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Modules and semi-simple rings. Il

To the memory of my unforgettable teocher and beloved
friend Professor Tibor Szele.

By A. KERTESZ in Debrecen.

§ 1. Introduction.

In an earlier paper of the same title [3]*) | gave a characterization, in
the case of unitary modules, of the completely reducible modules, i. e. the
modules admitting a representation as a direct sum of minimal submodules.
(By a unitary module we usually mean a module furnished with a left ope-
rator domain which is a ring containing a unit element 1 such that 1 acts
as the identity operator on the module.) By this characterization, the follow-
ing conditions are equivalent for an arbitrary unitary R-module G:

@) G is completely reducible;

B) the order of each element (3=0) of G is the intersection of a finite
number of maximal left ideals of G;

y) every maximal independent system of elements in G is a basis of G;
J) any submodule of G is a direct summand of G.?)

As an application we obtained the following result: a ring R with unit
element is semi-simple®) if and only if every unitary R-module is completely
reducible.

In this second part of our paper we extend our investigations from
unitary modules to arbitrary modules. We obtain, also in this more general
case, a similar characterization of the completely reducible modules. Moreover,
we succeed in giving a characterization of the semi-simple rings as operator

1) The numbers in brackets refer to the Bibliography at the end of this paper.

?) In the special case when R is the ring of the rational integers, this theorem
evidently yields the characterizations of elementary abelian groups, i. e. of the groups which
are direct sums of groups of prime order.

3) Here and in the sequel, we use, for the sake of brevity, the expression ,semi-
simple ring® in the classical sense, i. e. the assumption ,with descending chain condition*
is made tacitly throughout.
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domains without postulating the existence of the unit element. This result
reads as follows: an arbitrary ring R is semi-simple if and only if, for every
left ideal L of R and for each element g of an arbitrary R-module G, the
submodule Lg is a direct summand of G. By an application of this theorem
we obtain a simple proof of an important theorem of O. GoLbman ([2],
Theorem III) which is the first known characterization of the semi-simple
rings as operator domains in the class of all rings.

§ 2. Preliminaries.

Let R be an arbitrary (associative) ring and G a left R-module. By a
submodule resp. a homomorphism of G we mean always an R-submodule
resp. an R-homomorphism. We denote by O(g) the order of an element g
of the module G, i.e. the set of all elements r € R with rg=0. Obviously,
O(g) is a left ideal of R.

We call an arbitrary set ..., g,,... of non-zero elements in G indepen-
dent, if for every finite subset of this set a relation

fx£’1+"°+fu£'--=0 (nER)
ng=-=rygn=0.

implies

Since the independence so defined is a property of finite character, by virtue
of Zorn’s lemma an arbitrary set of elements in G contains a maximal inde-
pendent subsystem. Let S: b,,by,..., bs,... be an arbitrary system of elem-
ents of G. The set H of all (finite) sums of the form

s1bﬁ+"'+3ubp- (bmesr SiGR)

is a submodule of G. In this case we say that H is the submodule of G
spanned by the system S. If G contains an independent subset S of elements
which spans the whole module G, then S is called a basis of G.

Let A be an arbitrary submodule of the R-module G, and let us denote
by RA the set of all finite sums with summands of the form ra (r€R, a€A).
RA is a submodule of G and also of A. If RG=G, we say that G is a
perfect R-module. It is evident that an R-module is perfect if and only if it
has a system of elements which spans the whole module. This implies
directly that a unitary module is always perfect. The frivial modules, to be
defined now, are of an opposite character: An R-module G is ftrivial if
RG=0. The trivial submodule of an arbitrary R-module G is the set of all
elements x € G for which Rx=0. An R-module A is called minimal (in
another terminology: irreducible, or simple) if A contains no submodules
other than A and 0. It is clear that a minimal R-module is either perfect or
trivial, moreover, that an R-module which appears as a direct sum is perfect
resp. trivial if and only if all its direct summands are perfect resp. trivial.
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For an arbitrary but fixed ring R we have a complete survey of all
minimal R-modules. If the minimal R-module A is trivial then A is a (cyclic)
group of prime order. In the other case, i.e. if A is perfect, then A is iso-
morphic to one of the factor modules R/M where M is an arbitrary maximal
left ideal of R, and conversely, the module R/M is minimal for every maximai
left ideal of R. Moreover, for arbitrary elements a==0, b0 of a perfect
minimal R-module A we have

A=~ R/O(a)=>=R/0O(b)
where O(a) and O(b) are maximal left ideals in R, but in general O(a) =
== 0(b). (If R is commutative, then O(a)= O(b).)
In the sequel we shall need also the following

Lemma. An arbitrary module G is a direct sum of a finite number of
minimal modules if and only if there exists a finite number of maximal sub-
modules in G with O infersection.

PrOOF. If G admits a representation as a direct sum of its minimal
submodules A,, ..., A,, then the intersection of the maximal submodules

Ay +As+ - +An, AvtAs+ -+ An,s .., At As+ -+ A
is 0.Y) Conversely, suppose that M,,..., M, are maximal submodules of an
arbitrary operator module G, such that
(1) ; Mn---NnM,=0
and none of the M; ’'s can be cancelled in (1). We show that in this case
G can be represented as the direct sum of the n minimal submodules
(2) Ai=Mn---nMinMian---nNM, (i=1,...,n).
First of all we remark that the A; s (i=1,...,n) are in fact minimal. Eiy
the hypothesis that in (1) no M; can be cancelled, we have A; 4 0, moreover,
by virtue of (1) the sum of A:; and M; is direct. Finally, in view of
M;c Ai+M; =G we have by the maximality of M;

G=A+M

3) G"—?A2+M2

Chess oMb

From this A; >~ G/M;, i.e. the minimality of A; follows.
Now, applying the second resp. the third etc. equality in (3) to the
elements of M, resp. M,nM, etc., we obtain
M, = A+ (MinMy)
@) Min Mz = A3+ (MiniMz 0 M)
MO M0 -\ Myy = An+(My0 Mo - - 1 M) = A,

1) The sign 4+ is used to denote (besides the group operation) also the direct sum.
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By a successive substitution of these expressions into G = A, + M, we obtain

G=A+A+ - +A,

q. e. d.
As special cases of our lemma we obtain the following results:

An abelian group is a direct sum of a finite number of groups of prime
order if and only if it has a finite number of maximal subgroups with O
infersection.

An arbitrary ring (considered as a module) is a direct sum of a finite
number of minimal left ideals if and only if it has a finite number of maximal
left ideals whose intersection is 0.%) .

§ 3. On completely reducible modules.

For an arbitrary R-module the conditions «), 8), 7), d) of § 1 are in
general not equivalent. This is clearly shown e. g. by a trivial module satis-
fying condition e). However, for an arbitrary R-module G the following
conditions are always equivalent:

1. G is completely reducible;
2. any submodule of G is a direct summand of G.

Hence it follows that every submodule and every homomorphic image
of a completely reducible module is again completely reducible.
Now we restrict our considerations to the case of perfect modules.

We are going to prove the following

Theorem 1. For an arbitrary R-module G the following conditions
are equivalent .

&) G is a completely reducible perfect module ;

8") G is perfect and the order of each element (+0) of G is the inter-
section of a finite number of maximal left ideals of R ;

Y') every maximal independent system of elements in G is a basis of G;

&) G is perfect and any submodule of G is a direct summand of G.

REMARK. As a module satisfying y) is always perfect, and a trivial
module can also be completely reducible, the supposition of perfectness is
essential in ¢’) and d’). It is an open question whether or not perfectness
can be omitted from 8’).

5) The character of this proof shows that an analogous criterion must be fulfilled
in order that an arbitrary group (ring) be the direct product (sum) of a finite number of
its minimal normal subgroups (ideals).
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PROOF. «') implies B'). Suppose that G 1s a direct sum of minimal
R-modules A,:
®) G=2A,.
Let ’

g=a,,+-'-+ﬂr. (0=i=avi€Avi)-

By the perfectness of A,,, O(a,)= M; is a maximal left ideal of R and so
we have
(6) ' o(g)=M,n---nM,= D,
i. e. O(g) is the intersection of a finite number of maximal left ideals of R.

g’) implies y’). Let S be an arbitrary independent system of elements
in G, and H the submodule spanned by S. Since by the maximality of the
system S the submodule H contains each minimal submodule of G, it is
sufficient to prove that for an arbitrary element g <=0 of G Rg is contained
in a submodule of G generated by minimal submodules. Namely this implies
that together with all submodules Rg also RG is a part of H, and since G
is perfect, i.e. RG=G, § is in fact a basis of G.

We are going to prove that for an arbitrary element g==0 of G the
module Rg admits a representation as a direct sum of a finite number of
minimal R-modules. Suppose that the order of g can be represented in the

form (6) where M,,..., M, are maximal left ideals in R. It follows from
(6) that

Rg=>~R/D
and

M,/Dn---nM,/D=0.
On the other hand, since in the module R/D the submodules M;/D are
maximal, by our lemma we obtain that the module Rg (which is isomorphic
with R/D) is a direct sum of a finite number of minimal R-modules.

For a proof of the assertions y") implies d°) and d") implies «’) see the
proof of Theorem 1 in [3]. The proof given there for the implications y)
implies Jd) and J) implies «) remains valid also in this more general case.
Finally, let us remark that the perfectness of G is an obvious consequence
of ¥’). This completes the proof of Theorem 1.

§ 4. Semi-simple rings as operator domains.

In this section we investigate the semi-simple rings as operator domains.
By a semi-simple ring we mean such a ring taken in the classical sense,
i.e. a ring containing no non-zero nilpotent left ideal and satisfying the
descending chain condition for left ideals. According to the well-known
WEDDERBURN-ARTIN structure theorem such a ring is isomorphic to a direct
sum of a finite number of rings, each of which is isomorphic to the com-
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plete ring of linear transformations in a suitable finite dimensional vector
space over a skew field. By another characterization, a ring R is semi-simple
if and only if every left ideal of R contains a right unit element (see [1]).
In our proofs we make use only of this second characterization of semi-
simple rings.

The semi-simple rings have remarkable properties also as operator
domains. An earlier related result is the following theorem by O. GOLDMANN
[2): An arbitrary ring R is semi-simple if and only if every R-module admits
a representation as a direct sum of its trivial submodule and a completely
reducible (perfect) module. Now we prove another criterion of a similar kind,
an application of which will yield a simple proof of the above theorem of
GOLDMAN.

Theorem 2. An arbitrary ring R is semi-simple if and only if, for
every left ideal L of R and for each element g of any R-module G, the sub-
module Lg is a direct summand of G.

PROOF. Suppose that for every left ideal L of R and for each element
g of the arbitrary R-module G the submodule Lg is a direct summand of G.
Then we show that every left ideal of R contains a right unit element, i. e.
R is a semi-simple ring. Let G be the set of all pairs (a,n), a€R, n a
rational integer, with the trivial definition of equality and component-wise
addition. We define the product of an element r € R by (a, n) € G by

r(a,n)=(ra+nr,0)
where nr has the obvious meaning. So G becomes a left R-module. If L is
an arbitrary left ideal in R and g=(0,1) (€G), then Lg is the set of all
pairs (/,0) with /€ L. By our hypothesis Lg is a direct summand of G, i.e.

G=Lg+H.

In this direct decomposition let

0,1)=(e,0)+(—e, 1) (eel).
For an arbitrary element / of L the element

l(—e, 1)=(—le+1,0)

is contained both in A and in Lg, and thus, by the properties of the direct
decomposition, it is equal to zero. Thus —le+ /=0, i.e. le=1 for every
[ € L, which shows that e is a right unit element of L.

Conversely, let R be a semi-simple ring. We are going to show that
for an arbitrary left ideal L of R and for an arbitrary element g of any
R-module G, Lg is a direct summand of G. Let e be a right unit element
of R. (The existence of such an element follows from the semi-simplicity
of R.) First of all we show that e is a unit element of R. Indeed by

s(r—er)=sr—sr=0 (r,s€R)
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0 is the only right unit element in the left ideal J consisting of all elements
r—er (r€ R), and thus /=0; this implies that e is also a left unit element
in R.

Let now G be an arbitrary R-module. Making use of the well-known
Peirce-decomposition, we represent G as a direct sum of its trivial submodule
G, and of a unitary R-module G,:

G=Go+ G;«
Now, if L is a left ideal of R, g an element of G, which, by the direct
decomposition can be written in the form

g£=81+& (&€ Go, g€ Gy),
then Lg=Lg,. It is therefore sufficient to show that any submodule M (in
particular: Lg,) of the unitary R- module G, is a direct summand of G,. The
proof of this can be obtained as follows. Let K be a submodule of G, max-
imal with respect to the property of having with M intersection 0. The proof
of our theorem will be completed as soon as we show that the direct sum
M+ K contains any element 2 of G,. The elements r of R with rhe M+ K
form a left ideal Q in R. Let ¢’ be a right unit element in Q. Then the
cyclic submodule R(h—e"h) generated by the element #—e*h has no non-
zero element in common with M 4- K, for r(h—e*h) is equal to zero if r€ Q;
if, however r¢ Q, then by the definition of Q, this element is not contained
in the module M+ K. We have therefore R(h—e*h)=0, by the maximality
of K. Now, since G, is a unitary R-module, this implies h—e*h=0, i. e.
h=e"h€ M+ K. This completes the proof of Theorem 2.%)
As an application of the preceding theorem we have the following

Theorem 3. A ring R is semi-simple if and only if every R-module
G admits a representation as a direct sum of its trivial submodule and an
R-module for which one of the four conditions &), 8°), ), &) in Theorem I
is satisfied.

Since by Theorem 1 conditions «’)—d’) are equivalent for an arbitrary
R-module G, our theorem comprises the theorem of O. GOLDMAN mentioned
above.

In order to prove this theorem, let us first suppose that the ring R is
such that every R-module G admits a representation

G= Gn+ Gl
where G, is the trivial submodule of G and G, is an R-module for which
condition d') is satisfied. It is sufficient to show that for a left ideal L of R
and for any element g of G, Lg is a direct summand of G, since, by

6) It is possible to simplify the second half of the proof of this theorem by a refe-
rence to Theorem 2 in [3). we prefer however to give for this theorem a proof complete
in itself. -
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Theorem 2, this implies the semi-simplicity of the ring R. Let g have by
the above decomposition a representation

g=g+& (goEGmgxé Gl}

Then Lg=Lg, < G, and so, by condition d’), Lg is a direct summana of G.

On the other hand, if R is semi-simple, then by the Peirce-decompo-
sition any R-module can be obtained as a direct sum of its trivial sub-
module and of a unitary R-module, where the unitary direct summand is a
completely reducible R-module.

REMARK. After having completed the above paper, the author succeeded
in proving the following theorem, giving another characterization of the
completely reducible modules:

An arbitrary R-module G is completely reducible if and only if

a) the intersection of G and its maximal submodules is 0, and

b) G satisfies the descending chain condition for cyclic submodules.

The proof of this theorem will be published elsewhere.
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