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Diophantine inequalities in complex quadratic fields.

Dedicated to the memory of Tibor Szele.

By L. J. MORDELL in Cambridge (England).

§ 1. Let a, b,c,d be real numbers with |ad—bc| =1 and

(1) f(x, y)=|(ax+by)(cx-+-dy)|.

A well known result by MINkOwsSKI states that real numbers x,y with
assigned residues (mod 1) exist such that

(2) f,9) = 5

and that the constant % is best possible.

It is of interest to consider the generalization for a quadratic field
K(i|/D) where D is a positive square-free integer. The discriminant —D’ of
the field 1s given by D'=4D or D according as D=1,2 (mod4) or D=3
(mod 4). Any complex number can be expressed in the form

@3) z=X+Y{D+;VE]=~—-X+Yw
say, where X, Y are real. The integers in K'(i | D) are given by taking X, Y to
be the rational integers. When the real numbers X, ¥ have assigned residues
(mod 1), we say that z has an assigned residue mod (1, w).

Write

4«42 \ (1+D)¥16 D when D=3 (mod 4)
(4) J=ID)=|(1+Dys  when D=1,2 (mod4).

Then we can always find 2z with an assigned residue 2, mod (1, ) such that
1

oy

FIETAS

Stated in a different form, we can find an integer z in K(iJ/ D) such that
1

®) |2—2|=Jj*%,

and this is the best possible result.
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When D=1, 2 (mod 4), this is obvious since real numbters x,y with
assigned residues (mod 1) exist such that

x'+Dy* = (1+ D)/4.
When D=3 (mod 4), the corresponding inequality is essentially

x’+1y+%(1+D)y"'§(1+0)*/'16D. or say &+’ = (14 D)*/16D.

The circle defined by this inequality contains an inscribed hexagon whose
sides are the perpendicular bisectors of the lines joining the origin to the (&, )
points (1, 0),[ ;, + ; Vﬁ) [ ;, + VDJ This hexagon contains the
points which are nearer to the origin than to any other point of the lattice

1
22
assigned residues (mod 1). This result is a particular case of a theorem by
DiRICHLET for the general definite binary quadratic form. I have recently
found a very simple arithmetical proof which will appear in the SCHUR
memorial volume of the Mathematische Zeitschrift.

based on the points (1,0), [ Vﬁ), and so contains a point (x, y) with

§ 2. The new question is to find the best possible constant k-—= k(D)
such that if now a, b, ¢, d are complex numbers and |ad—bc| =1, then

©) fxy)| =k

can be satisfied by complex numbers x,y with assigned residues mod (1, ).

If in (6), we require x,y to be integers in K(i}D), we exclude the
trivial solution x= y=0, and we have now to find the best possible value
of k, say [ =1I(D), such that we can solve

(7) fx, =1

in integers x, y not both zero.

We note that such constants do exist in our applications. By a result
of MAHLER there are also an infinity of solutions of (6) and (7).

It has been shown that

1 1 1 1
(1)==, ==, IQ)=7—, (T)=7,
® = 1 V13 /8
2
!(11)=V—5—‘, 1(19)=1,

and that in each case, there are an infinity of solutions. The result for /(1)
is due to Forp, for /(2),/(3) to PerrON, for I(7) to HOFREITER, for [(11),
1(19) to Porrou. Full references for (8) are given by Porrou [1].
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It is not difficult to find upper bounds for / and PERRON has shown that

I<%V6D, D=1,2 (mod 4),

9)
e ?15 V6D, D=3 (mod 4),

and this result has been improved by other writers.

The integers x,y in (7) may not be relatively prime when the class
number of the field K(iJ/D) exceeds unity. Then we prove that it suffices for
the general case to consider only the special case when the greatest common
ideal factor a of x and y is m, an ideal with minimum norm N(m) in the
same ideal class as a. It is well-known that
(10) N'(m)=D.

Let (x,y)==qa and

f(x,y)=|(ax+by) (cx+dy)| = (D).

If a,b are two ideals in the same ideal class and b|a, then a==5b(f) where ¢
is an integer in K(i}/D). There will be no confusion if we write a|b instead

of f. Hence
f(x_m, r_m] =

= L=l o

m
a

where now m is the greatest common ideal divisor of the integers xm/a, ym/a
say, p, q. Also
|m/a| = N(m)/N(a) = 1.

A question that does not seem to have been considered is to find the
result corresponding to (7) when we impose the condition (x, y)=m. I know
of no results.

These results for (7) are useful for the more general case (8). We can
determine two relatively prime integers (r, s) in K(i)/D) such that ps—qr= N(m)
since m==(p, q) divides N(m).

The substitution

x=px'+ry, y=qx +sy,
establishes a 1—1 correspondence between integer sets x,y and x’,)’; and
also for numbers x,y and x’,y" with appropriate assigned residues mod(1, ).
It changes f(x,y) into

& y)=|@x+6y)(ex'+d'y),
and we can suppose that for given arbitrary small ¢ >0,
/

[

lo'|=e |c|= e

also

a'd’—b'c'| = N(m).
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Our problem now becomes in a slightly different form — to find the
corresponding constant &’ for

(11 Fx,y)=¥,
where
la’'d’—b'c’| =N,
and N does not exceed the greatest of the minimum norms of the ideals in
the different ideal classes. Of course, N=1 when the class number is unity,

and in any case N* does not exceed the discriminant of the field.
It has been shown that

(12) )=7, k=3, k=7, kD=1
e
(13) k(D)= j(D).

PERRON has conjectured that this holds for all D, and notes that (13)
cannot be replaced by k(D) <j(D). For if x, y are integers in K(i}/D), then

-4

)(y_ : +iV5)J = (—;‘“ +D)%)z=i(0). D=1, 2 (mod 4),

2
_1_ o=\, 1 D=0, (1+D)_, =
H" 2t 47D -5+ 4/D )l= VB) JOK, H== 9000 6
He also gives the estimate
(14) k(D) = j(D)(D'+ (D)),

where —D’ is the discriminant of the field.

The result for k(1) is due to HLAwkA, and other proofs have been
given by MAHLER and PERRON, both of whom have also proved the results
for k(2), k(3). The result for k(7) is due to SCHMETTERER [2] who follows
PERRONS’s method, and comments that it does not suffice to prove the con-
jectured result for & (11). He gives full references.

I notice that the proofs of (12) can be expressed in a form simpler
than that given bv other writers and that a great deal of the numerical calcula-
tion can be dispensed with. There are fewer cases to be considered and the
treatment of all the known results is unified. The method does not prove
the conjecture when D =11, 19, and the question arises whether the conjec-
ture holds. A modified one is suggested later on.

§ 3. Fundamental in our problem is a result concerned with congruent
points in a Cassini oval. Various results are already known but the one now
given and its proof are both new. The result is, however, implicit in
PERRON’s work for the special cases.
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Lemma. Lef a be any given complex number. Then a point z with
assigned residue mod (1, ) is contained in the Cassini oval

|2*—a| = m,
where
m=2Yaj if |a|=j
(15) m=|a|+j if |a|</,
= Vaj+j.
If (15) is not satisfied, then for arbitrary A=4(p, q), a=(p+iq)’,
(16) ilz—p—igl+4lz+p+ig>2m.
Put
z—x+yvy+4r_}+&+m.

where &, 7 are constants taken so that the coefficients of x, y in (16) vanish.
Hence

'E—p)+AE+P) =0, 1 (n—g)+i(n+9)=0,

1+a° "Tha)

Also x,y have assigned residues (mod 1). From (16),

o [(x+3Y) +e—rr+ Zr+a—ar|+a[(=+ 5 + e +or+ 2L+

and so

+(n+ q)’] >2m
Substitute for & 7. Then

(1+~%~][(x+ ) D;J”J+ 4F(l‘+(g-|+-?;f(z=+1)

> 2m.
Put tml-l-% and so
2 ’ a
[(x+D’2y] i D4y’]+4(1rj-q') ke

Hence by appropriate choice of x,y (mod 1) as in (5),
4|al

tji+——>2m.

If |a| = j, we take t=2}|a|/j = 2, which gives a real value for 4, and then
the contradiction

2Vlalj+2V]alj > 4V]al/.
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If |a| <j, we take =2, and then have the contradiction
2j+2|a| > 2|a|+2j.

The result for |a| </ is trivial since we can always take |2*| = j.

The result (15) has to be improved for our applications, and we shall
in due course find a number ;' <j such that we can satisfy
(7 |2#—a| =2Vjla] if |a|=7,
and of course trivially

' |2—al=j+7 if |a|<]J.
3} 4. We now enunciate the

Theorem. L::
f(x,y) =(ax+by)(cx+dy)|,
where |ad—bc|=1 and a/b is not in K(i{D). Then numbers x,y with
assigned residues mod (1, ») exist such that
f(x,y)=JN,
provided that when j is as in (17),
I(DYG+J)=JN,
and N as defined in (11) is such that each ideal class contains an ideal of
norm = N.
Further, we can satisfy for arbitrary & >0,
lax-+by| <e,
provided that ax+by==0 for any integers (x, y)==(0,0) in K(i}/D).

The last proviso is essential as in obvious when we consider the parti-
cular case expressed in a slightly different form

[0 =[x+3)x+Fy+q9)| 90,
where &, 9 are conjugate integers and x, y variable integers in K(i}'D). For
if |x|4+|y| >0 and |x+4+3y|<s

f(x, ) =1(x+ 39 (x+Fy)+q(x+3y)|
> 1—¢|q|.
As already noted in (11), we may modify the enunciation by writing
f(x, y) =|(ax+by) (cx+dy)|,
where now |ad—bc| = N, |a| =&, |c| = l/e. Write

ax+by=aX’', cx+dy=Y,
so that
Ny=—acX +aV.
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Put X—= X'—Ny/2ac. Then

(18) 1(x, Y)=|X"(@c X’ + Ny)| =|ac| | X*— N*y*/4a*c|.

We note that if any value is assigned to y, we can find X" and so x with

a given residue mod (1, ®). We take y with its assigned residue mod (1, ®)
1

such that |y| = j°, and apply the lemma.
If |[N*y*/4a’c’| = j, we can satisfy

(19) f&x, y)“ldtll*iJN‘y’/M"C"I =JjN.
If |N*y'/4a*c®| < j, we can satisfy 1
(20) f(:3) = lac| G+ |N'Y/Ad'e) = |ac| G +UN'y/Aac'[?),
= jlac|+|iN*y/4)2,
and so
(21) fen=i(i+5N)
Hence in any case, we can satisfy

f(x,) =Jj(+N),

and this is PERRON’s result (14).

If, however, (19) holds for |N*y*/4a’c*| = where ;"< then when
|N*y/4a*C| < J', (20) gives
(22) Jx, ) =|ac|(j+))=UD)(J+))=JN
by our hypothesis. This of course requires that /(D) < N.

It remains to show that in the estimates for f(x, y) given in (19), (20),
(21), (22), we can make ax+by=aX —=aX+ Ny/2c arbitrarily small. By
the Lemma,

= Y NI* |y N[yl
IX_4a’c‘ = “‘a"[ iae] * /tader ]
and so

. N - N}|ﬂ| N’.’

When |a| is arbitrarily small, |c| becomes great and so aX and hence aX’
becomes arbitrarily small. The result still holds if we use j* in place of j.

§ 5. Though we have supposed the field K(i|'D) to be quadratic com-
plex, the results and proofs still hold when the field is the rational field K
if we put D=0,N =1, /= and [ = L in (19), (21), this giving k = -

Lemmas of the present type were fxrst used for these problems of
Diophantine approximation in a paper of mine [3] published in 1928. There,
however, | used the cruder result /= 1. A practically identical proof was
published by PERRON [4] in 1938.
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§ 6. We now consider the cases D=1,2,3,7,11,19. The fields have

class number one, and so here N=1. In all these cases I>%, so (20)

does not suffice and we must use an appropriate J'.

We suppose a=E+in, M=|a|<j, and that we cannot satisfy
|2?—a| = V4/j]al. We shall show that if for all z with assigned residue
mod (1, ®), |2*—a| > J/4ja, then there is a constant j'=j (D), which we
wish to satisfy

J=j=ja-n,

such that |a|<j. This implies that we can satisfy |*—a|= |4j|a| for
la| = /.
We can write z=x+iy)/4 where if D=1,2 (mod 4), 4= D, and if

D=3 (mod4), d=— D, and 0=x<1, Y| = 5. We have

(x*—dy'— &+ QxyVd—n) > 4 |a|,
and so
(23) (¢ + Yy —28(— dy)—4nxy V4> 4 M— M.

We now apply an averaging process frequently used by PERRON for
Cassini ovals, and recently by myself in other applications. Now (23) holds
if we replace x by x—1, and so

(24)  ((x—1)+ 4y —25((x—1P—dy)—4n(x—1)yVd > 4 M— M.
Multiply (23) by 1—x and (24) by x and add. On writing X=x (1—x),

and so 0§X§%, we have

(1—x)x'+x(x—1)=x(1—x) (X + (1—x)) = X (1—3X),
(1—x)x+x(x—1P=x(1—x)= X,
(1—x)x+x(x—1)=0.
Then
(25) X(1—3X)+24Xy*—2EX+ 254y + £y > 4] M— M.
Suppose first that £ = 0. Then we consider here only the case 4>1. Since
lylé% and £4y* =0,

2
X(l—3X)+—;—dX—2§X+f—6 > 4jM— M.

Since 1—-6X+-;—.4—2§==0 gives X>%, the maximum value of the left
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hand side occurs when X =%—. Hence

AT G B .
By a g

or G

(26) Mﬂ—(4j—-;-)m+[—"7ﬂ] >0, (4>1).

We write this as
(M—M,)(M—M,) >0,
where M, < M,. We know that M, <j but desire that
M, =j(/l—1), M, >
Suppose next that £>0. We consider both 4=1, 4< 1. From (25),

: 1
=
since |y| = 7

@7 X(l—3X)+—;12—AX—2§X+%A‘§ +1’—642 > 4jM— M.

We have now two subcases. When & = %—(d— 1), the maximum value in (27)
occurs when

1—6X+~%~ 4—2Em(, BXw=1 +%4—2§ < %

Hence

v 514 > £ b 25 Yo ;
[1+5J—2§]/12+-5J§+1~64 > 4jM—M?,
or

s g Pl as Usicy :
and so

4M* . 4—1 1 ” s
3 —4}M+~§—§+(1+~2—A; 12+ 4> 0.

Hence on noting the term %(d—l)&.

(434

am:  (,. 4—1 el =
(28) 3 _[41_ 3 )M+ 12 +'1'644 »On (d=])
1 2
4M* (""Td) 1

- — M4+ >0, (4<1).
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In both cases we write (28) as
(M—M)(M—M,) >0,
where M, < M,, and desire that

M,gj(—}—-——l) M, > j.

When &< - (4—1), the maximum value in (27) occurs when X=

and so

1 1 e bl oo gimap
wtgd—g it Ltgd >4M—M,

or
M*—4jM 4 — (4—1)§+["+1] >0.
Hence since 4—1>45>0,

(29) M (4;—4——-1-]M+('4+1]8>0.

2
We write (29) as
(M—M,)(M—M,) >0,
where M, < M, and desire that
M, =jQI=1),  M>j
§ 7. We now take in turn the values D=1,2,....
o | 1 b 4 = T e
D=1. Hered:l,;m-z-,::-ﬁ-f =j(I—1)=- (Vy3—1)=0,366...
On replacing 2z by iz if need be, we may suppose §=0. Then (29)

does not arise since &= %(A'—l), and (28) gives

% o 1
3 M —2M+4 >0,

or
(4M—3)*>6.

Clearly M,>1 and so M, < 3_4% <0, 14 < j” as desired.

Since we wish only to satisfy 3;4—}{6 <-;—(-]T—l). it would have been
sufficient to take for / the crude estimate /< 2/(5—}6).

D=2. Here d=2,j=%, 1=1/V§,f‘=% (VY2 —1)=0,310....
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Suppose first £ = 0. Then from (26),
M= M+ >0, (M—%)(M——E—))O.
Hence M, = <0, 310,
Suppose next &£ >0. Then (28) gives
2
%_ 8;‘ Jr12
and M,=%.

Finally (29) gives

(4M—l)(M—%] >0,

etc.

D =23. Here d=% J=

When £ >0, (28) for 4< 1 gives
4M* 4 121 9

T R e RE
or
M*—M +—— > 0.
Clearly My > and s0 M, <~ <0, 29
2 2 1 2% 1] .
Suppose next that £ =0. Since 4<1, we cannot apply (26) but use

(25) directly. We consider the two cases —& = : —&> l a4

16’ 16 16’
(25) remains true if we omit the term 2&4)’ and replace y* by —‘l‘- The

modified expression takes its greatest value when 6X :181—25, and then

aM

1" TR U G ,
(_8__2:;]/12+_—*>~3_ M. e — i+t >y — M
or since —Eélﬁ,

Lo | MR ERSOR ey | WY

3 3 1768 384 " 25 256



Diophantine inequalities in complex quadratic fields. 253

Clearly M,>-i— and so M, < .};g —<0,29. Next let —-!j> . We con-
sider the two subcases § = ——}, §>—-4—. For the first, since 1—6X+

+%-y‘—-—2§=0 gives X= 1

i the left hand side of (25) has its greatest

value as a function of X when X= —711_’ and so

1 3 1 . 9 4
E+“§f—-2-§+-§'§f+ﬁr>§M—M’-
Since the coefficient of y* is not positive, and y*= —:i—,
1 1 9 _4M .
IR e met

or

M*--E-M+%>o.

Clearly M, > 5 and SO M1<—@-<029 Suppose finally that ’;‘>—%

256
We write (25) as

X(1—3X) +5 Xp—2X+( 364+ 3 )P + gy — 3y > g M-
Hence

4M

M a4
+32 3 — M.

X(1—3X)+- S X—2%X+3 35

The maximum value of the left hand side occurs when X -——% since

1—6X+% —2E=0 gives X> -i—- since —25> % . Hence

13 3k
1‘6+§§_2+s +32>3M M,
or

M’—(—;»——%]M—}-%>O

Clearly M,> % >0,299. Also M, < 0,299 since

009+ 3 L 025— ”395 0.
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4
D="1. Here 4’—% jzz-g—, 1::1_,;'.-:%@%__1):0,38_,
V8
When & =0, (26) gives
25 121
g o ¥
M 14M+ 256 S

Clearly M,>1 and M, <0,38 since 0,144 —0,67 40,5 < 0. Suppose next that
£>0. Then (28) gives

4M? 225 49
T_(“_“’)M"‘ 768 T 256 =
or
171 372
2
AM* — o= M+ 55> 0.
Clearly M,>1 and M, < 2956 < 0,38.
Finally (29) gives
. (16 ) 121
M (7 | M+ o5 >0.
R . | 121
M — 56 M+ 556 > 0.
3 242
Clearly M, > 5 and so M, < = 768 < 0,38.

11 9 . 2 & Uty )_
D=11. Here 4=, j= ﬁ,tdvg,; ._11(2V5-—1._0,097.

v . . 1
From (26), (28), (29), it suffices if M, < >
too small for the method to succeed. But it happens that the homogeneous

and so the value of j” is

minimum corresponding to / =% is isolated, i.e. if a special set of homo-
geneous linear forms is excluded and so of course corresponding inhomo-
geneous forms, then / may be replaced by a smaller number, say I. The

present method succeeds if
M,gj(-}»—l) or I'=1 /%-4-1.

Here we require /' = 1 / %-l— 1=0,62..., but I do not know whether this holds.

D =19. Here A’=E j=2—5 [=1. It suffices if M, = 0,8 and if /=1

4’ 19°
/152
25

is isolated, the method succeeds if /' =1 +1=06.
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§ 8. When D is such that the class number exceeds unity, further
difficulties arise not only with the value of N but also because the value of

! is not known. Thus when D=6, N=1 or 2, j= —1— Mr. BIRCH informs

me that he has reason to believe that / = % . Then (19) gives k = % and (21)

gives k= X2 (i
V3

4 -4 !). Hence we have the estimate

k(ﬁ)é—l—(%—+l].
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