2 =]

A1) =1 A2(1) =2 A3(1) =3 As(1) =4

M(2) =15 A(2)=25 A3(2) =35 A(2)=45
#1(1,1) =300 1 (1,2) =301  p(1,3) =302  p(1,4) =303
p2(1,1) =31.0  p2(1,2) =311  p9(1,3) =312  pus(1,4) =313
p3(1,1) =320  p3(1,2) =321  u3(1,3) =322  u3(1,4) =323
pe(1,1) =33.0  p44(1,2) =33.1  pe(1,3) =332  pe(1,4) =333
#1(2,1) =350 11(2,2)=351" (2,3)=362 1n(2,4) =353
p2(2,1) =36.0  p2(2,2) =36.1  uz(2,3) =36.2  uy(2,4) =363
p3(2,1) =370 u3(2,2) =371 u3(2,3) =372 p3(2,4) =373
#e(2,1) =38.0  p4e(2,2) =38.1  pe(2,3) =382  pug(2,4) =383

We show how the system’s behaviour depends on the stationary dis-
tributions of the corresponding Markov chains

11'51} ﬂ(zlj 'Jl'gz) 1r£2) 1/A* Qw
54.84 0.998920312
62.83 0.999079593

2/3  1/3  2/3  1/3
1/2 172 1/2 1)2

Table 5

Case 6. In this section we assume that the repair rates do not depend on

the number of stopped machines. The repair rates vary but the remaining
parameters are the same as in Case 5.

#1(11') =30
H (2,) =35

#2(1") =31
“2(21 ) =36

#3(1: ) = 32
us(2,.) = 37

#4(1, ) =33
1a(2,.) = 38
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We show how the system’s behaviour depends on the stationary dis-
tributions of the corresponding Markov chains

w&l) ﬂgl) ﬂgz) ﬂ_gz) 1/A* Qw
2/3 1/3 2/3 1/3  54.32  0.998900145
1/2  1/2  1/2  1/2 6224  0.999062589

Table 6

We can observe that this case 1/A* and Qw are slightly less than the
corresponding ones in Table 4, as we have expected.

5. Concluding remarks

It should be noted that similar weak convergence arguments can be
found in KEILSON [11] for Markov chains. It requires, however, the steady-
state distribution of the underlying process, which in this case can be
difficult to obtain due to the great number of states.

Acknowledgement. We are very grateful to Prof. M. Arato for his
valuable comments on the earlier version of the paper.
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