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On pseudoprimes and Carmichael numbers.

Dedicated to the memory of my friend Tibor Szele.

By P. ERDOS in Haifa.

A number n is said to be a pseudoprime if
(1) 2" =2(mod n).
It is said to be an absolute pseudoprime or a Carmichael number if for every
(@a,n)=1
(2) a*=a(mod n).
Denote by P(x) the number of pseudoprimes and by C(x) the number of

Carmichael numbers not exceeding x. It is known that’)
1

(3) ¢, log x < P(x) < x exp (—c.(log x)¥).
KNODEL*) recently proved that

4) C(x) < x exp (—c;(log x log log x)®),

it is not yet known whether C(x)— o as x— oo i. €. it is not known if
there are infinitely many Carmichael numbers. In the present paper I prove
by KNODEL’s method that

(5) P(x) < x exp (—c,(log x log log x)%)

and
(6) C(x) < x exp (—¢; log x log log log x/log log x).

KNODEL conjectured that C(x) < x'-® for a suitable positive d. I would rather
conjecture that C(x) > x'-* for every £ >0and x > x(&). in fact I believe that (6)
can not be very much improved. | shall give some heuristic reasons for this
guess. Finally I shall state some theorems without proof.

As far as | know D. H. LEHMER') was the first to discover that there
are even numbers n which satisfy (1), and BEEGER®) proved that there are

1) P. Eroos, Amer. Math. Monthly 57 (1950), 404—407.
%) Archiv der Math. 4 (1953), 282—284.
3) Amer. Math. Monthly 58 (1951), 553—555.



202 P. Erdds

infinitely many such integers. I do not know if there are any composite
numbers n for which a"=a(mod n) for every integer a (i. e. not only for
the (a, n)=1).%)

Throughout this paper ¢, ¢, ... will denote positive absolute constants,
p: and P, will denote primes, log.x will denote the & times iterated logarithm.
First we prove the following

Lemma 1. Denote by N(p, ps, ..., px; X) the number of integers not
exceeding x composed of p.,ps,...,p.. Put k"=x. Then for u < log x/log, x
(i. e. k> logx)

N(p, ps, . .., Pr; X) < x exp (—cyut log u).

Clearly N(p,, P2y ..., Pe;X) = N(2,3,..., Pi; x) where P, denotes the

k-th prime. Now (k%) > k. Thus by a theorem of DE BRUIN %)

NPy, Py -, Pu; X) = N(2,3, ...; Pi; x) < Y(x, k) < x exp (—cqu log u),

where v(x,y) denotes the number of integers = x all whose prime factors
are = y. Thus our Lemma is proved.

Now we prove (5). Denote by [(p) the smallest exponent satisfying
2:(r =1 (mod p). We split the pseudoprimes not exceeding x intc two clas-
ses. In the first class are the pseudoprimes n every prime factor of which
satisfies

l(p) < exp ((log x- iogex)”l).

Clearly all the pseudoprimes of the first class are composed of the prime
factors of

1
(7) : 2t—1, 1 <t<exp((logx-log.x)?).

The number of prime factors of 2'—1 is clearly less than £, thus the num-
ber k of prime factors of all the numbers (7) clearly satisfies

1
k < £ < exp (2(log x log,x)?).
Thus by Lemma 1 the number of pseudoprimes of the first class is less than
1
(8) x exp (—¢; (log x log,x)?).
1
The u of Lemma 1 here equals cs(log x/log.x)?.
Every pseudoprime of the second class has a prime factor p satisfying
1
L,(p) = exp ((log x log,x)?). Since n is a pseudoprime we must have
9) n=0(mod p), n=1(mod L(p)), n>p,
* Added in proof: In a recent letter Dr. KnopeL proved that every Carmichael num-

ber has the above property.
) Indag. Math. 13 (1951), 50—60
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(for if n=p, n would not be a pseudoprime). Thus n>p-L(p). Let now
. 1

Dy, Pss - .-, P be the primes not exceeding x for which 4,(p) = exp ((log x logsx)?).
We have by (9) that the number of pseudoprimes of the second class does

not exceed

r

x 2 -

(10) b= p.b]( )<-"exp( (log x-log,x)? )Z —<

o exp(— -%— (log x - log,x)? )

(8) and (10) clearly imply (5).

Now we prove (6). Let k be an integer and denote by f(k) the least
common multiple of p,—1, j=1,2,... where p; runs through all the prime
factors of k. First we state

Lemma 2. The number of solutions of f(k)=t, k= y does not exceed
v exp (—¢ log y - logsy/log,y)

(independently of t!)

Let us assume that Lemma 2 has already been proved. Then the proof of
(6) proceeds as follows: It is well known (and obvious) that n is a Carmi-
chael number if and only if it is a composite, squarefree number such that
for every prime factor ¢ of n, ¢g—1 divides n—1. We split the Carmichael
riumbers not exceeding n into two classes. In the first class are the Car-

1

michael numbers whose greatest prime factor is greater than x®. Let n be
a Carmichael number of the first class and p its largest prime factor. We
evidently have

n=0(mod p), n=1(mod(p—1)), n>p.
Thus as in (10) we have that the number of Carmichael numbers of the first
class is less than
11 X
(1) 2 5= p(p

p<=

5
0

Let now n be a Carmichael number of the second class. Write
1
Nn=pPs..., Pk X ZP>SP2> > .
2

Assume n > x*. Define
2

Pis Do s s R REF < iy o os PeE X8 <
Now

(12) n=0(modp,...p), n=1(modf(p,...p.)), n>p,...p:
(i.e. n=1(mod(p;—1)), 1 =j=).
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1 2
Let k be any integer satisfying x? <k = x®. We have from (12) (as in (10))
that the number of Carmichael numbers of the second class is less than

(13) xs +x2 kf(k)

where the dash indicates that x2 <= x3 Now we have to estimate

(14) Z'W=Z;+Z;,

where in 2  f(k) > exp (¢, log x log; x/log, x). Clearly
’ 1
15 > , < exp (—¢, log x log; x/log, x) 2 & < exp (—€1/2 - log x log; x/log, X).
k<x

1
Next we estimate 3%. We have by Lemma 2 that the number of k <y (y >x?)
satisfying f(k) < exp (¢, log x logsx/log,x) is for sufficiently small ¢,, less than

(16) y-exp (—c, log y logsy/log.y) - exp (¢, log x log; x/log, x) <
< y-exp(—c, log x log,x/log,x).
Thus from (16) we have

22 ] < exp (—c¢,, log x logsx/log,x) Z —1— -
a7 "f ") =k

exp (— %— log x log,x/log,x].

From (13), (14), 15) and (17) we have that the number of Carmichael num-
bers of the second class is less than

(18) x - exp (—cy; log x log, x/log; x).

(11) and (18) prove (6)

Thus we only have to prove Lemma 2. f(k)=1{ implies that all prime
factors p of k satisfy (p—1)|t. Denote by p,,p,,... all primes for which
(p—1)|t. Then the number of solutions of f(k)=1 k = y is clearly not grea-
ter than the number of integers =y composed of the primes p,,p,,...
Denote by g¢,,q,,... the primes among the p/’s not exceeding
exp ((log.y)*/log;y) and by r, <r, < ... the primes among the p;'s greater than
exp ((log,y*)/10g,y). Put k= Q. R where Q is composed entirely of the ¢’s
and R is composed entirely of the /’s. Consider

1
f)=t, y*<k=y.

1 1
Then clearly either Q> y* or R>y*. Thus the number of solutions of
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1
f(k)=t is clearly not greater than (the dashes indicate that y* < Q<y,
1

y'<R<y) :
(19) y’5+y{2:'~312— +2 %)

From Lemma 1 we have that the number of integers Q <z, y*<z<y
is less than

(20) z-exp(—cy log y logsy/log,y).
(The u of Lemma 1 here equals ¢, log y log;y/(log.y)’). Hence by (20)

] N 1
@) 2 {7<exp(-—ct.logyIogsy/logzy)%7< exp (—¢u/2- log y logsy/10gay).

Now we estimate 2"—}‘,-. The r's are the primes =y greater than

exp - ((log,y)*/log;y) which satisfy (r;—1)|f. First we show that (P: is the
i-th prime)

(22) ri > (2ilog i)'**> Pi**, @ =c;log;y/log,y.

Let s,,S,,...,s; be all the prime factors of £. Then the number of r’s
not exceeding r; (which of course equals i) is not greater than N(s,, s, ..., S;; 1:).
Now?®) t< k =y thus j<logy. Put r;=(log y)*. Then we have as in the
proof of Lemma 1 by the Theorem of DE BRUN‘) (zz((log y)?) > log y)

(23) i = N(si, s, ..., 55 (log y)) < w((log )", (log y)*) <
< (log y)"“ exp(—cys u; log u.)
(r; =y, thus Lemma 1 applies).
Now r; > exp((log:y)/logsy), thus u; > log,y/log,y, hence (22) follows
from (23) by a simple computation.
Now Ry, R,, ... are the integers composed of the r's. We have by (22)
R: > i***, Thus

(24) 35 3 p=3+3,

1
Ri}v‘

1 1 1
where in 3, Ri>y*, i=y¥andin 3, i>y® (3, may be empty.) We evi-
dently have

LA O 1 #):
2:<y0 =7, 2:< 2 g <cu(@y®)'<
(25) y , -

y iyt
< exp(—clogy-log;y/log.y).
%) Namely t = f(k) = ¢ (k) < k.

+|
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From (24) and (25)
(26) B % < exp (—¢y; log y - logsy/log. ).

(19), (21) and (26) complete the proof of Lemma 2.

Let now A= p,p,...p:. be the product of the consecutive primes less than
¢ logx, and denote by r,,r,,... the primes for which (r;—1)|A. It is easy
to see that A < x>, for sufficiently large x. It is reasonable to expect that for
u < (log x)™ there are more than cy,zt(u) (cw=—=Cw(cs)) r's not exceeding u
(though this will probably be very hard to prove). If the preceding statement
is true, then a simple computation shows that there are more than x'*com-
posite, squarefree integers n = x composed entirely of the r’s. Again it is
reasonable to assume that these numbers are roughly equidistributed (mod A),
and thus one can assume that there are more that x'-*¢ composite squarefree
integers less than x==1(mod A) which are all composed of the r’s.

Let n be such a number, then n is clearly a pseudoprime, since all
prime factors of n are r’s, n=1(mod A), (r.—1)|A. Thus, if all the above
conjectures are true, log (C(x))/log x — 1.

In a previous paper®) I proved that for a suitable infinite sequence x;
the number of solutions of ¢(n)= x; is greater than x%, where ¢(n) stands for
the Euler-function. The above arguments (using only the first conjecture) would
imply that ¢y, can be taken as close to 1 as we please. By arguments similar to
those used in proving (6) I can show that the number of solutions of ¢(n)= x
is less than

x exp (—cx log x - log; x/log, x).

I can further show that for any & [ and x > x,(s, k)

X! : %
log x 08%)' < ; LRSS

and if one neglects a set of integers n; of density O then for every >0
log n—(1-¢) log,n log,n < log (f(n)) < log n—(1—z¢) log.n log,n.
Thus, in particular, for almost all n and every ¢

f@=o ao; = ] .

(log x)°;

(Received September 5, 1955.)
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