On rings every subring of which is a multiple of the ring.

To the memory of my highly beloved teacher T. Szele.

By F. SzAsz in Debrecen.

In a previous paper we have determined all groups every cyclic sub-
group of which is a power of the group [2]. We shall treat in this note a
similar ring-theoretical problem.

We shall cail an arbitrary ring R cyclic if the additive group R+ of R
is cyclic (see e. g. [1], pp. 326—327). The ring / of rational integers is
obviously cyclic.

An arbitrary ring R is called a ring with property P if any subring S
of R is a multiple nR of the ring R, where nR denotes the set of all elements
nrof R (here r€ R and n €/). Then nR is alsoan ideal in the ring R. It is
clear that every homomorphic image R’ of a ring R with property P has
likewise the property P.

We shall prove the following

Theorem. An arbitrary ring R is cyclic if and only if it has the pro-
perty P. L
ProOF. First of all we verify that a ring with property P without divi-
sors of zero is necessarily commutative. In fact, since every subring S of R
is an ideal in R, for arbitrary elements a==0 and & of R obviously
ab=a’ € {a} holds, where { M} denotes the subring generated by the subset
M of R. By aa’=a’a we obtain a(ba—a’)=(ab—a’)a=0 and since R
has no divisors of zero, @' = ab = ba.

Now we distinguish two cases.

I. Let R be a ring with property P whose additive group is torsion free.

If @0 and b==0 are elements of R with ab=0, then by {a}=mR
and {6} = nR necessarily {0} = {a}-{b} =mRnR—= mnR*. Therefore R*= {0},
consequently by the theorem of [2], R is a zeroring over an infinite cyclic
additive group.

Now we assume that R has no divisors of zero. Then by our previous
remark R is commutative. For the element a==0 of R we have evidently
Ra =10}, therefore Ra==nR for some natural number n. There exists there-
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fore an element b &= 0 of R for which ba=ab= na. Consider the non-void
subset S of all elements ¢ of R for which, with a certain rational integer n.,
an equation ac=ca==n.-a holds. We can easily verify that S is a subring
of R, consequently S=mR, where by O03=b¢ S evidently m 4=0. Therefore
Sa=(mR)a=mnR. But then the mapping r— mnr is an isomorphism of
the additive group R* of R onto its subgroup (mnR)t. On the other hand
by the definition of S the subring S-a=mn-R is obviously cyclic, and on
the basis of the preceding group-theoretical isomorphism the ring R itself is
cyclic.

II. Let R be an arbitrary ring with property P whose additive group
Rt is not torsion free. If d is an element of finite order n of the ring R, and
{d}=mR, then R* is k-bounded, where k = m-n. The elements of p-power
order of R form a subring R,, called the p-component of R, which is a direct
summand of R, and has also property P. So we have to prove the theorem
only for p-rings. We first observe that all subrings of R, are:

Ro, PRy, P'Ro,..., P'Ry,..., P'Ry {0}, PR, ={0;].
Since p'Ry/p*“R, (i=0,1,...,k—1) has no proper left ideal, it is a prime
field of characteristic p, or a zeroring over an additive group of order p. In
both cases every p'Ry /[p*' Ry is a group of order p, and so Ry is a group of
order p*. But p*-'Ry ==0 shows that R, contains an elemeat of order p*
thus Ry is cyclic.

REMARK. By the note [3] it is'clear that an arbitrary ring R is cyclic
if and only if every non-trivial multiple 2R of R is cyclic, where nR is called
trivial in the case n=1, 0 or —1.

I am mdebted to L. Fuchs and L. Kovics for their valuable remarks.
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