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On the intersection of finitely generated free groups.
In memoriom Tibor Szele.

By HANNA NEUMANN in Hull.

In a recent paper of the same title') A. G. Howson shows that the
intersection of two finitely generated subgroups of a free group is finitely
generated. HOwsoN shows more precisely that, if we denote the ranks of U, V,
and UnV by m,n, and N respectively, then N=2mn—m-—n+-1. The pur-
pose of this note is to point out that a slight modification of HOwSON’s
proof leads to the better bound N =2mn—2m—n+ 1, where we may assume
m = n. Here we exclude the trivial case that one of the groups is cyclic. In
a more restricted situation, whose occurrence is however sufficiently common
to warrant mentioning it, the bound is further improved to N=2mn—2m—
—2n+3. These bounds are still not likely to be best possible; Howson
shows by an example that N=mn—m-—n-+2 may occur, and one would
hope that N = mn—m—n--2 holds always.

1. The crucial part of HOwSON’s proof is as follows: In the free group
F, assumed to be of rank 2 without loss of generality, certain elements are
called branch points®) for U. The property of f€ F to be a branch point for
U depends on the coset /f only: f is a branch point for U if, and only if,
each element of Uf is a branch point for U. The total number of branch
points modulo U, each counted with an appropriate muitiplicity, is shown to
be 2m—1 if m is the rank of U. The result then foliows from a comparison
of the branch points modulo Un V with those :modulo U and V respectively.

If S is a subset of the free group F generaied by @ and b, we say that
S has s endings, if it contains s but not more than s elements whose repre-
sentations as reduced words in a, b end on diffcrent letiers a, &, « ', b '. Thus
0=s=4, and s=0 only if S is empty or consists of the unit element 1
only. We can then paraphrase HOwsoN’s definition as follows:

1) A. G. Howson, J. London Math. Soc. 29 (1954), 428—434.
2) Howson's main tool is Deun's group graph.
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DerINITION. (1) If f is an element of F—U, then f is a branch point
of order 1 or 2 according as the coset Uf has 3 or 4 endings; if Uf has
fewer than 3 endings, then f is no branch point.

(2) If f€ U, then f is a branch point of order 1, 2, or 3 according as
U has 2, 3, or 4 endings; if U has fewer than 2 endings, it is not a
branch point.

An element which is no branch point is sometimes called a branch
point of order 0.

With this definition, HOWSON shows:

The sum of the orders of all branch points taken from a set of coset
representatives of U, or briefly, the total order of branch points modulo U,
1s 2m—1.

We substitute the following definition of the ,order of a coset“, which
is the order of the branch point if f@& U, but in the case of U itself is 1
less:¥)

1.1 DEeFINITION. (1) The coset Uf (f=3=1) is of order 1 or 2 according as it
has 3 or 4 different endings; otherwise it is of order 0.

(2) The subgroup U itself is of order —1, 0, 1, or 2 according as it
has 1, 2, 3, or 4 different endings. We exclude the trivial case that U is the
unit subgroup; alternatively one may allocate it the order —2, when all sub-
sequent statements will be seen to remain valid.

We denote the order of the coset Uf by o(Uf). Clearly, the sum O(U)
of the orders of all cosets is one less than HOwsON’s total order of branch

points modulo U; therefore:

1.2 If U has finite rank m, the total order of all cosets of U is O(U)=2m—2,
If the rank of U is infinite, O(U) also is infinite.

HowsoN’s method of deducing the bound for N still applies to 1,2,
except that the case when a coset of negative order (necessarily U or V
itself) occurs needs special consideration. We therefore show first that we
may assume at least one of the two groups to have non-negative order.

If U, say, has order o(U)=—1, all elements %=1 of U have the same
ending. Let x' be the longest common initial segment of all the reduced
words representing the elements 3=1 of U. Then every element u==1 of U
is represented by a reduced word of the form #==x""u,x with x==1. Thus
U=x""U,x, where U, is now of non-negative order since x was taken
maximal. We apply to F the automorphism & given by F§==xFx~". Then
Us=U, Vé=V,, rank (UnV,)=rank(UnV) and U, is now of non-
negative order.

9 In this note we use the term ,order of U’ only in the meaning of this definition,
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Clearly, we could instead have transformed F so as to ensure that V
is transformed into a group of non-negative order; in other words:
1.3 If both U and V have finite rank, we may assume that the group of
least rank has non-negative order.

2. Now let U and V be subgroups of F of finite ranks m and n
respectively, where m = n; moreover V is assumed to be of non-negative
order, o(V)=0. Hence all cosets of U and of V, except possibly U itself,

have non-negative orders.

Every coset of W= UnV is uniquely the intersection Ufn Vg of some
pair of cosets of U and V respectively. The definition of the order of a coset
gives immediately a relation between the order of a coset of W and the
orders of the corresponding pair of cosets of U and of V.

First case: o(U) = 0.

2.1 If Wh=Ufn Vg, then o(Wh) = Min [o(Uf), o(Vg))].
Only finitely many cosets of W have positive order, since only finitely many
of the numbers o(Uf) and o(Vg) are positive.

We note that 2.1 leads to

2.2 o(Wh) =5 o(Uf)o(Vg), if Max[o(Uf), o(Vg)l=2;

and o(Wh) = o(Uf)o(Vg), if both o(Uf) and o(Vg) are less than 2.
However, we use at present only the rougher estimate :

2.3 o(Wh) = o(Uf)o(Vg) for all cosets Wh of W.

Summing over all Wh we obtain:

2.4 O( W)=§o( Wh) = g o(Uf)o(Vg)= Zf,‘o(Uf)-Zg‘o(Vg)——-O(U) o(V).

Hence by 1.2: 2N—2 = (2m—2) (2n—2), that is
2.5 N=2mn—2m—2n+3.

REMARK. 2.2 and 2. 3 show that the equality sign can hold only if all
cosets of positive order of both U and V are of order 1, and the intersec-
tion of every pair of cosets of order 1 of U and V is a coset of order 1 of
W= Un V. Expressed more hopefully: If it were true that the intersection of
only at most half of the cosets of order 1 of U with any one fixed coset of

order 1 of V could be a coset of order 1 of W, then O(W) = :1?— o)o(Vv)
would follow, giving in this case N—1 = (m—1)(n—1), that is the conjec-
tured bound for N.

Second case: o(U) = —1.
In this case U has only one ending; hence W is either trivial or, as
subgroup of U, also has order —1. Therefore, when W is not trivial, one has

2.6 2 o(Wh)y=2N—1 and 2 o(Uf)=2m—1.
h#1 =1
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The formulae 2.1, 2.2, and 2.3 still hold whenever Uf # U; but the inter-
sections Un Vg, where Vg==V, do not contribute to the total order of W,
since they have only one ending like U itself. Thus 2.4 is replaced by

2. oW = 2 o(Ufo(Ve) = 2 o(Uf)- 2o(Ve),

L.g
that is 2N—1 = (2m—1)(2n—2).

As N is an integer, it follows that
2.8 N=2mn—2m—n+1.

If V is cyclic, HOowsoN’s result gives N =m, while 2.5 gives N=1,
and 2.8 gives N=0, that is the correct bounds in both cases. If V is of
rank n=2, HOwSON's result gives N =3m—1, while both 2.5 and 2.8
give N=2m—1. In all other cases 2.8 is weaker than 2.5; thus:

Whenever neither U nor V is cyclic, the rank of their intersection satis-
fies 2.8.

In concrete cases, when U and V are given explicitly, for example in
terms of sets of free generators, their orders are easily ascertained. It may
therefore not be quite without interest to mention the bound obtained for N,
when V has order 2. In that case we apply to those cosets of W which are
contained in V the estimate 2. 2:

It Wh=UfnV, then o(Wh) = - o(Uf)o(V)=o(Uf),

and this holds for all f, if o(U) =0, and for all fg¢ U, if o(U)=—1. The
sum of the orders of all cosets Vg other than V itself is now

> o(Vg)=2n—A4.
9%l
If we modify 2.4 and 2.7 accordingly, we obtain:
2N—2=(2m—2)(2n—3), if o(U)=0,
and
2N—1=(2m—1)(2n—-3), if o(U)=—1.
Hence:
2.9 If V has 4 endings, that is o(V)=2, then
N=2mn—3m—2n+4, if o(U)=0,
N=2mn—3m— n+2, if o(U)=—1.
If V has rank n=2, both these bounds coincide, giving N = m, which
in this case is the same as the conjectured bound mentioned in the intro-
duction.
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