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Transcendence measures for the values
of generalized Mahler functions
in arbitrary characteristic

By PAUL-GEORG BECKER (K&ln)

I. Introduction and statement of results

Let f(z) € C[[z]] be a power series at z = 0 having algebraic coef-
ficients. Suppose that f(z) converges in a neighborhood U of the origin
and that it is transcendental over C(z). The following can be seen as the
basic problem of transcendence theory:

(*) Let a € U be algebraic. Determine whether f(«) is transcendental or
algebraic.

Thus one wants to know to what extent the function-theoretic tran-
scendence of f(z) already implies the number-theoretic transcendence of
f(a). Since there exist transcendental entire functions with rational coef-
ficients and f(a) algebraic for all algebraic a # 0 (cf. [Ma], p. 48), it is
not possible to give a general solution to this problem, at least not in the
complex case.

Nevertheless, in many cases a complete answer can be given if further
restrictions are imposed on the function f(z). Let us mention only Linde-

mann’s result on the transcendence of e* for algebraic a # 0 or Mahler’s
result that the Fredholm series

fa(z)=Y " (deZ, d>2)
h>0

takes on transcendental values at all algebraic points a with 0 < |a| < 1.
It is also possible to study problem (x) in the function field case. Let
f(z) € F[[z]], where F = Fy(z) is the function field over the field of ¢
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elements. Suppose that f(z) converges in a neighborhood U of z = 0 and
that it is transcendental over F(z). Here (as in the classical case F' =
C) a general solution to the problem (*) is impossible, but, as Allouche

observed, an answer can be given if the power series coefficients of f belong
to the field F,.

Proposition A (ALLOUCHE [A]). Let f(z) € F,[[z]] be transcendental
over Fy(z). Let a € U, \ {0} be algebraic over Fy(z). Then f(a) is
transcendental over Fy(z).

By U, we denote the set of all Laurent series g in the variable z !
with the property zg(z~!) € F,[[z7"]].

ALLOUCHE’s original result (cf. [A], Ch. IV), which is slightly more
general than the one stated here, leads to a generalization of an earlier
result of Wade. In [Wa] WADE showed a transcendence result for the
values of the above introduced Fredholm series f4(z) (now interpreted as
elements of F,[[z]].)

Once (%) is solved for some specific function f(z) one might ask
whether there is also a relation between “transcendence measures” for
the function f(z), which are usually called zero estimates, and transcen-

dence measures for the transcendental values f(a). First let us consider
the classical situation f(z) € C|[[z]]. Similarly as for the purely qualitative
problem (%) it is impossible to make any general assertion. Neverthe-
less, one should note that almost all “sharp” transcendence measures for a
function value f(a) rely on a suitable zero estimate for the corresponding
function f(z). Later we will give examples for this connection.

Again, the situation is different if we restrict our attention to the
special setting studied by Allouche. Before we can state a quantitative
version of Proposition A we have to introduce some notation.

For a,b € F,[z]\ {0}, let |a/b| = q4°82~d4¢8% and let |0| = 0. Let R be
the (unique) completion of Fy(z) with respect to the valuation |.|. We use
the same symbol for the extension of |.| to R. We have 27! F,[[z7!]] =
{weR||w| <1} = U, that is, U, is the analog of the unit intervall.

Furthermore, we write Z = F,[z] and @ = Fy(z). For P = ao +
a1y + -+ + agy? € Z[y] we denote by d(P) the degree of P with respect
to y and by H(P) the height of P, that is, max, |a,|. Similarly we define

the degree and the height of polynomials with complex coefficients but, of
course, based on the usual absolute value. Let ) be a rational function.

We define its degree d(Q) by d(Q) = max{d(P,),d(Pz)} if P, and P, are
coprime polynomials with Q = P, /P,.
Let F be a field. For a formal power series g(2) = ) 5, 7.2" € F[[z]],

we denote by ord g the smallest v with v, # 0. We have the following
quantitative version of Proposition A.
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Theorem 1. Let f(z) € Fy[[z]] and suppose that there exists a func-
tion u : [0,00)? — [0,00) which is not decreasing with respect to each of
its two variables and for which the following property holds:

For all polynomials R(z,y) € Fy[z,y] \ {0} with deg, R < M and
deg, R < N we have

(1) ord R(z, f(z)) < p(N,M).

Let a € U, \ {0} be algebraic over Q. Then there exist constants Cy,C3,
C3 > 0 depending only on a and f such that for all polynomials P(y) €
Z[y] \ {0} with H(P) < H and d(P) < n the following inequality holds

(2) log |P(f(a))| 2 =C1p(C2n,C3log H).

This result enables us to deduce transcendence measures (2) for func-
tion field transcendental numbers of the type f(a) provided we have zero
estimates (1) for the function f. The following theorem yields such zero
estimates for functions satisfying functional equations of the type

(3) f(Tz) = Q(z, f(2)),

where Tz = T(z) is a rational function of z and where Q(z,y) is a rational

function of z and y. If we take Tz = z% with some d > 2 we have the
functional equation usually considered in the one variable case of Mahler’s
method for transcendence. Here zero estimates were given by GALOCHKIN
[Ga], MILLER [Mi], and by NISHIOKA and TOPFER [NT]. These results are
all included in

Theorem 2. Let F be a field (of arbitrary characteristic). Let f(z) €
F[[z]] be transcendental over F(z). Let Tz = T(z) € F(z) have a zero of
order d > 2 at z = 0. Suppose that Q(z,y) € F(z,y) satisfies (3) and at
least one of the conditions

(i) deg, @ <d or (ii) charF =0.

Then there exists a constant C' depending only on f such that for all
P(z,y) € F[z,y] with deg, P < M and deg, P < N the following inequal-
ity holds

ord P(z, f(z)) K CN(N + M).

A combination of Theorems 1 and 2 yields the following

Corollary 1. Let p = char F; and let d > 2 be a positive integer
which is not a power of p. Let a € U, \ {0} be algebraic over Q. Suppose
that w is one of the following numbers

adh " h h
(a)Z(l_a.ﬁ) ;) et () JJa-e*).

h>0 h>0
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Then there exists a constant C > 0 depending only on a,d, (and in case
(a) also on m) such that for all polynomials P € Z[y]\ {0} with H(P) < H
and d(P) < n the following estimate holds

(4) log |P(w)| £ —Cn(n +1logH).

Remarks. 1) The transcendence of the numbers of type (a) and type
(c) was shown in [Be3], Cor. 3. The transcendence of the values of the

Fredholm series (b) was shown by WADE [Wa).

2) Mahler’s classification of transcendental numbers according to their
respective transcendence measures can be carried over to the function field
case (cf. [Bu], p. 412 or [Sp], Chapt. 3). It was shown by SPRINDZUK that
almost all numbers (in the sense of a suitable Haar measure) belong to the
class of S—numbers. From (4) it is immediately clear that these numbers w

are S—numbers. As far as we know this is the first example of S—numbers
for the function field case.

Another way to compare transcendence measures is based on the so-
called transcendence type (cf. [W11], p. 100). A transcendental number
is said to have a transcendence type not exceeding 7 > 0, if there is a
constant C > 0 such that for all P(y) € Z[y] \ {0}

log |P(w)| > —C#(P)",

where t(P) = d(P) + log H(P). Since it can be shown that one always
has 7 > 2 (cf. [Ge|], Th. 10.6), Corpllary 1 yields the best bound for the
transcendence type of the numbers in consideration. With respect to the
classical situation one should note that there are no explicitly given com-
plex numbers whose transcendence type is known to be 2. The result for
7 shown by WALDSCHMIDT [W12], which says that 7 has a transcendence
type not exceeding 2 + ¢, is almost best possible.

Our zero estimate, Theorem 2, which holds in arbitrary characteris-
tic, can also be applied deduce transcendence measures for the values of
generalized Mahler functions with complex coefficients. As an example of
such an application we give a quantitative version of the transcendence
result established as Theorem 2 in [BB].

Definition. Let p(z) = ag + a1z + -+ + agz® and ¢(2) = by + b1z +
-+++bgz? be polynomials of degree d > 2. Let A € C satisfy A4~ = ag/b,.
The unique function f defined and analytic in a neighborhood of co with
f(z) ~ Az as z — oo and

() f(p(2)) = ¢(£(2))

is called a Bottcher function with respect to p and gq.

The polynomials p and ¢ are said to be linearly conjugate if there
exists a linear Bottcher function f(z) = az 4+ 8, o, € C, a # 0 with
respect to p and gq.
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Remarks. 1) A proof for the existence and uniqueness of Bottcher
functions can be found in [Ba], Th. 6.10.1, or in [St], § 3.3.

2) It was shown in [BB], Theorem 1, that an algebraic Bottcher func-
tion with respect to p and ¢ is already linear or both p and ¢ are linearly
conjugate to My, Ty, or —Ty4, where My(z) = z% and where Ty is the d-th
Chebychev polynomial.

Corollary 2. Let p and q be polynomials of degree d > 2 having
algebraic coefficients. Suppose that at least one of them is not linearly
conjugate to Mg, Ty, or —T4. Let f be a nonlinear Béttcher function
with respect to p and q and suppose that f is defined and analytic in a
punctured neighbourhood G of oo such that p(G) C G and pm|g — o©
as m — oo, where p,, denotes the m—th iterate of p. Let a € G be an
algebraic number.

There exists a constant C > 0 depending only on « and f such that
for all polynomials P € Z[y] \ {0}

(6) |P(f(a))| < exp(=Ct(P)*).

Remarks. 1) Our result shows that the numbers in consideration have
a transcendence type not exceeding 4 and it is therefore comparable to the
result of MILLER [Mi], who derived a transcendence measure for the values
of functions satisfying linear Mahler type functional equations. Unfortu-
nately, Corollary 2 is not sharp enough to imply that f(a) is an S—number
according to Mahler’s classification.

2) It is clear that the numbers studied in Corollaries 1 and 2 of [BB]
have also the transcendence measures (6).

II. The zero estimate: Proof of Theorem 2

Let P(z,y) = P(M(z,y)... P (z,y) be the decomposition of the poly-
nomial P with P(Y) € F[z,y] irreducible over F(z). Let d; = deg, PW>1
v; = ordP(i)(z,f(z)), and v =v; + -4+ v Sinced; +---+dy < N,
we may assume without loss of generality that vy /v > dy/N. Suppose
that T(z) = Ty(z)/T2(z) with relatively prime polynomials Ty, T; € F[z]
and Q(z,y) = Qi1(2,y)/Q2(z,y) also with relatively prime polynomials
Q1,Q2 € F|z,y]. We define polynomials

Ri(z,y) =P (zy),

(7) Ri(z,y) = Ta(2)M Q2(2,y)" Ro(Tz,Q(2,y)) -

The proof is rather easy if condition (i) of Theorem 2 is satisfied. We treat
this case first.
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(1) deg, Q@ < d.
Since Ry(z,y) is irreducible, there is a number n € INj such that Ry(z,y)
and R;(z,y) = Ri(z,y)Ro(2,y) ™™ are coprime polynomials from F(z)[y].
Let D = D(z) € F|[z] be the leading coefficient of Ry(z,y)" with respect

to the variable y. Then we have Ry(z,y) = DR,(2,y) € F[z,y]. Clearly,
deg, Ry < dydeg, Q and deg, Ry < Mdeg, T + d; deg, Q. Thus the de-

grees of R, with respect to y and z are bounded as follows
(8) 0< degy R, < d; degy Q —din < (d = n)d1 ,

and
deg, R, < nM + M deg, T + d, deg, Q.

Since Ry and R; are relatively prime as polynomials in F(z)[y], they have
a nonzero resultant R(z) € F(z). It satisfies :

(9) min{ord Ro(z, f(z)),ord R2(z, f(z))} < ord R(z) < deg, R(z).

We have deg, R(z) < deg, Rodeg, Ry + deg, Ry deg, Ry < 11d:(d; + M).
Here and in the sequel 7v;,72,... represent positive constants depending
only on f, but not on M or N. From the definition of Ry and from the
assumption that T'(z) has a zero of order d at z = 0 we get

ord Ry(z, f(2)) 2 ord Ry(z, f(2)) — nord Ro(z, f(2)) 2> (d — n)v; .

Equation (8) yields d —n > 1. Thus, by (9) and v < v, Nd; ', we have the
asserted inequality

v<(d—n)yNd;' <y1N(d; + M) <1 N(N + M).
Now we assume
(ii) char F' = 0 and distinguish two cases. The first one is
(i1); Ro(2,y) and R;(z,y) are coprime as polynomials in F(z)[y].

Here one can repeat the argument exposed in part (i). Since n = 0 in this
case, no further restriction with respect to deg, @ and d is necessary.

(i1); Rp and R, are not relatively prime.
In this case we apply Lemma 1 below to see that Ry(z,y) and

o5 R](Z, y)
Rg(z,y)

are relatively prime or Ry(z,y) belongs to a certain set of exceptional

polynomials (described in Lemma 1). If Ry and R, are relatively prime,

then we can proceed as in part (i) to derive the zero estimate. (Note:
n=1andd>2!)

Rl(zs y)
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Otherwise, that is, if Ry is one of the exceptional polynomials we have
Ro(z,y) = a(2)S(z,y), where a(z) € F[z] and S(z,y) belongs to a finite
set S of irreducible polynomials with leading coefficient 1. Thus

ord Ro(z, f(2)) < deg, a(z) + rgg‘%{ordS(z, (f(2)) M+ 7.

Lemma 1. There is a finite set S C F(z)[y] of irreducible polynomials
with leading coefficient 1 such that the following holds:

If Ry € F|[z,y] is irreducible and R, € F|[z,y] is constructed according
to (7), then R, has no multiple roots in F(z) (the algebraic closure of F(z))
or Ry is of the form a(2)S(z,y) with a(z) € F[z] and S € S.

PROOF. We assume that g(z) € F(z) is a multiple root of Ry(z,y),
i.e. Ry(z,9(2)) = %Rl(z,y)b:g(z) = 0. Since Ry(z,9(z)) = 0, it is clear

that one of the factors in (7) has to vanish after substituting y = g(z). Of
course, 13(z) # 0, and Q2(z,¢(2)) = 0 would imply

0 = Ri(2,9(2)) = Ta(2)Mra,(T2)Q:1(2,9(2))*",

where r4,(z) # 0 is the leading coefficient of Ry(z,y). This would yield a
contradiction to the coprimality of @, and Q2. Thus

(10) Ro(Tz, Q(z,9(2))) = 0.
We have
d
@R](Z,y) =
us (d -
1) =T)Md, (@Qz(z,y)) Q(2,4)" ~* Ro(T=, Q(z,y))+

R Qulen)® (£060)) (S RT= W lymae) -

From our assumption char F' = 0 we conclude that the irreducible polyno-
mial Ro(z,y) has no multiple roots. The monomorphism z — Tz of F(z)
into F(z) can be extended to a monomorphism of the splitting field L of

Ry(z,y) into F(z) (cf. [L], p. 369). Therefore Ry(Tz,y) has no multiple
zeros and, by (10), %Ro(Tz,y)lFQ(,‘g(,)) # 0. Hence as a consequence

of f—le(z,y)|y=g(,) =0, (10), and (11) we get

d
(12) @Q(Z!y)l‘y:g(z) =0.
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Since char F' = 0 and f(z) is transcendental, it is clear that -~ Q(z y) # 0.

Thus (12) is satisfied only for ¢g(z) € G, where G C F(z)isa ﬁmte set. Let
u € F(z) be the unique solution of u(T2) = z and let H be the finite set

{h(2) € F(2) | h(z) = Q(u(2),9(u(2))) for some g € G}.
Thus Rg(Tz Q(z,9(z))) = 0 with g € G implies Ry(2,h(z)) = 0 for some

h € H,i.e. Ry is associated to one of the finitely many minimal polynomials
of the elements of H. O

III. Measures in positive characteristic:
Proofs of Theorem 1 and Corollary 1

We prove the following result, which is more general than Theorem 1
and which shows the connection between zero estimates for algebraic in-
dependent functions fi,..., fm and measures of algebraic independenc= of
the corresponding values fi(a),..., fm(a). Theorem 1 is just the special
case m = 1 of

Proposition B. Let fi(z),..., fm(2) € F;[[2]] and suppose that there
exists a function p : [0,00)? — [0, 00) which is not decreasing with respect
to each of its two variables and for which the following property holds:

For all polynomials R(z,y1,...,Yym) € Fglz,y1,...,ym] \ {0} with
deg, R < M and deg.tot, , R < N we have

(13) ord R(z, f1(2),..., fm(2)) S u(N,M).

Let a € Uy \ {0} be algebraic over Q. Then there exist constants Cy,Cy,
C3 > 0 depending only on a and fy,..., fm such that for all polynomials
P(y1,...,ym) € Z[y1,...,ym] \ {0} with H(P) < H and deg. tot,,

P < n the following inequality holds
log |P(fi(a),..., fm(a))] = =C1u(C2n,Cslog H).

Remarks. 1) Since u(N, M) < oo, the functions fi(z),..., fm(2) have
to be algebraically independent over Fy(z) and the function values f,(a),
..., fm(a) have to be algebraically independent over the field Q. It is clear
that for any set of algebraically independent functions f;,..., f, there
exists a function p having property (13). Hence Proposition B includes a
generalization of Allouche’s result, Propocntlon A, to the case of algebraic
independent functions.

2) It will become clear from the proof that the proposition holds true
also if F} is substituted by an arbitrary field, not necessarily of positive
characteristic.
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PROOF. Let y be the vector notation for (yi,... y,Ym ). Similarly we
use the symbols f, f(z),.... Let R € Fy[z,y| be a nonzero polynomial
with deg, R < M and deg.tot, R < N. By our assumption we have

Rz, f(2)) = ) w2

v2vo

with a, € Fy, a,, # 0, and vo < u(N,M). This yields for 0 < |a| < 1 the
estimate :

(14) log |R(a, f(a))| 2 —pu(N, M)log |a.

Our hypotheses a € @ (the algebraic closure of Q) and 0 < |a| < 1 imply
that a is transcendental over F; and algebraic over Fy(z). Since z is also
transcendental over Fy, it has to be algebraic over Fy(a). There is an

integer e > 0 such that z; = z?° is separable over F,(a) and it is no
restriction to assume that e is a-multiple of log, ¢. Let ¢ be minimal with
these properties.

Let P € Z[y]\ {0}. We have P(y) = Py(z,y) with some P, € F,[z,y]

and consequently

P(f(a))”" = Pi(z, f())”" = Pi(z1, f(a)"").
It is, therefore, sufficient to deduce lower bounds for the absolute value

of polynomials in the variables z; and f(a). Let L be the splitting field
of the minimal polynomial of z; over K = Fy(a). The extension L/K is

Galois.
Let D € F,[a]\ {0} be a denominator for z,, i.e. such that the monic

minimal polynomial of Dz, over Fy(a) has coefficients from F,[a].
Let S € Z\ {0} with S(y) = Si(z,y) for some S} € Fy[z,y]\ {0} and
k = deg, S = log, H(S). There exists a polynomial R(z,y) € Fy[z,y]\{0}

with

(15) R(e,y) = [[ D*Si(a(21),y),

where the product runs over the Galois group of L over K. The degrees
of R are bounded as follows

deg, R < kL : K|(log, |D| + log, [z1]),
deg.totiR < [Ls KMd(S)

Here d(S) = deg.tot, S and [r;] = max, |o(z;)| is the maximum of the
absolute values of the conjugates of z,. Let 7;,72,... represent positive
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constants depending only on a and f. Thus we have deg. tot, R <m d(S)
and deg, R < v, log H(S). It is a consequence of (14) and (15) that

(16) ) _log|D"Si(o(z1), f(@))| = —vsp(11d(S), 72 log H(S)).
The following estimate holds for all &

log |D*S1(o(z1), f(a))| <log, H(S) (log |D| + log [z41]) +
+d(S)log max |f:(a)] < 7a(d(S) +log H(S)).

We have u(N,M) > N + M, since it is always possiblento construct
a polynomial R € Fyz,y] with deg, R < M, deg.tot, R < N, and

ord I‘i"(z,i(z)) > N + M. Hence we may conclude from inequality (16)
log |S1(z1, f(a))| 2 —ysp(11d(S), v2log H(S)).

Now we choose S in such a way that $i(z1,y) = Pi(z; ,gpg) for the above
defined e and P, € Fy[r,y]. This yields

log |P(f(a))| 2 —veu(y7d(P),ys log H(P)). O

PROOF of Corollary 1. (a) Let

m

Z( Zdh)
. g™
A>0 1—2

for some m € N. f satisfies the functional equation

=1+ (1)

It was shown in Corollary 3 of [Be3] that f(z) is a transcendental function.
Thus we can apply Theorem 2 with Tz = z¢ and Q(z,y) = y—(z/1—2)™.
The assertion of Theorem 2 guarantees that the assumption of Theorem 1
1s satisfied if we take u(N, M) = C;N(N + M) with a suitable constant
C1 > 0. Theorem 1 yields

log |P(w)| > —Can(n + log H)
for all P € Z\ {0} with H(P) < H and d(P) < n, where the positive

constant Cy depends only on a,d, and m.
(b) and (c) follow by a similar reasoning applied to the functions

fi(z) = tha %" and fa(z) = H},zo(l = Zdh)- .
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IV. Measures in characteristic 0: Proof of Corollary 2

For 7 > 0, let Zh)-j fnjz~" be the Laurent series development of f?

at z = 0o. Let K be the algebraic number field containing a, f_1;, and the
coefficients of the polynomials p and q. Ok denotes the ring of algebraic

integers in K. For algebraic numbers 3 we define Iﬁl, the house of 3, as

the maximum of the absolute values of the conjugates of 3. ~1,72,...
represent positive constants independent of the parameters M, N, and k
which will be introduced later.

The corollary is shown in an equivalent form as a result on approxi-
mations |f(a) — £| for algebraic numbers . To sketch its proof we start
with the following lemma, which gives estimates for the houses and denom-
inators of the Laurent series coefficients fj;. Such estimates are needed
for the construction of an auxiliary function, which is done in Lemma 3.
Lemma 4 gives upper and lower bounds for suitable values of the auxiliary
function and Lemma 5 shows how a good approximation of f(a) by an
algebraic number ¢ would lead to a good approximation of those function
values. A Liouville estimate and a suitable choice of M, N, and k then
yield a contradiction.

Lemma 2. There is a constant ; > 0 and a natural number D such
that for ;j > 0 and h > —)

(i) log[fa;] <m(h+2j) and (i) D*** fs; € Ok .

PROOF. Part (ii) of the lemma is an immediate consequence of Propo-
sition 1 and Lemma 6 in [Be2]. The coefficients fj; satisfy the conditions

y a
(17) =5
d
and for h > 0
(18) Iar = Baldo;«:es88: 065 oo Db Fodascons JB=1.1) s

where R, € Q(zo,...,Z4,Y0,---,Yd,W—1,...,Whr—1) depends only on the
common degree of the polynomials p and ¢ but not on their coefficients.

The recursion formula (18) is a consequence of the functional equation (5)
satisfied by f.

Let o be a field isomorphism of K. From (17) and (18) we get

_o(aq)
- U(bd)

o(f-1,)*"

and for h > 0
o(fr1) = Ri(o(ap),...,0(aq),o(bg),...,0(ba),o(f=11)s---y0(fr=1,1))-
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Thus the Laurent series
(@f)(z)= Y o(fm)z™"
h>—1

is a Bottcher function with respect to the polynomials ). o(a;)z' and

Y-, 0(bi)z'. Therefore it has to converge for all z of sufficiently large ab-
solute value. Hence there exists a constant v, > 0 with

lo(fa)l < %" % (h2-1).
Since there are only finitely many isomorphisms to consider, we have
fm| = max|o(fr1)| < (max e )0
Now we apply the idea used in the proof of Lemma 6 in [Be2] to derive
inequality (1). O
For a Laurent series g(z) = }_,5, 7-»2"" € C((z71)) at oo we
denote by ord. g the smallest v with v_, # 0.

Lemma 3. Let N > ~v3 and M > 4N be integers. Then there exists
a polynomial P(z,y) € Z[z,y] \ {0} with the following properties:

(a) 1< deg,P<N, deg,P<M,
(b) H(P) < exp(ysMN),

(¢) ordes P(z, f(2)) 2 7%6MN ,

(d) orde P(z, f(z)) < 47 MN .

PROOF. Using Siegel’s lemma (cf. [WI11], p. 10) it is possible to con-
struct a polynomial satisfying conditions (a), (b) and (¢). (For more details
of the construction the reader may wish to consult the proof of Lemma 1 in
[Mi].) Since the Bottcher functions we have to consider here are all tran-
scendental (cf. [BB], Theorem 1), we can apply Theorem 2 to the function

f(z) = zf(1/z). This function is analytic in a neighbourhood of z = 0 and
satisfies a functional equation

f(T2) = R(z, f(2)),

where Tz = 1/p(1/z) and R(z,w) is a suitable rational function of z

and w. The estimate (d) is now a consequence of our zero estimate from
Theorem 2. O

Now, for the parameters N and M, let P(z,y) be a polynomial con-
structed according to Lemma 3.
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Lemma 4. Let M, N, and k be integers satisfying N > vg, M > 9N,
and d* > v10MN. Then we have

exp(—'yuMNdk) < |P(pk(a), f(px(a))| < exp(—‘ylgMNdk).

PROOF. First we note that the Laurent series coefficients of f at oo
satisfy the same estimates as the power series coefficients of the func-

tion f in [Mi]. Furthermore, we have for k > 0 the estimates 1adF <
log |pk(a)| < 714d* (cf. Lemma 1 in [Bel]). Thus we can proceed as in the
proof of Lemma 3 in [Mi]. O

Let ¢ be an algebraic number of degree d(¢) and height H({). We
define t(§) = d(€) + log H({). If € is a good approximation to f(a), we
may expect ¢x(£) to be a good approximation to f(pk(a)). An application

of the mean-value theorem yields a corresponding result, which is stated
as

Lemma 5. Let M, N and k > +,5 be integers. There is a positive
number 7,6 with the property: If

(19) |f(a) — €| < exp(—y16 MNd*),
then
|P(pi(a), f(pr(@))) — P(pr(a), qx(€))| < exp(=y11 M Nd¥),

with the constant 4;, of Lemma 4.

Now we can prove Corollary 2. Suppose that £ satisfies (19). Then it
is clear from Lemma 4 and Lemma 5 that P(px(a),gx(€)) # 0. A Liouville
estimate (see [Ga], Lemma 5) yields

|P(pi(a), gk (€))| 2 exp(—vi7Md*(d(€) + log H(¢)))
if M > 4,3 N. Combining this with Lemma 4 and Lemma 5 we get

exp(—112MNd*) > |P(pi(a), f(pi()))]
2 |P(pk(a),qk(€))| — |P(pk(a, f(pk(a))) — P(pk(a), gx(£))]
> exp(—y17Md*t(€)) — exp(—=y11 MNd¥).

This yields a contradiction if we choose N > 7,9t(£) with a sufficiently
large constant v;9. Hence the conditions of Lemma 4 and also

|f{a)=E| > exp(—y1e MNd*)
are satisfied if we take M and k with M > y50t(€) and d* > v,1(£)%. We

get
|f(a) = €] > exp(—722t(€)*),
from which the corollary can be deduced in the usual way (see [L], p. 61).
O
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