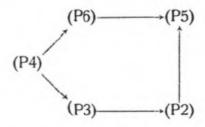
A theorem on description adequacy.

In memory of my good friend, Tibor Szele.

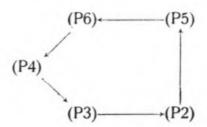
By DAVID ELLIS in Santa Monica, California.

- 1. Introduction. There are six well-known propositions concerning the adequacy (defined in Section 3 below) of certain classes of nets [2], [3]¹) in a topological space to describe the topology of the space. They may be stated:
- (P1). The set of (countable) sequences in a locally separable space (and, hence, in particular, a metric space) adequately describes the topology of the space [5].
- (P2). The set of phalanxes in a topological space adequately describes the topology of the space [4].
- (P3). The set of topophalanxes in a topological space adequately describes the topology of the space [4].
- (P4). The set of ultraphalanxes in a topological space adequately describes the topology of the space [4].
- (P5). The set of all nets in a topological space adequately describes the topology of the space [2].
- (P6). The set of ultranets in a topological space adequately describes the topology of the space [2].
- (P1) is a trivial consequence of the axiom of choice. It is also clear that one has immediately the following implication diagramm:



¹⁾ Numbers in square brackets refer to the Bibliography concluding the note.

The implication $(P5)\rightarrow (P6)$ is a consequence of the proposition [2] that every net has a subnet which is an ultranet²). In Section 2 below, it is shown that every net has a subnet which is a phalanx. Since every subnet of an ultranet is an ultranet, this yields the implication $(P6)\rightarrow (P4)$. Thus, one has the implication cycle:



so that all five propositions may be deduced from the validity of the simplest; namely, (P5).

Now, proofs of (P1) to (P6) all employ, explicitly or otherwise, some form of the axiom of choice. It is then a natural idea to construct an adequate class of nets in a topological space directly from the mapping whose existence is a form of the axiom of choice; namely, the selection operator. That this is possible, and, indeed, simple, is shown in Section 3 below.

2. By topological space, hereafter called simply space and denoted S, we shall mean a non-null T_1 space [1], [5].

A directed set is simply a partially ordered set in which each pair of elements (and, hence, each non-null finite subset) has an upper bound. A subset of a directed set is residual if it contains all elements above some given one. A subset of a directed set is cofinal if it contains an upper bound for every finite non-null subset of the directed set.

A net [2], [3] is any mapping of a directed set into a set. If $n: \Delta \to S$ is a net, one refers to the net n in S based on Δ .

A stack [4] is the directed set composed of all non-null finite subsets of some set, the partial ordering being taken as set-theoretic inclusion.

A net based on a stack is called a phalanx [4].

If $n: A \rightarrow S$ is a net and $T \subset S$ one says [3]:

- 1. n decides for T if n maps some residual subset of Δ into T.
- 2. n decides against T if n decides for S-T.
- 3. n decides about T if either 1. or 2. subsists.
- 4. n is undecided about T (or fails to decide about T) if neither 1. nor 2. subsists.

Clearly, 4. subsists if and only if both T and S-T contain images under n of cofinal subsets of Δ .

²⁾ Kelley uses the term universal net rather than ultranet.

182 D. Ellis

If $n: \Delta \to S$ and $m: \Gamma \to S$ are nets and if there is a net $\gamma: \Gamma \to \Delta$ which decides for every residual subset of Δ and if $\gamma n = m$, then m is called a subnet [2] of n.

Clearly, every subnet of a net decides for the same sets as does the net itself.

A net which decides about every subset of its range is called an ultranet.

A phalanx which is an ultranet is called an ultraphalanx [4].

If S is a space, a phalanx in S is called a *topophalanx* [4] if it decides about every open set.

If S is a space and $p \in S$ and n is a net in S, one says [2] that n converges to p, or that n has limit p, provided n decides for every open set of which p is a member.

Proposition. Every net has a subnet which is a phalanx.

PROOF. Let $n: \Delta \to S$ be a net. Consider the stack Γ of Δ . Define $\gamma: \Gamma \to \Delta$ by ordinary induction as follows: If $\alpha \in \Gamma$ and α contains exactly one point, let $\alpha \gamma$ be that point. Suppose γ has been defined for all members of Γ which contain less than n > 1 elements. If $\xi \in \Gamma$ has exactly n elements, let $\xi \gamma$ be any upper bound of the (necessarily finite) set $\{\eta \gamma\}$ where η ranges over all non-null proper subsets of ξ . Define then $\mathfrak{m} = \gamma \mathfrak{n}$.

3. Let S be any non-null set and let \mathfrak{S} be the set of all non-null subsets of S. A selection operator in S is a mapping $f:\mathfrak{S} \to S$ having the property that for each $T \in \mathfrak{S}$, $Tf \in T$. The existence of a selection operator for each non-null S is a rudimentary form of the axiom of choice.³)

If f is a selection operator in S and if $\mathfrak{A} \subset \mathfrak{S}$ and \mathfrak{A} is directed by inverse inclusion (that is, the set-theoretic product of any two members of \mathfrak{A} contains a member of \mathfrak{A}), then f/\mathfrak{A} shall be called a selector net in S.

A class $\mathfrak R$ of nets in a space S is said to adequately describe the topology of S provided the following proposition is valid: If $T \subset S$ and $p \in S$, then p is an accumulation point of T if and only if there is a net in $T - \{p\}$ which is a member of $\mathfrak R$ and which has limit p.

Proposition. If S is a space and if f is a selection operator in S, then the selector nets derived from f adequately describe the topology of S.

PROOF. Let $T \subset S$ and $p \in S$. If there is any net, and, in particular, a selector net, in $T - \{p\}$ with limit p, then p is an accumulation point of S by (P5). Suppose, alternatively, that p is an accumulation point of T. Then $T - \{p\}$ is non-null; indeed, infinite. Let $\mathfrak A$ be the set $\{G \cap (T - \{p\})\}$ where G ranges over all open sets of which p is a member. Since $\mathfrak A$ is actually

³⁾ Cf. Tibor Szele, On Zorn's lemma, Publ. Math. Debrecen 1 (1950), 254-257 and Garrett Birkhoff, Lattice theory (Revised Ed.), New York, 1947.

a groupoid under set-theoretic product, f/\mathfrak{A} is a selector net whose values lie in $T-\{p\}$. If $p \in G$ and G is open, f/\mathfrak{A} maps $\{H \cap (T-\{p\})\}$ into G where H ranges over all open sets with $p \in H \subset G$. Thus, f/\mathfrak{A} decides for G. Hence, f/\mathfrak{A} converges to p.

Bibliography.

- DAVID Ellis, A set-theoretic description of normal topologies, Amer. Math. Monthly, 61 (1954), 405—407.
- [2] J. L. Kelley, Convergence in topology, Duke Math. J. 17 (1950), 277-283.
- [3] E. J. McShane, Partial orderings and Moore—Smith limits, Amer. Math. Monthly, 59 (1952), 1—11.
- [4] J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940.
- [5] R. VAIDYANATHASWAMI, Treatise on set topology, Madras, 1947.

(Received August 24, 1955.)