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On the structure of optimal measures
and some of its applications

By N. K. AGBEKO (Budapest)

Abstract. By an optimal measure space we mean a triple (Q, F, p), where (Q, F)
is a measurable space and p is an optimal measure, i.e. p : F — [0,1] is a set function
satisfying the following properties:

P1. p(@) = 0 and p(Q2) = 1.
P2. pis F-additive, i.e. p(BUFE) = p(B)Vp(FE) for all B, E € F, where V denotes

the maximum.
P3. p is continuous from above.

We give a structure theorem describing optimal measure spaces. As a consequence,
the corresponding Radon-Nikodym derivative is explicitly given.

0. Introduction

In [1] we have defined the so-called optimal average, in analogy to the
mathematical expectation. We shall here recall some notation, preliminary
definitions and results.

Notation. i) The symbol V (resp. A) stands for the maximum (resp.
minimum).

11) x(B) denotes the characteristic function of the set B.

Convention: 0- 0o = 0.

Let (2, F) be any measurable space. In the sequel, measurable sets
(resp. functions) will be referred to as events (resp. random variables, ab-
breviated r.v.’s), measurable simple functions as discrete r.v.’s. The com-
plement of any event B will be denoted by B’ and we write 1 := x(Q).

By an optimal measure we mean a set function p : F — (0, 1] satisfying
the following properties:

P1. p(#) = 0 and p(Q) = 1.
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P2. p is F-additive. (i.e. p(BUE) = p(B) V p(E) for all events B and

P3. p is continuous from above. (That is, if B, eF and B, D B; O

-++, then p ( ﬁ Bn) = “li_.m p(Bn).)

n=1

The triple (§2, F, p) is called an optimal measure space.
n
Let s = Y bix(B;) be a nonnegative discrete r.v. We have shown

i=1
that the functional I(s) = {/ b; - p(B;) (called optimal average of s), does
i=1

not depend on the decompositions of s. The optimal average of s on an
event B is defined by Ig(s) = I(s- x(B)).

Let f > 0 bear.v. The quantity Af := sup I(s) (where the supremum
is taken over all discrete r.v.’s s > 0 such that s < f) is called the optimal
average of f. The optimal average of f on an event B is defined by

ABf = A(fX(B))s

Let f be any r.v. We shall say that f bélongs to:

i) A% if p(|f| < b) =1 for some b € Ry.

i) A%, if A|f|* < o0, a € [1,00).
For a € [1, o0], the functional

T { inf(be Ry :p(|f| <b)=1), if fE A, a=
T L {Alf|"Ye i € A°, a €1, 00)

is a norm. For a € [1,00|, the space A* endowed with this norm is a

Banach space.
From now on let us fix an optimal measure space (2, F,p) and in

analogy to the symbol ] ” of the Lebesgue integral we shall adopt the

symbol “k’ to designate the optimal average, i.e. Af = \ fdp, Agpf =
Q
\fdp where f > 0isar.v.and B € F.
B

1. The fundamental theorem

By a (p—)atom we mean an event H, p(H) > 0 such that whenever
Be F,BC H, then p(H) = p(B) or p(B) =0.
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Definition 1.1. We shall say that a (p—)atom H is decomposable, if

there exists a subatom B C H such that p(B) = p(H) = p(H \ B). If no
such subatom exists, we shall say that H is indecomposable.

Lemma 1.1. Any atom H can be expressed as the union of finitely
many disjoint indecomposable subatoms of the same optimal measure

as H.

PROOF. We say that an event E is good, if it can be expressed as
the union of finitely many disjoint indecomposable subatoms. Let H be
an atom and suppose that H is not good. Then H is decomposable. Set
H = B, UC,, where ByNC; =0, p(B;) = p(C1) = p(H). Since H is not
good, at least one of the two events By and C is not good; suppose, e.g.
B; is not good. Then B, is decomposable. Let By = By U C;, where B
and C, are disjoint events with p(Bz) = p(C2) = p(H). Continuing this
process for every n > 1 we obtain two events B, and C, such that the
C,’s are pairwise disjoint with p(Cy) = p(H). This however is impossible

since E, = |J Ci tends decreasingly to the empty set and hence, by
k=n

property P3, p(E,) — p(0) = 0 as n — oo which contradicts p(En) >

p(Cp)=p(H)>0,n > 1. O

Remark 1.1. Let H be any indecomposable atom and E any event
with p(E) > 0. Then, either p(H) = p(H \ E) and p(EN H) = 0, or
p(H)=p(HNE)and p(H\ E)=0.

Theorem 1.2 (Fundamental Optimal Measure). Let (2, F,p) be an
optimal measure space. Then there exists a collection H := {Hp, : n € J}
of disjoint indecomposable (p—)atoms, where J is some countable (i.e.

finite or countably infinite) index set, such that for every event B with
p(B) > 0 we have

(1.1) p(B) =max{p(BNH,):n€ J}.

Moreover if J is countably infinite, then the only limit point of the set
{p(Hp):n€ T} is 0.

Before the proof, let us state the following results.

Lemma 1.3. Let E be an event with p(E) >0 and By € F, By C E
(k € J) where J is any countable index set. Then,

LE2] p ( U Bk) < p(E) ifandonlyifforallk e J,
keJg

(1.2)° p(Bk) < p(E).
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PROOF. The lemma is obvious if the index set J is finite. We may
thus a.ssume that 7 = {1,2,3,...}. Suppose that (1.2)" holds for all k¥ > 1.

Put C = U B;, k > 1. Clearly, (Ck), k > 1, is an increasing sequence of
events a.nd the inequality

(1.3) p(Ck) < p(E)
holds for all ¥ > 1. Assume that p(F) = p( Ej Ck). Then via (1.3) we
k=1

obtain that p(E) = p ((U C,‘) \Ck) for all £ > 1. This is impossible,
=1

and thus, by P1 and P3, p(Ex) — 0 as k — oo. Hence (1.2) holds.
The converse is obvious, proving the lemma. O

oo
since Ey = (( L C,-) \Ck), k > 1, tends decreasingly to the empty set

Lemma 1.4. For every sequence {By), k > 1, of events we have
P ( U Bk) = max{p(Bs) : k 2 1}.
k=1

(The proof is immediate from Lemma 1.3.)

Lemma 1.5. Every event E with p(E) > 0 contains an atom H C E
such that p(H) = p(E).

PROOF. If E is an atom, there is nothing to be proved. We may
assume that F is not an atom. Let & C F be such that:
1) if B € U then, B C E and 0 < p(B) < p(E),

ii)if B,C €Y and B # C, then BNC = 0.

Clearly the collection of all such i, denoted by C, is partially ordered
by set inclusion.

It is also obvious that every subset of C has an upper bound. There-
fore, by the Zorn lemma, it follows that C contains a maximal element,
which we shall denote by &*. For any fixed constant é§ € (0,1), let us show
that the set

{BeU*:p(B) > é}

is finite. Suppose that the contrary holds. Then there exists a sequence

(B,) C U* with p(B,) > 6 for all n > 1. But since E, = U B; tends
decreasingly to the empty set, we must have that p(E,) — 0 as n — oo.

This however contradicts p(E,) = \ p(Bi) > é,n > 1. Hence U* = {By :

i=n
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k € A} with p(Bx) < p(E) for all k € A, where A is a countable index
set. By Lemma 1.3, it follows that

P ( U Bk) < p(E).

kea

Thus it is obvious that H = E\ |J By is an atom with p(H) = p(E).
kea
This ends the proof of the lemma. a

PROOF of Theorem 1.2. Let G be a set of pairwise disjoint atoms.
Clearly the collection of all such G, denoted by I', is partially ordered by
set inclusion and every subset of I has an upper bound. Then, the Zorn
lemma entails that I' contains a maximal element, which we shall denote
by G*. As above, it can be easily seen that the set

{Keg*:p(h’)>i—}

is finite. Hence G* = {K; : i € V} where V is a countable index set. It
is obvious that p(K;) — 0 as : — oo whenever V is countably infinite.
Consequently it ensues, via Lemma 1.1, that each atom K; € G* can be
expressed as the union of finitely many disjoint indecomposable subatoms
of the same optimal measure as K.

Let us list these indecomposable atoms occurring in the decomposi-
tions of the elements of G* as follows: H := {H, : n € J} where J is a
countable index set. O

Lemma 1.6. Let H = {H, : n € J} be as above. Then for every
event B with p(B) > 0, the identity

(1.4) p(B\ U(Ban)) =0

neJg
holds.

In fact, assume that the left side of (1.4) is positive. Then B\ |J (BN
neJg
H,) would contain an atom K such that K N K,, = § for every K, € G*.

This, however, would contradict the maximality of G*, proving Lemma 1.6.
Now, via Lemma 1.4, the identity (1.4) and property P2, one can
easily observe that (1.1) holds for every event B, p(B) > 0. It is also
obvious that 0 is the only limit point of the set {p(H,): n € J} whenever
J is countably infinite. This completes the proof of the theorem. 0
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Definitions 1.2. The set H = {H, : n € J} of disjoint indecompos-
able (p—)atoms (obtained in Theorem 1.2) will be called (p—)generating
countable system:

i) it will be referred to as a (p—) generating infinite system and will
be denoted by Hoo(p), if J is countably infinite;

i1) it will be called a (p—) generating finite system and will be denoted
by H°(p), if J is finite.

2. Some applications

In the sequel we shall fix an optimal measure space (2, F,p) with
H = {H, :n € J} as its generating countable system.

Remark 2.1. If a function f : 2 — R is measurable, then it is constant
almost surely on every indecomposable p-atom.

Definition 2.1. By a quasi-optimal measure we mean a set function
q : F — Ry satisfying properties P1-P3, with the hypothesis ¢(f2) = 1 in
P1 replaced by the hypothesis 0 < ¢(f2) < oo.

Proposition 2.1. If f > 0 is a bounded r.v., then the set function
g7 : F — Ry, defined by

9f(B) = \fdp,

is a quasi-optimal measure.
(The proof is straightforward.)

Definition 2.2. We shall say that a quasi-optimal measure ¢ is abso-
lutely continuous relative to p (abbreviated ¢ < p) if ¢(B) = 0 whenever
p(B)=0,B € F.

Proposition 2.2. Let ¢ be a quasi-optimal measure. Then ¢ < p if
and only if for every € > 0, there exists § > 0 such that ¢(B) < € whenever
p(B)<é, B € F.

(The proof is similarly done as in Measure Theory.)

Lemma 2.3. Let q be a quasi-optimal measure, and let H be a p-
generating countable system. If ¢ < p then,

W={HecH:q H)>0}
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is a q-generating countable system.

PROOF. Let H be an indecomposable p-atom. Suppose that there
exists an event £ C H with ¢(E) = ¢(H \ E) = ¢(H) > 0. Since ¢ < p, it
is true that p(E) > 0 and p(H \ E) > 0 contradicting the fact that H is an
indecomposable p-atom. Hence we can conclude that any indecomposable
p-atom H is also an indecomposable g-atom, whenever ¢(H) > 0, and
observe that

=l eHql)»0={l1 EHi ke T}

where J* C J is an index subset.
Let B be any event with ¢(B) > 0. Then, via Lemma 1.6 and the
absolute continuity property it follows that

q(B\LJ(BﬂH@):&
neJ*
Thus ¢(B) = max{¢(BN H,):n € J*}.

If J* is countably infinite, then Proposition 2.2 yields that ¢(H,)

becomes arbitrarily small along with p(H,) as n — oo. This ends the
proof. O

Theorem 2.4 (Optimal Radon-Nikodym). Let ¢ be a quasi-optimal
measure such that ¢ < p. Then there exists a unique r.v. f > 0 such that
for every event B,

(2.1) o(B) = \fdp.
B

(This r.v., explicitly given in (2.2), will be called the Optimal Radon-
Nikodym derivative of ¢ relative to p and will be denoted by %3.)

PROOF. Define the following nonnegative r.v.:

(2.2) f:max{i-g—g:—;-x(ffn):nej}.

Fix an n € J and let B € F, p(B) > 0. Then, Remark 1.1 and the
absolute continuity property imply that

q(Hn) 0, if (BNHyp) =0

p(Hp) q(BNH,), otherwise.

-p(BﬂHn)={
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Hence, by a simple calculation, one can observe that

dep =max{¢g(BNH,):n€ J}.

Consequently, Lemma 2.3 yields
\fdp- { max{Q(Ban):Q(Hn)>0,n€J}, ifq(B))O

0 otherwise,

and thus (2.1) holds.

Let us show that the decomposition (2.1) is unique. Suppose that
there exists two r.v.’s f > 0 and g > 0 satisfying (2.1). Then, for each

event B, we have \fdp = \bgdp. Put E, =(f < g) and E; = (g9 < f).

B
Obviously, E; and E; € F. If the inequality p(E;) > 0 hold, it would

follow that
\ gdp = \ fdp < \ gdp,

E, E, E,

which is impossible. This contradiction yields p(E;) = 0. We can similarly
show that p(E;) = 0. These last two equalities imply that p(f # ¢) = 0,
i.e. the decomposition (2.1) is unique. The theorem is thus proved. O

Let E be a fixed event with p(E) > 0. Consider the set function

p* : F — [0,1] defined by p*(B) = I—)-(—f—(%—)g-)— Cleraly, p* is an optimal
dp* _ x(E)

measure and p* < p. It is obvious that p a.s. (by the Optimal

dp  p(E)
Radon-Nikodym theorem).

Definition 2.5. The above set function p*(B) will be called conditional
optimal measure of B given E, and denoted by p(B | E).

Definition 2.4. Let f € A! be ar.v. and E € F, with p(E)>0. The
conditional optimal average of f given E, is defined by A(|f| | E) :=

\n|f|dp*.

The proofs of the following statements are straightforward:
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Lemma 2.5. If f € A! then, for every event E with p(E) > 0,
1
Allfl| B) = —= f|dp.
(£11 B = —55 \b| |

Proposition 2.8. If f € A!, then
A|f| = sup{bn - p(Hn)}
neJ

where b, = |f(w)| for almost all w € H,, (n € J).

Proposition 2.7. Let f € A! be ar.v. Then, f is bounded a.s. if and
only if b, < X\ (n € J), where b, = |f(w)| for almost all w € Hp, (n € J)

and )\ is some positive constant.
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