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Some examples of factors.
To the memory of my teacher and friend, T. Szele.

By L. PUKANSZKY in Szeged.

The purpose of the present paper is to construct some examples of
factors') of type III°), which will illustrate that certain phenomena known for
factors of type II, subsist also in this case. First we establish the existence
of non * isomorphic factors of type Ill by giving the corresponding examples
(Theorem 1). This result has been obtained by F. J. MURRAY and J. v. NEUMANN
for the case II, (R. O. IV, Theorem XVI’). Secondly we give examples of factors
of type I1l, containing particular maximal abelian subrings. Let N be a subring of
an operator ring M, and denote by T the subring &M generated by the
unitary operators of M satisfying UNU*S N. We say that N is singular if
T=N, and semi-regular if T is a factor &=M. As DIXMIER has recently
shown, there exist singular and semi-regular maximal abelian subrings in an
approximately finite factor of type II, (cf. [1], Théoréme 1). In the second
part of our paper we intend to give examples of factors of type I, which
contain such abelian subrings (cf. Theorem 2).

In the course of our proofs we make large use of the ideas and methods
developed in the papers R. O. IIl and IV, and [1]. Nevertheless, the adapta-

tion of these reasonings to the present case requires often essential modifi-
cations.

§ 1. Non * isomorphic factors of type Il

We introduce first the following definition, which is inspired by the
Definition 6. 1.1 in R. O. IV.

Definition. We say that the ring of operators M possesses the pro-
perty L, if there exists a sequence U, (k=1,2,...) of unitary operators in
M, such that weak lim U,=0, and strong lim UrAU; = A for every A€ M.

As it is shown in [5], Theorem Il and III, the notions strong and weak
convergence of an operator sequence are purely algebraic, i. e. they are invariant

1) For a theory of the factors in a Hilbert space cf. [3].
) Cf. in particular [5]. We quote the papers [4] and [5] in the sequel as R. O. IV
and R. O. 1], respectively.
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under * isomorphism of operator rings. Therefore every operator ring *
isomorphic with another possessing the property L, has itself this property.

Our objective in this section is to give an example of a factor of type
III with the property L and then another without this property.

Factors of type Ill can be obtained in the following way (cf. R. O.
11I, Chapters Ill and IV). Consider a totally o-finite, complete measure space
(X, S, n)’) consisting of a separable o-ring S') formed by the subsets of a
set X, and a o-finite complete measure defined on S. Let ( be a countable
group acting as a group of one-to-one mappings of X into itself and at the
same time as a group of automorphisms of S. For x € X and a € & we denote
the effect of the mapping corresponding to @ on xby xa. The measure u is
quasi-invariant under & if u(E)=0 for E € S implies u(Ea)=10") for every
a€®. In this case the “translated measure” pu, defined for FE€S by
ua(F)=u(Fa) is absolutely continuous with respect to u, thus we can form
‘3:: (x). The group & is said to be (i) free,
if for a € ®,a==e the set of points satisfying the condition x=—xa (x€ X)
is of a u-measure 0, (ii) ergodic, if EaSE for E€S and every a€®
implies either u(E)=0, or u(X—E) =0, (iii) non-measurable, if there exists
no o-finite measure », which is equivalent to ¢« and invariant under & (i.e.
which satisfies »(Ea)= v(E) for E€S and a € ).

Suppose we are given a measure x and a group (&, such that u is quasi-
invariant, and (& possesses the properties (i)—(iii). We form the Hilbert
space H of the complex-valued functions F(a,x) (a € ®, x € X) satisfying

Z«egx[IF(ﬂ,X)i’ du < + oo with the inner product

the Radon—Nikodym derivative

F0)=2.. “k[ Fa,)C@x) dx (F,G¢H).

For a, €, and an arbitrary complex-valued, bounded and measurable function
¢(x) we consider the operators U, and Ly, defined for F¢ H by

(e

(Ua"F) (ﬂ, I) —— (d;;n (x)) F(aa.,, xaf.),

(Lo F)@, x)=g(x) F(a,x)  (a€6,x€ X).
Then under the above conditions on x and & the ring of operators M
generated by these operators in the space H is a factor of type III

3) In general we employ the terminology of |2].

¥) We say, that S is separable, if there exists a countable subsystem O of sets in
S with the following properties: (i) O generates S, (i) If x € E is equivalent with y€E
(x, y€ X) for every E€0, then x=y (cf. R. O. lll, Definition 3. 2.3).

5) We put Ea={xa;xcE}.
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The space H can be considered as the direct sum of an infinite number
of replicas of the space L:(X) of quadratically integrable functions over X
with respect to x (indexed by the elements of (5). So every bounded opera-
tor A in H can be represented by an operator matrix, in symbols A ~ (A,,»)
(a.b€®), whose coefficients are operators in Li(X). If A€M, then
Au v = Ly, 1 (nUp1a"), where the operators U. and L, ) (a € ®)are defined for

f(x) € Li(X) by

7
UN@=(% ) rxa)
(Lyo) =R (D).

Here the functions ¢.(x) are complex-valued, bounded and measurable.
Conversely, to a sequence ¢.(x) (@€ ®) of such functions corresponds an
operator of M, described by the operator-matrix (Lg,-1,2)Us-14) provided that
the latter defines a bounded operator in H. For this operator A€ M we
define (A), = @.(x).

Lemma 1. Supposing (A). = ¢.(x) and (B)o= v.(x)(a € ®) for A, BEM,
we have the following rules of computation :

(i) (£ A).=4g¢.(x), (4 arbitrary complex constant),

(i) (A)=9,..(xa),

(iii) (A + B).=9a(x) + ¥a(x),

(iv) (AB).= 2. c 091 (X)¥a(xc "), where the last series converges almost
everywhere with respect to w, irrespective of the order of the summation.”)

Proor. The statements (i)—(iii) are identical with those of lemma
3.7.1 of R. O. lll. To prove (iv) we observe that by the statement (iv)
loc. cit.,, the series . ¢ o @.-1(X)y.(xc') converges in measure to (AB).,
irrespective of the order of summation. Since the convergence in measure of a
monotonous sequence of functions implies its convergence almost everywhere,
we see, that the series 2. e /@ (X)], and 2.es|@.(xc ") converge almost
everywhere to (AA"). and (A* A)., respectively. Hence by an obvious application
of the Cauchy—Schwarz inequality we get that the series = _ ¢ _1(x)y,, (xc™")
converges also almost everywhere, irrespective of the order of the summation.

The commutant of M, i. e. the ring M’ consisting of the operators
permutable with every element of M, is generated by the operators

(V.,F)(a,x)= F(a;'a, x)
(MyyF)(a, x) = g(xa")F(a, x) (F€ H, a,.€ ),

%) Cf. lemma 3.6.3 (ii) and lemma 3.6.4 in R. O. lll. For later purposes we write
¢—1(x) for ¢,(x) loc. cit.

7) We use the sign = to denote an identity, which is fulfilled disregarding a set of
pu-measure 0.
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where ¢(x) is an arbitrary complex-valued, bounded and measurable function
on X. This gives immediately the following

Lemma 2. Suppose u(X) < - <. Denoting by F, the vector of H, for
which Fy(e,x)=1, F,(a,x)=0 (a==¢), the elements A'F, (A’ € M’) span the
space H.

We proceed now to discuss special examples®). We consider the measure
space (X, Sy, u7), where X, contains the points O and 1 only, S, consists of
all subsets of X, 1#,({0})=p, us({1})=¢q, and ¢>p>0,p+qg=1. For
n=12,... we put (X,, S., u.) = (X0, Sy, 1), form the Cartesian product
(X, S, )= (Xiz=1 X, Xo=1Sn, Xoz1men) of these spaces, and take the comple-
tion w of w'. We denote the measure space obtained in this way by (X, S, w).
A point x € X may be identified with a sequence (x.) (n=1,2,...), where
x,=0 or =1. Defining for x=(x.),y=(y:) € X the sum x-}y by the
sequence (X, - y») reduced mod 2, X becomes a group. The set 4= {(x,); x, 50
for a finite number of n only} forms a countable subgroup of X, generated
by the elements 7. = ((7:).) (k=1,2,...), where (7:)»==0 only for n=k.
For y € 4 we define a one to one mapping of X onto itself by xy=x+4y
(x € X); it is clear, that these mappings represent 4 as a group of auto-
morphism of §. We show next that &' is quasi-invariant, which gives
immediately that S is mapped onto itself along with S’ and that the measure
w is quasi-invariant too.

Lemma 3. The measure ' is guasi-invariant under A.

PrOOF. We have to show that the measure ¢, defined by ) (E) = u'(Ey)
for y€4 and E€S’, is absolutely continuous with respect to w. Since every
y € 4 is the product of some of the generators y:, we need to do this for
the measures ), only. Consider now for a fixed & the function

B el

Ju(x) = q
7 if xx=0 (x € X).

It suffices plainly to show that for E€§’ p;*(E)z'r fi(x)d’, but taking

E
in view the definition of the product measure «" we need to consider only
the ,cylindrical sets of the form E = {x;x,, =0, Xo;=1, i= 1,2,...,U,j=
=1,2,...,v}. Suppose first that k¥ occurs among the numbers m; and nj,
k=m; say. Then
| fydu =L w (E)=T prg = p g = w (Ep) = 16, (E).

E

§) For the following cf. [2] § 38, in particular the top of page 159 and 4 in the
introduction of R. O. Il
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The case if k= n; is quite similar. If k¥ does not occur among m; and
n;, then

L[fk(x) d,.-zgq,;(EH%p,,f(g,;__,.,f(g),:,,f (Eyi) = 1, (E)

So lemma 3 is proved.
Corollary. The measure w is quasi-invariant under A.
For this it suffices to observe that every null-set in § is contained in

a null-set of §".
dt“n

The proof of lemma 1 gives immediately that (x) =/i(x). For later

use we observe that for y €4 and y=yi, + 71+ - +y;,“.

. V(22 -1)yy
%f () =fo,(X) fr. (X) - . . [, () = T3, (%) :

as it is easily seen.

The elements of 4 are in one to one correspondence with the finite
subsets of the positive integers. From now on we denote by «V #and e A g
the elements € 4 corresponding to the union and intersection of the sets

belonging to « and g, respectively (e, 3 € ).
Lemma 4. The system of functions

1
n~ g )a,

o) =(— )7 L2, (2] (@ed)

forms a complete orthonormal system in the space Ly (X).
PROOF. For e, 8€ 4

| Wa(X)0p(x) du = If')a+a(x)quﬁ(x) du "I“’aaﬂ(ﬂd F‘I‘”mﬂ(x) du,
X X
hence to establish the orthonormality we need only to show that for e €4,

a0,
I(r)a(x)d;t = (), J.w.,(x)dn =1.

X

Supposing « =y + yx,+ ++- + &, we have
Iw,(x) du=1II, . Wy, (x)du,

X

| wa(x)du= I\, | Wy, (X)dp.

But for every k Jw“(x)d.u =—q I/‘+pl/_ Vpg—Vpg =0, and

P
ol ()du=qL +pd 1.
-\_!.?‘.()1‘ ‘?q Pp
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Thus the system {wa(x)} is orthonormal.

To prove the completeness it suffices to show that the characteristic
functions of the cylindrical sets are linear combinations of members of the
system {wq(x)}. Every cylindrical set is the intersection of a finite number of
sets of the form E; = {x; x;=0} and Fi={x;xx=1} (j, k=1, 2,...). Denot-
ing the characteristic functions of E; and F. by g;(x) and h.(x), respectively,
we have g;(x)=pq w,(x)+pwy(x), hi(x)= —Vpq wy,(x)+ go(x). Obser-
ving that for @, #€ 4 and e A =0, ®a;p(X) = wa(x)wp(x), our result follows
immediately.

Lemma 5. For f(x) € L.(X) we have
lim || () —f)du =0,

lul -

PROOF. For g(x)€L3(X) we put || g(x)||,=( J‘| Z(x) |’dp) By lemma 4 for
X

every & >0 we can determine a finite linear combination @ (x) = Zac 4#Ca®a(x)
(4’ =a finite subset of 4), such that ||f(x)—®@(x)|l. <& If k is sufficiently
large, then wa(xy:)=wa(x) for @€ 4’, therefore @(xyi)=w(x) too. We
have further for every g(x)¢€ Li(X)

leer) = ([lecrban)” — (lecor

|..|--

(x)dﬂJ é%ug(x)nﬂ,

dﬂ?" <9 i -_ = o
= | = So finally || f(x7:)—f()l = || (x7%)

—o@) b+ 0r)—o@lh+loe—1@ I =(1+2]1760—ow@.=

since (cf. lemma 3)

= (1 +%)£, provided that k = k,, say. This clearly proves our lemma.

Lemma 6. The group 4 is (i) free, (ii) ergodic and (iii) non-measurable.

PRrOOF. Ad (i): For y €4, y =0 the equality xy =x or x+y=x (x€ X)
is impossible.

Ad (ii). It suffices to show, that if g(x7i)=¢(x) (k=1,2,...) for a
bounded measurable function ¢(x) on X, then ¢(x) is constant almost every-

V_

have for «¢€4 and ysNe=0:ca= | P (X) wa(x) du = | @ (x71)wa(X)dp =

wy, (x)+4 1. Therefore we

- Iqo(x) wa(x72) "“’* @ dp= 9P | g(x)wasy, (X)du + l 9 (x) 0a () dpt —

Vpgq x
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i V_;p Catyy +Ca that iS Cary,—O. From this it follows at once that c,—0
qp

for e==0. By lemma 4 this proves our statement.
Ad (iii). Suppose, there exists a o-finite measure » on S, which is

equivalent to w and invariant under the group 4. Then we have for E€S:
‘v(E)—_-J_f(x) du (= + o) where f(x) is a suitable measurable and positive

function on X. We have further Jf(x)dy=v(5)=v(sy.)= [ f(x)dn =
EYk

- | f(xy) d: "k (x) for every E € S, which gives f(xy:) d:"" (x)=/(x) almost
E s u

everywhere with respect to u(k=1,2,...). Suppose now that f(x) is bounded
on F€S, and u(F)>0. Denoting by f'(x) the function which equals f(x)
on the set F |J(Ur-1 Fyx) and vanishes otherwise, f'(x) is bounded on X.

d
We have for every k=1,2,... observing that—gi-'i(x) takes the values%

q
and = only:
» y

d
> [1 _%)2 [feordu. p

& P

J17 =1 @rduz [irem~ rerdn=J| (% o) =1 [l@ran=

Since p==¢, by lemma 5 this implies J.| f(x)*dp=0. But then u(F)=0
F

and »(F)=0, which contradicts to our assumption u(F) > 0.
The proof of lemma 6 is completed.
We form the Hilbert space H of the functions F(y,x) (y €4, x¢€X)

for which Xyes [ |F(y, x)'du < 4 oo, with the inner product (F,G)=

X

=D ves JF (7, x) G(y,x)du (F,G € H). By lemma 3 and 6 the operator ring
M, in H .generated by the operators

1

(UaF)(y, x)= (‘L’:" (Jc)]i F(y+e, xa)

(Lo F)(y, x) = 9(x) F(y, %)

(a,y €4, F€H, g(x) arbitrary complex-valued, bounded and measurable fun-
ction on X) is a factor of type Il
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Lemma 7. The ring M, possesses the property L.

PrOOF. We have to establish the existence of a sequence Uy (k= 1,2,...) of
unitary operators in M, such that weak lim U, =0 and strong lim U, AU — A
for every A€ M,. In the following we show that putting U, = U,, we obtain
a sequence with the required properties. We divide the proof in two parts.

(i) We assert first that weak lim U,,—0. To see this we observe that
the set H'= {F; F(y, x)=0, except for y=1v,, 7, arbitrary in 4} is funda-
mental in A. But it is evident that, for F, GE€H’ and every sufficiently large
k (Uy,F, G)=0, which proves our statement.

(i) Let A be an arbitrary operator in M,. We consider the element
F, € H, which satisfies F,(0, x)=1, Fy(y,x)=0, if y 0. By lemma 2 the
elements A'F, (A’€¢M,) are dense in H. Therefore to prove that strong
lim U, AU, — A, it suffices to show that lim | (U, AU;)F,—AF,| =0,
since the operators Ij,kA U;k (k=1,2,...) are uniformly bounded in norm.
Using the fact that U, = U, = Uy, (R.O. lll, lemma 3.6.2), this is equi-
valent to lim||(A Uy, — Uy, A) F,||=0. Observe now that obviously (U, )e==0y, . a»
where d, s denotes a function on X, which is=1 for « =§#, and =0 other-
wise. Supposing (A)« = @a(x), we have by (iv) of lemma 1 (A Uyk)u‘:——qu,m(x),
(Uy, A) = @asy, (x7:), and by (i) and (iii) of the same lemma (A U,,— Uy, A)e =
= Qaty, (X)— Pary, (X7} (€ €4, k=1,2,...). If C is arbitrary in M, and
(C)a= wa(x), then C~(Ly,, 4 Uaig). Hence

1

(CF @ D =1a0) (%2 )",

and so

I CFolP = Zeea iwa(x)lﬂ‘f;;; ()dp = Z.GAJ'i va(xa)dp.

In particular for C= AU,,— Uy, A,
|| (A L—,‘Yk_ 0?;; A) F"lP zZ"GJJ | ¢¢+?;.-(xa)"_‘p¢+?k (x[a 2 g ?*Dlgdlu S
' X

— Ducs | 19a () —gi(xyi)dn,

provided that ¢.(x¢)=g¢s(x), Observe in addition that |AF,|’=
— ees [|ga(x@)fdu=Daca | |¢a(x)|du = < + oo. Putting again || f(x)|—
X X

1) -

- ( J‘| f(x)|*d,u) for f(x) € La(X), we have

lga(xy)—ga()l = [|gaCxri) o+ [l pa()les
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and
d sy, '
lgaezli= [ el G2 @ due =L gicol,

X
y p ”
which gives that]]q&(x;';.-)—rp;(x)de = ll +%l JItp&(x)l*dy (e€d, k=1,
X -

2,...). So applying lemma 5 we get finally

k-»mo

lim (|4 0y, — Uy, A)Eil =3 tim ||y — i) de =0,
®c A k> wi'

Thus the proof of lemma 7 is completed.

Our next objective is to give an example of a factor of type Ill, which
does not possess the property L. Some of the constructions which are
necessary for this purpose, will be used also later, therefore we describe them
under more general assumptions than immadiately needed.”)

We take a countable infinite group G. Let (X, S, «) be again the measure
space used in the previous considerations, but from now on the components
X:(i=1,2,...) of the product space X will be indexed by the elements of
the group G. Thus every x € X may be identified with a function (xg) (g€G)
defined on G taking the values O and 1 only.

We denote the set of pairs (e,a) (e€4,a€ G) by . To an element
(a,a)=nqa of (& we associate the mapping x-—xa of X onto itself defined
by xa = (Xa+ ) ") (x € X).

These mappings are obviously one to one. Introducing the notation
' =(ay)(e€d,acqG), for b=(8b) we get (xa)b=(xy+ea)b=
= (Xaty + @y + B3) = x¢, where ¢=(e"+ 8, ab). If xa=xa’ for a,a’€¢ @ and
every x € X, then a = o’. Therefore with the law of composition ab = (¢, a)(8, b)=
=(a"+p,ab)=c¢ & is a semigroup. Observing that for (¢,a)€®

(¢,a)(0,e) = (e’ +0, ae) =(a,a)")
(0, e) (¢, a) = (0" + ¢, e-a) = («, a)
and
(¢,a) (e a")= (" + e, a-a)
(e, a ") (e a)=(e""*+e a ' a)=(0,e)
we see that with the unit (0,¢) and the inverse (¢, a)' = (e¢*',a™') ® is
a group.

9 For the following cf. the construction in R.O. IV, §5.5.

19) We recall that, for x=(x,) and y=(y,), (x,+,) denotes the element of X
defined by the function (z,), which is =1 if x,+y =1, and =0 otherwise.

11) We denote by 0 and e the unit elements in 4 and G, respectively.
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It is easily verified that the correspondences e — (e,e) (¢ € 4) and
a—(0,a) (a € G) define isomorphisms of the groups 4 and G with sub-
groups of . We denote these subgroups in the sequel again by 4 and G,
and their elements by @, 8,... and a, b, ..., respectively. (Thus e. g. («,e) is
identified with ¢). For a = (e, a) €  we have a = (0, @) (e, €¢) =aa, and the
“components” a and e are uniquely determined by a; so the group & may
be considered as the semi-direct product of the groups 4 and G. The
mappings of X belonging to the elements of 4 are identical with those used
in the construction of the ring M, (cf. lemma 7).

The mapping x-—xa carries a cylindrical subset of X into a similar
one, therefore it determines an automorphism of the o-ring S’ generated by
these sets. We prove next that it defines an automorphism of the o-ring S too.
As in the case of the group 4 (cf. lemma 3) this follows, along with the
quasi-invariancy of u, from the following

Lemma 8. The measure p’ is quasi-invariant under ®.

PROOF. We have to show that u'(E)=0 for E€ S’ implies u'(Ea)=0
(a € ). Suppose a=aa (a€ G, ¢ € 4). The mapping x — xa for a€ G leaves
invariant the measure of a cylindrical set, hence also that of every set in S".
So w'(E)=0 implies p'(Ea)=0. But applying lemma 3 we get u'(Ea)=
— ' ([Ea] @) =0, which proves our lemma.

Corollary. The measure w is quasi-invariant under ®.

Lemma 9. The group ® is (i) free, (ii) ergodic and (iii) non-measurable.

Proor. Ad (i)"). We have to prove, that if a is not the unit element
in @, then the set £ of the elements x€ X satisfying x==xa, is of wu-
measure 0. Suppose that a =aea (a€ G, a € 4). If a=e, then a€ 4, and this
case is already settled in (i) of lemma 6. We assume therefore a==e, and
choose an infinite sequence g; of elements in G such that the g; and ag;
are all different, and @, =0 (,/j=1,2,...). If x-=xa=(x4+a,) for
x=(x,)€ X, then we have in particular X,y, =X, (i=1,2,...,m), where m
is an arbitrarily fixed positive integer. But the measure of the set E, of
elements € X satisfying this condition is (p*+¢*)™. By virtue of our assump-
tions ¢g>p>0,p+qg=1, hence p*+¢* < 1. Since m is arbitrary, and clearly
EcE., we have necessarily u(E)=0.

Ad (ii) and (iii). Since by lemma 6 the subgroup 4 of B prossesses
these properties, these subsist a fortiori for the group &.

The following lemma is an adaptation of the reasoning of lemma 6.2.1
in R.O. 1V for our purposes.

12) For this cf. the reasoning at the top of p. 795 in [4].
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Lemma 10. Let S be a group and B a subset of &. Suppose there
exists a subset ¥ B and two elements g,, g,€® such that (i) Fug, 3g.' =3,
(i) the sets ¥, 2;' 3. and g,3g;' =B are pairwise disjoint. Let f(a) be a

complex-valued function on  such that D .cs|f(a)|* < + o=, and

Ceslf(giag)—f@ <e  (i=1,2).

1
Then (D.cu|f(@)]))” < k &, where k, does not depend on «.

Proor. We put for a subset A<= G r(A) — D.cx|f(a)|. Then we have
by an application of the triangle inequality

X 1 7.3
e>(Does | f(gag) —f@))* = Iw (&:38") —r(®° l :
Putting »(¥)=s, this gives that
1 3
(g 3g)— @) = r&da)’ +r@°
and thus »(g,3g:') < »(3)+ 2se. Hence

1 1
‘ r(&381) —r(3)* | < 2se,

s =1(&58)+r@) <2(r(®)+s8), or »(F)> % s

1
Observing that (>.co|f(g:ag:")—f(a)[")* <& gives by aid of the sub-
1
stitution @ — ga'ag, (Deeu!f(g:'ag) —f(a)])* <&, we have similarly as
before
|7(g:38:")— ()| <2se, |7(g2' 58)— ()| < 2s¢
or
P | i~ s i -1 ow ~ st
r(g:582) > v(§)—2s¢> 2 —3se,  r(g: §g) > v(F)—2se > = 3se.
Hence finally
$=r(®) = v(F)+ (&' 38) + (8. 3 > 5 $—Tse,

that is s < 14¢, which proves our lemma.

Lemma 11. Let G be the free group with the two generators g, and
g.. Suppose that f(g) is a complex-valued function on G such that
1

Seol F(@)P <t and (Cieslf(gg)—f(@)) <& (i=1,2). Then

(Zf,ef.- | f(g)lﬂ)g < k,&, where k, does not depend on s.

PrOOF. We denote by F, the set of elements € G ending with a non-
zero power of g, in their reduced form. Let F; be the set corresponding in

D10
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the same way to g,, and F,=F:u{e} (e denotes the unit in G). For a
subset Ac G we write again ‘l’(A)"—:—"'de,{'f(g)lg. Then we have

1 1 1
e>(2ealf(gg)—f(@)F) = f v(Ag) — V(A)2' (i=1,2)
for every subset A of G. Putting A=F,,i=2, and A= F,g,,i =1, we get

1

1
v(F.g)* —v(F)’
1 1 1
and so |»(F.g:g))° —v(F)’ \ < 2¢. Writing #»(G)® =s and observing that
F,g.g,c F,, we have

1 1

<¢& and |v(F:gsg;)E— V(Flgs)?

<¢

1 1
r(F—F &g)=|v(F) —v(F&8)

Similarly we get »(F.—F., g, g,) < 4s¢.
Applying again the same reasonings, it follows that

|»(F, £:80)—v(F, £:8)| < 2se.

Since F g, gicF,—F,g,8,, we have v(F,g.g,)<v(F,g,8})+ 2s& <6s¢.
Similarly »(F.g,8,) <6se. So we get finally §’=»(G)=»(F,—F,g.g)+
+v(Fg:8) + v(F.—F.2,.8) + v(F.g,: 8,) < 4s¢& + 65¢& + 4s¢ 4+ 656 = 20se.
Thus s < 20e, which proves our lemma.

From now on throughout the present section we suppose that the
group G in the construction described before the lemma 8 is the free group
with the two generators g, and g.. :

Lemma 12. Suppose, that the function f(x) (x € X) is quadratically
integrable with respect to u. Suppose further

(f |f(xg)—fx) d#)? <g (i=1,2).

X

1 1

v(F)® + v(F.g:8)° l < 4ss.

Then

N(J1rerar)’—|[ 79 anl| < koo

where k; does not depend on e.

PROOF. Let f(x) ~ D scaCs wa(x) be the expansion of f(x) in terms of
the system {w.(x)} (cf. lemma 4). Since the mappings x — xg (x € X) leave
invariant the measure u (cf. lemma 8) and w«(xg)=w_-1(x)*) for ec 4
and g€ G ®, we have

[ F(xg) a(x) duu— i[f(x) wa(xgi") dp =i|‘f(x) ® (X At = C

X

15) We recall, that for a={a } and a € G at=(a, ).
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hence f(xgi) ~ > 4 4Can @a(x) and so
1 1
p 3 2 :
([ fxg)—f)P ) = (Zoealcw—cal)”  G=1,2).
b 5

For @, 3€ 4 we write « ~ 3" if there exists a g€ G such that av=p4.
It is easily verified, that in this way we obtain an equivalence relation on
the set of the elements of 4. We denote by .4 the totality of the equivalence
classes not containing the null element O of 4. If @, is an element of the
class 1€ 4, then every element of 2 can be written uniquely in the form
a) (g € G).") We introduce now the function j‘"’(@:{)=cﬂIg (A€ 4, g € G).

Putting 1
a = (Zheal )7, b= sup (Zieol®(gg)—1P @),
we have >)cb; <26, and by lemma 11 a, =< k,b,. Hence
[[1760r e —| [1) e = Sy oo = Shea (Soes g =
=eali =k dheabi< 2-158,

NIM

and so finally
1

|(JIearar)” —| [ fe)de|| < VZHae

which proves our lemma.
We arrive now to the final step. We form the Hilbert space H of the
functions F(a, x) (a € G, x € X) satisfying ||F|P =2 co [lF(a. X)Pdu <+ oo.
i
By virtue of lemma 8 and 9 the ring of operators M, generated in H by the
operators

18] =

(T, F) (@, )= (E‘EJ—”] F(aa,, xa,)

Ly F)(a, x) = ¢(x) F(a, x)
(F € H,a,€ G, ¢(x) arbitrary complex-valued, bounded and measurable func-
tion on X) is a factor of type III.
Lemma 13. The ring M, does not possess the property L.

PROOF. We consider the element F, of the space H for which
Fy(e,x)=1 and F,(a,x)=0, if a==e (a € ®). We denote again by g, and g,

) Indeed, suppose that «’—a’ and g+ g. Then a® ' —a; putting B=
{h;a,=1,h€G}, and gg'~' —a we have aB= B. Since B is finite, this is possible only
if a of finite order, which occurs in our case only for a=e.
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the generators of the group G, which is now a subgroup of G. To prove
our lemma it suffices obviously to show that ||(U,,—UU, U*)F,|| <& (i=1, 2)

for a unitary U in M, and a sufficiently small & implies |(UF,, F,)| = -12~

Supposing (U).=¢.(x), we have by (ii) of lemma 1 (/*),= @1 (xa). Since
‘plainly (Up,).=9d.,,,, where d,, denotes a function on X, which is =1
for a=g;, and =0 otherwise, the (iv) of lemma 1 gives

(h U.fr e = Pga—? (xagi-l)’ (Use U*)s = gay,(xa),
and by (i) and (iii) of the same lemma
(U* Uy, — Uy, U*)a = @yia-1(xag) — a1y (xa) (@€G,i=1,2).
Hence, similarly as in lemma 7,
IUs— U Uy U) FolF = | (U* Uy, — Uy, U*) Fol =

= ece f|%.-a (xg")—@uy; () due = Zaeﬂi[ [ (Xg"_l)“' Pa(X)[du.

x

1
Putting f(a)=( J Iqon(x)l’dy)g, and using the fact, that the measure u

is invariant under the mappings of the subgroup G @, we get from the
last equation by an application of the triangle inequality

(Seeslf(gag)—f@P)*® = (U T,,— T, U")F|| <.

We put now B ={(e, 2); gFe}c® and F={(e, g); gcF.,jcB (for the
definition of F, cf. lemma 11). For («,a)€® and g€ G we have (0, 2) (¢, a) (0, g)'=
=(e,ga)(0,g"")=(a,~, gag™"). Since g,F, g;i'"UF,=G—{e}, and the sets
F,, g.F,g7",g:" F,g, are pairwise disjoint, it can be seen easily, that
FU g Fgr'=12, and the sets §, g.Fg", g7’ F 2. < B are also pairwise disjoint.

1

We have in addition (S.eslf(giagi)—f@))® <& (i=1,2). Thus an
application of lemma 10 gives

1
Seslf@F) < kee. |
Since giegi' =a’', we have further (Sucalf(@i)—f(@)f)® <s
(i=1,2). Applying the reasoning detailed in the proof of lemma 12, we get
1
(Secalf@f) < ke,
Observing that
1= | UFilf = Zhen [ lga(@)P dn = Zacolf(@))

X
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we have from the previous considerations
b

[I|¢e(x)|dp)2 > 1—ke,

X
where k does not depend on & We have also

1
(Jl#-txgd g du)” <

(i=1, 2). Applying lemma 12 we obftain

|<l|qo=(x)|* dp)* — | l () dut|| < ko

and so
(UF,, F)l = | gu(x)du| > 1—Ke
X

(K independent of &). Therefore, if ¢ < % then |(UF,, Fy)| = —;- which pro-
ves our lemma.

Taking in view that the property L of an operator-ring in a Hilbert
space is purely algebraic (cf. the remarks at the begin of the present section)
we get from lemma 7 and 11 the following

Theorem 1. There exist factors of type lll, wich are not % isomorphic.

Remark. If p=q=% in our construction, then M, and M, are non

* isomorphic factors of type II,.

§ 2. Semi-regular and singular maximal abelian rings in
factors of type IIl.

In this section we use again the construction described before lemma 8;
the group G will be specified later. We denote by M the factor of type IlI
obtained in this way.

Lemma 14. Suppose that G, is an abelian subgroup of G such that
Jor each a € G,a € G, the set {g'ag; g € G,} contains infinitely many different
elements of G. Then the operator ring P <M generated by the operators
U, (g€ G,) is maximal abelian in M.")

~ Proor. We have to prove, that if A € M commutes with the operators
U, (g € G,) then (A), is constant for each a € G, and vanishes identically if
a € G—G,. Supposing (A).=¢.(x) we have as in lemma 13 (AU,), =

15) Cf. lemma 1 in [1].
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= @ag-1(X), (U, A)e = @~ 1.(xg) (@€ ®). If g€ G,, then AU,=U,A, hence in
particular @,,-1(x) =(AU,)e = (U, A)e =9¢-14(x2), O 9u(x)=9,- ru(xg) for
every a€@®. Suppose, that a€G,, and a=(¢, a), then glag=
=(0,2 ") (¢,a)(0,2)=(e’, g 'ag). Since a€ G,, we have either «=0, or
a€ G,, in both cases the set {g-'ag; g € G,} contains infinitely many diffe-
rent elements. Observing again, that the mapping x—xg (g€ G) leaves
invariant the measure u, we have

NP de=[1g10co)Pdn = [l9. P du.
Since the series > . ¢ GJ[qw,(x)‘dy converges, it follows, that |fqo,.(x)|"dp =0,

and so ¢.(x)=0, for a€ G,.
Suppose ) now, that @ € G,. We have in this case ¢.(xg)=q¢.(x) for
every g € G,. Let g.(x)~ Z.cacama(x) be the expansion of e.(x) in terms

of the system {mq(x)}. Then ¢, =_[¢.,(xg)w.,(x) du= frp“(x) wa(xg )du =
X X

_kr% (x) o, (x)du=c,, (g€ Q). If «+ 0, then the set {a?; g € G,} is infinite,

hence ¢, =0, and so0 @.(x)=0. Thus lemma 14 is proved.
Lemma 15. Suppose that U is a unitary operator in M, and F a

subset of & such that the Radon—Nikodym derivatives d;; (x) (@€F) are

uniformly bounded. Then for ¢ >0 there exists a finite subset B,c® such
that for every finite B2 B, and 6 >0 one can determine a set of functions
9:(x) (c € B) with the following properties: 1) each ¢.(x) is a finite linear
combination of functions of the system {wa.(x)}, 2) ||[(U).—@i(x)|: <d")
(c € B), 3) putting

U=2.esly U,
we have
I(UU,U")—(U’ U,U")all: < &
for every g€ ®, and a€F.

Proor. This will be given in two steps.

(i) Suppose that (U.)= ¢.(x) (a € G). We have by lemma 1 (UU,).=
= Qo 1(x), (U)e=g.-1(xa), and s0 (UhU*)e=23.c 6Pey-1(X) gu-1(xa) =
=2c 69P.(X)p,-1.(xa); these series converge almost everywhere. Let B be a
finite subset of . Putting V=2I.csLyU., we have (VU,V*).=
=23, ¢ 8P(X)@a-14(xa) if BN aBgis notvoid, and (VU,V*).=0 otherwise.

a~‘egEB

1) For this reasoning cf. R. O. IV p. 796, (Ill).
17) || ||; denotes the norm in the space L3 (X).
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Hence (U, U)e—(VU, V") =2. € 59 (1) 91 (30) + Zegn9e (x) pato(xa)=
a” qEB

=31+ (a,g € ). Observe that
2eeolop)F=UU)=D=1.

| 2P = (2 enloPN(Seeslge(xa)f) =
€ 5|Pc(xa)f
almost everywhere. Suppose, that gﬁ“ (x)=J* (@a€F) and choose B, such
that > . s, | |¢.(x)*du < n*. Then we have for a fixed finite B2 B,

1 1

13 = (Zees [ I aran) =(Zes [Ierdhct @) </n

Therefore

for every a € F and g € 3.”) Similarly
| 2ul* = (2l ) (Zeeslpata(xa)) = 2ees|p(x)P
1
almost everywhere. Hence || > i, = (Z,ggf|¢,(x)Pdp)?< 7. Finally, if
b 4

s Lo s &
=357 IVGUR—VOV)h=| 21+ Zulh < A +N1=5

for every a€ F and g€ 6.

(i) We consider again the set B= B, and the corresponding operator
V determined above. For each ¢.(x) (c € B) we can find a finite linear com-
bination ¢:(x) of the functions {w.(x)} such that |g;(x)|=1 and
|@e(x)—@i(x)|ls < &, where & is a given positive number. Indeed, since
|@.(x)| = 1 almost everywhere, there exists a finite linear combination ¢;(x) of
characteristic functions of cylindrical sets, such that |g@:(x)|=1 and

[ Pe(x) — @i (%) <V'%, except on a set E with a measure u(E)< % We have
in this case [|g(x)— @)= | |9:(x)— @t dpe + [ |9e(x)—pi(x) [ dpe <
X-E

(I;,; ) +4(V_) = 9% or ||@.(x)—@:(x)|ls < . But the characteristic function
of a cylindrical set is a finite linear combination of the functions wa.(x) (cf.

18) If %E:(x) < J%, then we have d:’:l (x) = J* too. Supposing a —(x, k), we have

a "= (»", k™"). The upper bound for

the set {g;%,—1, g€G}, (cf. lemma 3 and 8). But this is the same for the set
s |

{g:% =1, g€G}.

dp,-
:P : (x) depends only on the number of elements in



152 L. Pukanszky

lemma 4), therefore the same is true for the functions ¢:(x) (c € B). Putting
U =D.eplymU. and B —=BnaBg', for a€ F and g € 5, we have

(VO Ve —(U' T, U")e= 2. € 5 (PdX) a1 (x@) — @2 (X) Pt oy (X)) =
= e 5 (F()—F(%)) Pa oo (x0) + 2o € w9 (x0) (1 oy (XO) — pi1 o, (X)) =
E::+Z::,

(if B’ is void, then (VU,V*).—(U'U,U™).=0). We have further

| 2=l 2eer (@) —F:(XNPat (XD | = w9 (x) —gi(x) ] < n&
where n denotes the number of elements in B. Observe that

Igexa)—gi(xa)l = [l x0)— g x) die = 19,0 —: 0 e (9 e =

= Jllge(x)—ge(x) 5.
Therefore using |@i(x)| =1,

| 2ralle= | 2 e w L) (pat oy (xO) — i1 (xa)) |, =
= 2cenllp(xa)—gi(xa)|, < JnI.
Hence |(VU, V*)e—(U' O, U™l = | 21l + | Zutll < n(1 4 )) 9, for every

g €@ and a € F. Choosing 3=min( ), (i) and (ii) give finally

E
FIESIT]
U T,U*a—(U U, U")alle = (UT, U*)a— (VU V*)a |1+

+HI(VT, V)= (U T, U< 5+ 5 =2,

for every g € G and a € F, and at the same time we have ||¢.(x)—g/(x)|. <0
(c € B).

Thus the proof of lemma 15 is completed.

We suppose in the sequel that the group G occuring in the construc-
tion of M has the follewing properties: 1) there exists an abelian normal
subgroup G, of G such that for a € G, the set {x'ax; x€ G,} contains
infinitely many different elements of G, 2) for a finite subset B G one can
find an element g € G, such that the equality ugv'= g (u, v € B) is possible
only for u=v¢€ G,.")

In this case we have the

Lemma 16. Suppose that B is a finite subset of 5. Then there exists
an infinity of elements g € G, such that 1) the equality ugv'=-g (u,v<B)
implies u—=v € G,, 2) If a,€ G is a fixed element, then we have in addition
a,ga;" € G.

19) Cf. [1], lemma 3.
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ProoF. Let u;=—(«i,a;) (i=1,2,...,n) be the elements of B and
a,= (0, d), where d==0. It can be easily seen that, by virtue of our condi-
tions on G, there exists an infinity of elements g€ G,, such that the equa-
lity a,-ga,-“.:g for any i,j, 1 =i,j = n implies a;=a; € G,. Therefore we
may assume g to be chosen in such a way that 0’4 dJ 40, and a.v{\aj-’---o
(iyj=1,2,...,n). But uigu;' = (e, @)(0, 8) (%, )" = (o, a:g) (¢" , 4;") =
— (! +ai ,a:ga;'), therefore u.gu;' —g would imply «!+«;—=0 and
a;ga;'=g, which is possible only for ;—a; and «;—«;—0), that is u; — u; € G,.
We have in addition a,gar' = (9, d) (0, g)(0,d) ' = ("' + 0", dgd™") which
shows immediately, that in this case apgas' € G. Finally it is clear, that there
exists an infinity of elements in G, possessing the properties of g. We arrive
now to the final step. We suppose, that the group G satisfies the conditions
described before lemma 16, and denote by M the corresponding factor of
type 1L

Lemma 17. Denote by P and R the subrings of M generated by the
sets of operators {U,; g € G,} and {U,; g € G}, respectively. Let U be a uni-
tary operator in M, such that UPU*SP. Then U € R.

PrROOF. We have to show, that under the above conditions (U). is
constant for each a € G, and vanishes identically elsewhere. We suppose, that
for a, € & (U).,, does not possess this property, and show, that in this case
we get a contradiction.

Let @.(x) ~ Zacaf(a, @) wa(x) be the expansion of (U). = @.(x) in terms

of the system {wq(x)} (a € ®). Since Zuew.' |pu(x)Pdu=1 (cf.e.g. lemma
X
1
15), we have > .co|f(c, @)[*= 1. We put o(H, y) = (Z.ex|f(c, 7)|?)*® for a subset
acd

HZ &, Let v, be an element € 4 such that e(a,G,, 7,) >0 and e(a,G,, 7) <
<o0(a,G,, 70) for y = 7..”) If a,€ G then we may suppose 7,==0. We choose

next a finite subset B" < a,G,, for which o(8’, y,) > % e(a,G,, y,). We consider

now the set F= {avga,'; g€ Go). If a,= (d,d), then by a calculation of the pre-
ceding lemma avga,' = (0" 40", dgd") (g € G,), which shows, that the
‘f;::' (x) (a € F) are uniformly bounded (cf. foot-
note.")). We take the set B, of lemma 15, which corresponds to this F and
an arbitrarily fixed & > 0. Putting B==B"UB, and choosing a d > 0 we apply
lemma 15 to the case of B and J, and we denote by ¢i(x) the system
obtained in this way, for which ||g.(x)—@.(X)|.<d (c€B). If @.(x)~

Radon—Nikodym derivatives

2Y) For ¢,3€4 we write § =« if a N\ f=a.
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~ Dacsg(c, @) wa(x), we have g(c,e)=0 with a finite number of excep-

1
tions only. Putting C—=BNa,G,2 B and ¢'(y) = (Deeclg(c, )[)* we get

1
10 () —e(C,7)| = Deec | () — i) B)* < Vnd=n
for y € 4, where n denotes the number of elements in B. Similarly, putting

1
0=(2eer|g(c. 7)) we have [o—o(B’,7s)| < 7. Choosing ¢ sufficientiy
small, we can suppose ¢ >0 and for y = y,

@) _e(Cr)+mn _
() “e(Cro)—n =
We consider now the function (U’ Uy U’*)e,gq;', Where U'= 2o pLylw)U..
More explicitely

(U OyU" Yagm? = Lo oo 91 (X) pl (x008 @) =

= 2 umtagges 8 (1, @) £ (v, ) wa (X) 0w (x 002 0"),
a,a'Sa
where @ is a suitable element inJ. Putting ' d, and g —dgd ', we
have aoga{.l:(d"hl+d', £’); we assume in the following that y,, 0’ = @. By
an application of lemma 16 we fix an element g € G, such that 1) the equa-
lity ugv' = aogas' (u, v € B) is possible only for u—v¢€a,G,, that is for
u=v€C=BnaGo, 2) ana’ " =0, 3) aogas' €G. Since in this case
0a(X0ga%') = wa(Xg + 0 +07) = 0ar (x+ 07 + ) = wa~ (x+077),
for @ = a, we have (U’ U, U" Jopge; = . :%cig(u,a)g(u, @) Wa(X) a9 (x + d”"').

We compute the coefficient ¢y,9"" Of @y, 7"(x) in the expansion of
the last expression in terms of the system {w.(x)}. We have by virtue of our
choice of g:

Sosa = 0 (0 (07 ) g (x) i —
=( [oatn® a) (ferx07 yng s 1) —
— Gy, | @ar (x+0") 0y, (x) dis,

where dq,4,=1 if e=17,, and=0 otherwise. The last integral vanishes
clearly, if @’ Ay,==7, therefore we assume in the sequel &’ =y,. We put
h=90"AY, va=9 A(a—y,) and for @ € 4 we denote by r(a) the number
of elements in the set {g;e, =1, g€ G}. Then

f o (x4 ) o ()t = | o x-+ r:)wv,(x)dft]@ wc'-v.,(x+h)d#].
X b ¢
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But it is easily seen, that

x[ Wy, (X 4 71) Wy, (X)d 1= (‘ﬁ)rm
and

if €—7=n

q—p\'*v
j Wa—y, (X + y2)du = ( Vpq ]
; 0 otherwise.
Summing up we get

o {yra'-y)
(u] By oy a=1, and &' —y, = 7,

Sa, a0’ =— Vp—q
0 otherwise.
Therefore putting 2—2—2 we have
Vrq
Cyping 1 =" (2T W (Zj"‘;; (Secg(, 1) g, o+ a))))=

= Wir“'] uel |g(u’ }'o) |2) Where

S )

Applying the Schwarz inequality and using notations ihtroduced before, we get

2, 7)) 2@, ot a)|| _ e(tea) _ o
‘2:“";:’ €0 S olg @ rf ) =20 gy =22

We assume now, that p and g are chosen in such a way in the con-

struction of the measure g, that 1—3—P < 1. We have in this case

Vpq
W= 1=22 ) =1 o

Therefore
{y)

A
|Cyetys | = £ 0* (7o) = W10” (1)

where W, depends only on a, and 7,. 5

The assumption of our lemma is UPU® S P, therefore (UU,U").=0
if a’€ G, and = constant for a € G,. Thus by our choice of g (UU,U")e ;1=
=0 if a,€ G, and = constant otherwise, but then we have y,==0.

So in any case

0" (y,) = [ = (U U, U*)oyoey — (U’ U, U'.)ﬂova:'”z b
b W, i W, W;

0

[l!".
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Since ¢ is arbitrary, it follows necessarily =0, and so we arrive to a
contradiction.

Thus the proof of lemma 17 is completed.

This gives immediately the

Theorem 2. There exist factors of type Il with singular and semi-
regular maximal abelian subrings.

ProOF. (i) Let G be a countable infinite abelian group. Putting G=G,
the conditions described before lemma 15 are clearly satisfied, therefore we
can apply lemma 17. With the notations used there, we have P=R, and
thus P is singular, since by virtue of this lemma UPU*S P for a unitary
operator in M gives U € R=P. Finally, lemma 14 shows, that P is maximal.

(ii) Consider the group G of the mappings x—ax+4 @8, where x, ¢, 8
are rational numbers, @ 5=0. Denoting by G, the abelian subgroup of the
translations x — x- 8 one verifies at once, that G, satisfies the conditions of
lemma 14 and 16. Therefore the ring corresponding to G, in lemma 17 is
maximal abelian, and by the same lemma the ring T generated by the uni-
tary transformations in M satisfying UPU*SP is TS R. But since G, is
a normal subgroup of G, we have U,PU;SP (g€ G), thus TR, hence
T =R. In addition, T is a factor. Clearly P==R which shows, that P is
semi-regular.

So the proof of Theorem 2 is completed.
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