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The property of smallness up to a complemented
Banach subspace

By THABET ABDELJAWAD (Ankara) and
MURAT YURDAKUL (Ankara)

Abstract. This article investigates locally convex spaces which satisfy the
property of smallness up to a complemented Banach subspace, the SCBS prop-
erty, which was introduced by Djakov, Terzioğlu, Yurdakul and Zahariuta. It is
proved that a bounded perturbation of an automorphism on a complete barrelled
locally convex space with the SCBS is stable up to a Banach subspace. New
examples are given, and the relation of the SCBS with the quasinormability is
analyzed. It is proved that the Fréchet space lp+ does not satisfy the SCBS,
therefore this property is not inherited by subspaces or separated quotients.

1. Introduction

Our terminology for locally convex spaces is standard and we refer the

reader to [11] or [8]. For a locally convex space X, U(X) denotes a basis of

absolutely convex neighborhoods of the origin in X and for U ∈ U(X), pU
is the gauge of U . A linear operator T from a locally convex space X into

another Y is bounded if T (U) is a bounded subset of Y for some U ∈ U(X).
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We say that a pair (X,Y ) has the bounded factorization property and write

(X,Y ) ∈ BF if each continuous linear operator from X into X that factors

over Y is bounded.

By Grothendieck ([7], p. 107), a locally convex space X is said to

be quasi-normable if for each U ∈ U(X) there is V ∈ U(X) so that for

every ε > 0 there exists a bounded subset A of X such that V ⊂ A+ εU .

Following [5], we say that a locally convex spaceX satisfies the property

of smallness up to a complemented Banach subspace, abbreviated from

now on as the SCBS property, if for each bounded subset A of X, for

each U ∈ U(X), and for every ε > 0, there are complementary subspaces

B and E of X such that B is a Banach space and A ⊂ B + εU ∩ E.

In [5], it was proved that all Banach-valued lp-Köthe spaces have the

SCBS property and the bounded perturbation of an automorphism on

an lp-Köthe space is stable up to some Banach basic subspace. This was

essential there to get a modification of the generalized Douady lemma [16].

We still have no complete characterization of Fréchet or DF -spaces

with the SCBS property. In this work we analize the SCBS property, and

show that more general form of Köthe spaces, say, l-Köthe spaces, some

quasi-normable Fréchet spaces and the strong duals of some asymptotically

normable Fréchet spaces have this property. We also get a characterization

of quasi-normable l-Köthe spaces in terms of their basic Banach subspaces

(see [2], [4]). Modifying Theorem 1 in [5] we obtain, as an extension of

Proposition 3 there, that any infinite dimensional complemented Banach

subspace of a c0-Köthe space is basic. This result may be considered as

a partial answer to the well-known Pelczynski problem: Does a comple-

mented subspace of a space with basis have a basis? Moreover, in this

case we confirm the conjecture of Bessaga [1] that each complemented

subspace of a Köthe space is isomorphic to a basic subspace.

2. Results

Note that a locally convex direct sum of Banach spaces has the SCBS

property trivially, since every bounded subset of it is contained in a finite

sum of its components.
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We follow Dragilev [6] to define l-Köthe spaces. First, we need:

Definition. Let (X, ‖ . ‖) be a Banach space with a basis (xn) and let

(x′n) denote the sequence of coefficient functionals. The norm ‖ . ‖ of X

is called monotonous if the following implication holds: for any x, y ∈ X,

|x′n(x)| ≤ |x′n(y)| (∀n ∈ N) implies ‖x‖ ≤ ‖y‖ (see also [9]).

It is known that every Banach space with an unconditional basis has

a monotonous norm which is equivalent to its original norm. Indeed, it is

enough to put

‖x‖ = sup
|αk|≤1

∣∣∣∣∑
k

x′k(x)αkxk

∣∣∣∣
where | . | denotes the original norm.

Throughout this work we denote by l a Banach sequence space in which

the canonical system (en) is an unconditional basis, with a monotonous

norm ‖ . ‖ satisfying ‖en‖ = 1 for each n ∈ N. Let Λ be the class of all

such spaces; in particular, lp and c0 are in this class.

Definition. Let l ∈ Λ and ‖ . ‖ be a norm (monotonous in this work)

in l. If (an,p) is a Köthe matrix, then the l-Köthe space λl(an,p) is the

locally convex space of all sequences (tn), such that (tnan,p) ∈ l for any

p ∈ N, with the topology generated by the seminorms

|(tn)|p = ‖(tnan,p)‖, p ∈ N.

Note that |en|p = an,p‖en‖ = an,p.

Proposition 1. Every l-Köthe space has the SCBS property. In

particular, every c0-Köthe space has the SCBS property.

Proof. Let X = λl(an,k) be a l-Köthe space. Let A be a bounded

subset of X. Without loss of generality we may assume that

A =
{
x ∈ X : |x|k = ‖(xiai,k)‖ = sup

|αi|≤1

∣∣∣∑
i

αixiai,kei

∣∣∣ ≤ ck∀k}
where (ck) is a sequence of real numbers increasing to ∞. Choose (ck) so

that (
ai,k
ck

)k tends to zero for all i. For this purpose, it is enough to replace

those ck’s with k ≥ i by bigger ones, for example by kmax1≤i≤k ai,k. Here

‖ . ‖, | . | respectively denote the monotonous and the original norm in l.
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We set γi =
∑

k
ai,k
2kck

. Then, for any x ∈ A∣∣∣∣∣∑
i

αiγixiei

∣∣∣∣∣ =

∣∣∣∣∣∑
i

αixi

(∑
k

ai,k
2kck

)
ei

∣∣∣∣∣
=

∣∣∣∣∣∑
k

1

2k

(∑
i

αi
ai,k
ck
xiei

)∣∣∣∣∣ ≤ 1

or ‖(xiγi)‖ ≤ 1 holds.

Fix ε > 0, k0 ∈ N and set B = [ei : εγi ≤ ai,k0 ], E = [ei : εγi > ai,k0 ]

where the square brackets denote the closed linear span of the correspond-

ing vectors. For x ∈ B and k ∈ N, since

|xiai,k0 | ≥ |xiγiε| ≥
∣∣∣∣xiε ai,k2kck

∣∣∣∣
we have

1

ε
2kck‖(xiai,k0)‖ ≥ 1

ε
2kck‖(xiγiε)‖

≥ 1

ε
2kck

∥∥∥∥(xiε ai,k2kck

)∥∥∥∥ = |x|k,

that is B is a basic Banach subspace.

If x ∈ A ∩ E, since |xiai,k0 | ≤ |xiγiε| we have

|x|k0 = ‖(xiai,k0)‖ < ‖(εxiγi)‖ ≤ ε

which means that X has the SCBS property. �

The following condition should be compared with the weak quasi-

normability condition of Grothendieck (see for example [4]).

Definition. A Fréchet space X satisfies the condition (QN) if there is

a map π ∈ NN such that for every p ∈ N and for every ε > 0 there is a

complemented Banach subspace B of X on which the topology given by

p-th norm and the original topology coincide and

Uπ(p) ⊂ B + εUp (1)

holds.
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Proposition 2. Every quasi-normable l-Köthe space X satisfies the

condition (QN).

Proof. | . |∗p denotes the gauge functional of U◦p i.e.

|x′|∗p := sup
{
|x′(x)| : x ∈ X, |x|p ≤ 1

}
, x′ ∈ X ′.

Assume aj,p 6= 0. Since ‖ . ‖ is monotonous, for any x ∈ Up one has

|e′j(x)| = |xj | = ‖xjej‖ ≤
∥∥∥∥( 1

aj,p
xiai,p

)
i

∥∥∥∥ =
1

aj,p
|x|p ≤

1

aj,p
.

Since the coefficient functionals e′i are continuous, we have

1 = |e′i(ei)| ≤ |e′i|∗pai,p

from which |e′j |∗p = 1
aj,p

follows.

By [10], Theorem 7, since X is quasi-normable, there exists a strictly

increasing function φ such that for all p ∈ N there is q ∈ N such that for

all k ∈ N there exists c > 0 such that

|e′i|∗q ≤ cφ
( |e′i|∗p
|e′i|∗q

)
|e′i|∗k

or
ai,k
ai,q
≤ cφ(

ai,q
ai,p

) holds for each i.

Fix any p ∈ N. Then there exists q = π(p) ∈ N such that the above

property holds. For the given ε > 0, we set

I1 = {i : εai,q ≤ ai,p}, B = [ei : i ∈ I1],

where the square bracket denotes the closed linear span of the correspond-

ing vectors. Then obviously ε|x|q = ε‖(xiai,q)‖ ≤ ‖(xiai,p)‖ = |x|p for any

x ∈ B, since |εxiai,q| ≤ |xiai,p| and the norm is monotonous. On the other

hand for any k > q

ai,k
ai,q
≤ cφ

(
ai,q
ai,p

)
≤ cφ

(
1

ε

)
for every i ∈ I1, so we have |x|k ≤ cφ(1ε )|x|q for any x ∈ B. Hence B is a

Banach space whose topology is given by the p-th norm.

Let E = [ei : i /∈ I1]; then X = B ⊕ E and ε|x|q > |x|p for x ∈ E,

therefore the condition (QN) holds. �
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Further, the condition (QN) characterizes quasinormability in terms

of basic Banach subspaces in l-Köthe spaces (see [2], Proposition 3.3 and

[4], Corollary 8). Indeed:

Proposition 3. If X satisfies the condition (QN) then X is a quasi-

normable Fréchet space.

Proof. Since π(p) > p, Uπ(p) ⊂ Up and condition 1 implies that

Uπ(p) ⊂ A + εUp where A is a ball in B with radius c(1 + ε). In fact,

when x ∈ Uπ(p) we can write x = b + εu for some b ∈ B and u ∈ Up. Let

| . |B denote the norm of B. Then |b|B ≤ c|b|p ≤ c(|x|p + |εu|p) ≤ c(1 + ε)

since p-th norm and the space X induce the same topology on the Banach

space B. Hence X is a quasi-normable Fréchet space. �

Proposition 4. Every Fréchet space X with the condition (QN) has

the SCBS property.

Proof. Let A be a bounded subset in X and π(p) be as in condition 1.

Find ρ > 0 such that A ⊂ ρUπ(p). Then by assumption it follows that

A ⊂ ρUπ(p) ⊂ B + ρεUp ∩ E. �

Definition. A Fréchet space X is said to satisfy the condition (AN)

if for every q ∈ N there is r ∈ N so that for each ε > 0 there exist two

subspaces B and E of X (B is Banach and X = B ⊕ E) such that

U◦q ⊂ B′ + ε U◦r ∩ E′. (2)

Here B′ denotes the dual of B.

Proposition 5. If X is a Fréchet space satisfying the condition (AN),

then X is an asymptotically normable Fréchet space.

Proof. Suppose X has the condition (AN). Since U◦q ⊂ U◦r for r > q,

condition 2 implies that U◦q ⊂ B′ ∩ (1 + ε)U◦r + εU◦r . Since U◦r is weakly

relatively compact, U◦r is strongly bounded. Hence B′∩(1+ε)U◦r is strongly

bounded or bounded in the norm topology of B′. So U◦q ⊂ MBB′ + ε U◦r
holds for some M > 0, where BB′ denotes the ball of B′. Of course

this implies that X has DNφ (in polarized form) i.e. X is asymptotically

normable [13]. �

Proposition 6. The strong dual of a Fréchet space with the condition

(AN) has the SCBS property.
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Proof. Let X be a Fréchet space with the condition (AN) and let A′

be a bounded subset of X ′. Then there exists a q > 0 such that A′ ⊂ U◦q .

By assumption, for this q, we find an r > 0 such that condition 2 holds.

Also for an arbitrary zero-neighborhood C◦α of X ′ (where Cα is a bounded

subset of X) there exists sα > 0 such that Cα ⊂ sαUr and thus U◦r ⊂ sαC◦α.

Now apply condition 2 for ε
sα

to obtain B′ and E′ depending on ε and α

such that U◦q ⊂ B′ + ε
sα
U◦r ∩ E′ or A′ ⊂ U◦q ⊂ B′ + ε C◦α ∩ E′. Hence X ′

has the SCBS property. �

The following example shows that the SCBS property is not a nec-

essary condition for the stability of a bounded perturbation of an auto-

morphism up to some Banach subspace. Moreover it is not inherited by

subspaces or quotients:

Example [12]. For 1 ≤ p <∞, let lp+ = ∩q>p lq = ∩klpk , where pk ↓ p
(projective limit of lp spaces). The topology of the Fréchet space lp+ may

be then represented by means of the pk-norms:

‖(xn)‖k =

(∑
n

|xn|pk |
) 1
pk
.

This space has the following properties:

(i) It is a reflexive quasi-normable Fréchet space.

(ii) Since lp ⊂ lp+ ⊂ lq for all q > p, with continuous inclusions that are

not compact, lp+ is not a Montel space.

(iii) Since the canonical inclusions from lpk+1
into lpk are strictly singular

and strictly cosingular, lp+ can have no infinite dimensional Banach

subspace or quotient.

Since the canonical linking maps are strictly singular, we observe that any

linear bounded operator T from lp+ to lp+ is also super strictly singular

and hence I + T is Frédholm ([15], [14]).

If lp+ had the SCBS property, then for a given bounded subset A,

k > 0 and ε > 0, by assumption and (iii), there would exist a finite

dimensional subspace B of lp+ such that:

A ⊂ B + εUk,
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that is A is precompact. Hence lp+ would be Montel, which contradicts

(ii). Therefore, lp+ does not have the SCBS property and consequently it

can not satisfy the condition (QN).

Proposition 7. The SCBS property does not pass to quotients.

Proof. lp+ is a quasi-normable Fréchet space, and thus by Meise–

Vogt’s characterization [10] of quasinormability in Fréchet spaces, it is

isomorphic to a quotient of an l1-valued generalized Köthe space which,

by [5], has the SCBS property, but lp+ does not. �

Proposition 8. The SCBS property does not pass to subspaces.

Proof. lp+ is a countable projective limit of lp-spaces and thus by

Remark 24.5 in [11], it is isomorphic to a subspace of some countable

product of Banach spaces. This product can be understood as a Banach-

valued Köthe space which, by [5], has the SCBS property. However, lp+

does not have. �

One can follow the steps of the proof of Theorem 1 in [5] to get the

following:

Theorem 9. If X is a complete barrelled locally convex space with

the SCBS property and T is a linear bounded (respectively, compact)

operator on X into X, then there exist complementary subspaces B and

E of X such that:

(i) B is a Banach (respectively, finite dimensional) space; and

(ii) if πE and iE are the canonical projection onto E and embedding into

X, respectively, then 1E + πETiE is an automorphism on E.

Proof. Since T is a bounded operator there exists U0 ∈ U(X) such

that T (U0) is a bounded set in X, therefore

∀U ∈ U(X) ∃CU > 0 : pU (Tx) ≤ CUpU0(x).

Since X has the SCBS property there exist complementary subspaces B

and E of X such that B is a Banach (respectively finite dimensional) space

and T (U0) ⊂ B +
1

2
U0 ∩ E. Therefore, setting T1 = πETiE : E → E, we

obtain that

pU0(T1x) ≤ 1

2
pU0(x) ∀x ∈ E.
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Now it is easy to see that the operator 1E − T1 is an automorphism of E.

Indeed, consider for any x ∈ E the series

Sx = x+ T1x+ T 2
1 x+ . . .+ Tm1 x+ . . . . (3)

It is convergent in E because, for any U ∈ U(X), we have

pU (Tm1 x) ≤ CUpU0(Tm−11 x) ≤ CU
(

1

2

)m−1
pU0(x), m = 1, 2, . . . ,

so by Banach–Steinhaus theorem, since X is barrelled and complete, the

formula (3) defines a linear continuous operator S : E → E.

Since (1E − T1)Sx = S(1E − T1)x = x, the operator S is inverse to the

operator 1E − T1. �

Exactly in the same way as in ([5], Theorem 2), Theorem 9 enables

us to have the following modification of the generalized Douady lemma in

([16], Section 6):

Theorem 10. SupposeX1 is a complete barrelled locally convex space

with the SCBS property and X2, Y1, Y2 are topological vector spaces. If

X1 ×X2 ' Y1 × Y2 and (X1, Y2) ∈ BF , then there exists complementary

subspaces E and B in X1 and complementary subspaces of G and F in Y1
such that B is a Banach space, F ' E and B ×X2 ' G× Y2.

If, in addition, (Y1, X2) ∈ BF , then G is a Banach space.

Proposition 11. Since the space φ of finite sequences with the direct

sum topology is a complete barrelled DF space, then in the above theorem

X1 can be taken to be φ and Y2 to be either a Fréchet space or a locally

convex space with the individual countable boundedness condition (see [3]).

Since, by Proposition 1, c0-Köthe spaces have the SCBS property, we

get:

Proposition 12. Let X be a c0-Köthe space, and F,G be comple-

mentary subspaces in X, i.e. X = F ⊕ G. If G is an infinite dimensional

Banach space then G ' c0, and moreover, F and G are isomorphic to some

basic subspaces of X.

Proof. We have X×{0} ' F×G and by Theorem 10 there exist com-

plementary basic subspaces E and B in X and complementary subspaces
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F1 and G1 in F such that B is a Banach space and

F1 ' E, B ' G1 ×G.

Since every infinite dimensional basic Banach subspace of a c0-Köthe space

is isomorphic to c0 we obtain that B ' c0. On the other hand, each infinite

dimensional complemented subspace of c0 is isomorphic to c0 (see [9]), so G

is isomorphic to c0. Finally, since B ' c0, its complemented subspace G1

is isomorphic to some basic subspace of B and F ' E ⊕G1 is isomorphic

to some basic subspace of X. �

It would be interesting to have this result for l-Köthe spaces (see, for

example [6], Proposition 2.2.1).
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