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Isometric immersion of compact Riemannian
manifold into En+m

with mean curvature pinched

By SHIAO-SONG YANG (Chongqing)

Abstract. It is shown that an isometric immersion of an n-dimensional compact
Riemannian manifold into the Euclidean space En+m with the length of mean curvature
less than m−1/2r−1 can never be contained in a ball of radius r, and the estimate of
the diameter of the immersion is presented.

1. Introduction

In this short paper we show that an isometric immersion of compact
n-dimensional Riemannian manifold into the Euclidean space En+m can
not be contained in a ball of a finite radius, provided that its length of
mean curvature vector is pinched in a way by this radius. Our work is
motivated by that of H. Jacobowitz [2] on the isometric immersion of
compact Riemannian manifold into an Euclidean space with its sectional
curvature pinched. As an application of our main theorem, we obtain an-
other proof of nonexistence of compact minimal submanifold of Euclidean
space. Finally, we give an estimate of diameter of compact immersed sub-
manifold of Euclidean space with its mean curvature pinched.
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2. Main theorem

We now present our main theorem.

Theorem 2.1. Let f : Mn → En+m be an isometric immersion of

compact Riemannian manifold into the Euclidean space En+m, and H be

the mean curvature vector of f . Suppose that H satisfies

‖H‖ <
1

m
1
2 r

,

where ‖H‖ is the length of the mean curvature vector H. Then no ball of

radius r can contain f(Mn).

Proof. For convenience, we regard f(Mn) as Mn in En+m and all
the discussions are developed on Mn in En+m. Denote by ∆ the Laplacian
of the induced metric on Mn. Recall that for any vector fields x and y we
have

∇′xy = ∇xy + Θ(x, y),

where ∇′ is the Riemannian connection on En+m, ∇ is the Riemannian
connection on M induced from ∇′, and Θ is the second fundamental form
of M (see [4]). If {e1, . . . , en} is an orthonormal basis for vector fields in
a neighborhood W of x in Mn (see [5], page 261), then applying in W the
formula

∆φ = TrD2φ =
n∑

i=1

(eieiφ−∇eieiφ)

=
n∑

i=1

[
eieiφ− (∇′ei

ei −Θ(ei, ei))φ
]

to function φ = 〈f, f〉, and bearing in mind that eif = ei in Euclidean
space and

eiei〈f, f〉 − ∇′ei
ei〈f, f〉+ Θ(ei, er)〈f, f〉

= 2ei〈ei, f〉 − 2〈∇′ei
ei, f〉+ 2〈Θ(ei, ei), f〉

= 2〈∇′ei
ei, f〉+ 2〈ei, ei〉 − 2〈∇′ei

ei, f〉+ 2〈Θ(ei, ei), f〉
= 2 + 2〈Θ(ei, ei), f〉,
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we have

∆〈f, f〉 = 2n

(
1 +

m∑
α=1

Hα〈Nα, f〉
)

,

where 〈·, ·〉 is the Euclidean metric, {Nα} local normal frame, Hα =
〈H,Nα〉, and H = 1

n

∑n
i=1 Θ(ei, ei) (note that H can be expressed as

H =
∑m

α=1 HαNα). Because of compactness of Mn, we can take a point
x = x0 at which φ attains a maximum. At x0 the Hessian D2φ must
be negatively semi-definite and hence ∆φ = TrD2φ ≤ 0. Therefore for
x = x0 we have

m∑
α

Hα〈Nα, f〉 ≤ −1.

Now from Schwarz inequality, we have

−1 ≥ −
(

m∑
α=1

H2
α

) 1
2

(
m∑

α=1

〈Nα=1, f〉2
) 1

2

≥ −m
1
2

(
m∑

α=1

H2
α

) 1
2

〈f, f〉 1
2

or

(
m∑

α=1

H2
α

) 1
2

≥ 1
(m〈f, f〉) 1

2
.

To complete the proof, suppose that f(Mn) can be contained in a ball of
radius r. Without loss of generality, assume that the centre of the ball is
at the origin. Then 〈f, f〉 ≤ r2 on Mn, and consequently, at x = x0,

‖H‖ =

(
m∑

α=1

H2
α

) 1
2

≥ 1
m

1
2 r

,

thus leading to a contradiction, which completes the proof.

Corollary 2.2 ([6]). Let f : Mn → En+1 be a compact isometric
immersion and the mean curvature H of Mn satisfies

−1
r

< H <
1
r
.

Then no ball of radius r can contain f(Mn).

As the Tompkins’ result [2] on nonexistence of isometric embedding
of the n-dimensional flat torus into the Euclidean space E2n−1 is a special
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case of H. Jacobowitz’s theorem [2], the following well-known result is a
special case of Theorem 2.1 in this paper.

Corollary 2.3 ([1]). There exists no isometric minimal immersion of
compact Riemannian manifold into the Euclidean space.

3. Diameter of isometric immersion with
mean curvature pinched

In this section we investigate the relationship between the diameter
of isometric immersion of compact Riemannian manifold and its mean
curvature vector in Euclidean space.

Definition 3.1. The diameter df of the isometric immersion f : Mn →
En+m is defined as follows:

df (Mn) = max
x,y∈M

‖f(x)− f(y)‖,

where ‖ · ‖ is the Euclidean distance.

Clearly this definition is not intrinsic, because we are concerned with
how Mn is placed in its ambient space. To our pleasure we find Jung’s
covering theorem is very useful here.

Jung’s theorem ([3]). Each subset of En of diameter ≤ d lies in a

ball of radius ≤ ( n
2n+2 )

1
2 d.

Now we give a result on the diameter of f(Mn) in En+m.

Theorem 3.2. Let f be an isometric immersion of compact n-dimen-
sional Riemannian manifold into Euclidean space En+m. Suppose that the
mean curvature vector H satisfies

‖H‖ =

(
m∑

α=1

H2
α

) 1
2

≤ c.

Then
df (Mn) ≥ [

(2n + 2)/mn
] 1

2 c−1.

Proof. If this inequality does not hold, then we have

df (Mn) <

[
2n + 2

mn

] 1
2

(m
1
2 c)−1.
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By Jung’s theorem, f(Mn) can be contained in a ball of radius [n/(2n +
2)]

1
2 · [(2n + 2)/mn]

1
2 c−1 = (m

1
2 c)−1. Now from Theorem 2.1, H should

satisfy

‖H‖ >
1

m
1
2 (m

1
2 c)−1

= c,

giving rise to a contradiction. Thus we complete the proof. ¤
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