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A theorem on description adequacy.

In memory of my good friend, Tibor Szele,

By DAviD ELLIS in Santa Monica, California.

1. Introduction. There are six well-known propositions concerning
the adequacy (defined in Section 3 below) of certain classes of nets [2], [3]Y)
in a topological space to describe the topology of the space. They may be
stated :

(P1). The set of (countable) sequencesin a locally separable space (and,
hence, in particular, a metric space) adequately describes the topology of the
space [5].

(P2). The set of phalanxes in a topological space adequately describes
the topology of the space [4].

(P3). The set of topophalanxes in a topological space adequately des-
cribes the topology of the space [4].

(P4). The set of ultraphalanxes in a topological space adequately des-
cribes the topology of the space [4].

(P5). The set of all nets in a topological space adequately describes
the topology of the space [2].

(P6). The set of ultranets in a topological space adequately describes
the topology of the space [2].

(P1) is a trivial consequence of the axiom of choice. It is also clear
that one has immediately the following implication diagramm :

(P6)

(P5)

(P4)

S

(P3)——(P2)

1) Numbers in square brackets refer to the Bibliography concluding the note.
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The implication (P5)—(P6) is a consequence of the proposition [2] that
every net has a subnet which is an ultranet®). In Section 2 below, it is shown
that every net has a subnet which is a phalanx. Since every subnet of an
ultranet is an ultranet, this yields the implication (P6)—(P4). Thus, one has
the implication cycle:

(P6)———(P5)
¥ d
(P4)
(P3)——(P2)

so that all five propositions may be deduced from the validity of the simp-
lest; namely, (P5).

Now, proofs of (P1) to (P6) all employ, explicitly or otherwise, some
form of the axiom of choice. It is then a natural idea to construct an ad-
equate class of nets in a topological space directly from the mapping whose
existence is a form of the axiom of choice; namely, the selection operator.
That this is possible, and, indeed, simple, is shown in Section 3 below.

2. By topological space, hereafter called simply space and denoted S,
we shall mean a non-null 7, space [1], [5].

A directed set is simply a partially ordered set in which each pair of
elements (and, hence, each non-nu)l finite subset) has an upper bound.
A subset of a directed set is residual if it contains all elements above some
given one. A subset of a directed set is cofinal if it contains an upper bound
for every finite non-null subset of the directed set.

A net (2], [3] is any mapping of a directed set into a set. If ni:d— S is
a net, one refers to the net n in S based on 4.

A stack [4] is the directed set composed of all non-null finite subsets
of some set, the partial ordering being taken as set-theoretic inclusion.

A net based on a stack is called a phalanx [4].

If n:4— S is a net and 7 S one says [3]:

1. n decides for T if n maps some residual subset of 4 into 7.
2. n decides against T if n decides for S—T.
3. n decides about T if either 1. or 2. subsists.

4. n is undecided about T (or fails to decide about 7) if neither 1. nor
2. subsists.

Clearly, 4. subsists if and only if both 7 and S— T contain images
under n of cofinal subsets of 4.

?) KeLLey uses the term wuniversal net rather than ultranet.
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If n:4— 8 and m:I"— S are nets and if there is a net y:I"— 4 which
decides for every residual subset of 4 and if yn=m, then m is called a
subnet [2] of n.

Clearly, every subnet of a net decides for the same sets as does the
net itself.

A net which decides about every subset of its range is called an ultranet.

A phalanx which is an ultranet is called an wltraphalanx [4].

If S is a space, a phalanx in S is called a fopophalanx [4] if it deci-
des about every open set.

If S is a space and p€S and n is a net in S, one says [2] that n
converges to p, or that n has limit p, provided n decides for every open set
of which p is a member.

Proposition. Every net has a subnet which is a phalanx.

PrROOF. Let n: 4—8 be a net. Consider the stack 7" of 4. Define
y:I'— 4 by ordinary induction as follows: If « € I' and « contains exactly
one point, let @y be that point. Suppose y has been defined for all members
of I" which contain less than n>1 elements. If £€ I has exactly n elements,
let £y be any upper bound of the (necessarily finite) set {ny; where n ran-
ges over all non-null proper subsets of & Define then m=yn.

3. Let S be any non-null set and let € be the set of all non-null sub-
sets of S. A selection operator in S is a mapping f:© — S having the pro-
perty that for each 7€ &, Tf€ T. The existence of a selection operator for
each non-null S is a rudimentary form of the axiom of choice.®)

If f is a selection operator in S and if AcZ and A is directed by
inverse inclusion (that is, the set-theoretic product of any two members of A
contains a member of A), then f/A shall be called a selector net in S.

A class N of nets in a space S is said to adequately describe the topo-
logy of S provided the following proposition is valid: If 7cS and p€S
then p is an accumulation point of 7 if and only if there is a net in 7—{p}
which is a member of 9 and which has limit p.

Proposition. If S is a space and if f is a selection operator in S, then
the selector nets derived from f adequately describe the topology of S.

PROOF. Let TS and p<S. If there is any net, and, in particular,
a selector net, in 7—/{p} with limit p, then p is an accumulation point of §
by (P5). Suppose, alternatively, that p is an accumulation point of 7. Then
T—{p} is non-null; indeed, infinite. Let A be the set {Gn(T—{p}), where
G ranges over all open sets of which p is a member. Since 2 is actually

3} Cf. Tisor Szere, On Zorn’s lemma, Publ. Math. Debrecen 1 (1950), 254—257 and
Garrerr Birknorr, Lattice theory (Revised Ed.), New York, 1947.
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a groupoid under set-theoretic product, f/A is a selector net whose values
lie in T—/{p}. If p€G and G is open, f/A maps (Hn(T—{p})) into G
where H ranges over all open sets with p € Hc G. Thus, f/A decides for G.
Hence, f/A converges to p.
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