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On the volume of a polyhedron in non-Euclidean spaces.

To the memory of the geometer and the true friend [. Szele.

By L. FEJES TOTH in Budapest.

It is known') that the volume V of a convex Euclidean polyhedron con-
taining a sphere of radius r and having f faces, e edges and » vertices satis-
fies the inequality

V?-_'-? i ﬂf( n”;ftan‘%—ljr"

with equality only for the regular polyhedra circumscribed about the sphere.
In the present paper we shall give an analogous éstimating formula in non-
Euclidean spaces. Our formula involves the volume of a quadrirectangular
spherical or hyperbolic tetrahedron?®) investigated by C. F. Gauss (Cubirung
der Tetraeder, [5], p. 228), J. BoLvar ([13], pp. 105—115), L. SCHLAFLI
(19], [10], [11] and [12]), N. I. LoBATSCHEFSKY [7], H. W. RICHMOND [8],
H. S. M. CoxeTer [1], H. KNESER [6] and others. So the present investiga-
tion can be considered as a new treatment of this classical problem.

The above inequality, and the corresponding inequality in non-Euclidean
spaces, can be derived from the following more general theorem [3]: Decom-
pose the surface S of a sphere by a net N having v vertices and e edges
into f= 4 convex spherical polygons S,,...,S;. Further, let P,,...,P; be f
points of S and g(x) a strictly increasing function defined for®) 0 = x <

< % V7S. Then

; jg(P.P)dS = 4ejg(AP)ds,

where dS denotes the area element of S at the variable point P, and 4 a

1) Cf. [3] — Numbers in brackets refer to the bibliography at the end of this paper.

2) The word "quadrirectangular®, used by H. S. M. Coxerer [2], indicates the fact
that all four faces are right triangles.

3) Hereafter we shall denote a point set and its measure (surface area, volume) by
the same symbol; V=S eauals the length of a greatest circle of S.
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spherical triangle ABC of angles A=ea = nf/2e, B= = ntv/2e, C=m/2.
Equality holds only if N is regular and P,,..., P, are the centres of the

faces S;,..., Sr.

Let p be a plane touching the sphere S of centre O at the point A and
let P’ be the radial projection of P upon p. Consider the volume G of the
sphere of radius OP’ as a function G = G(AP) of the spherical distance A P.

Defining g(AP)= —;.- G(AP), the integral J‘ £(AP)dS extended over a domain
D

D lying on a hemi-sphere of centre A yields the volume of the cone of apex
O and base plane p which intersects S in D. Therefore, if in the theorem
mentioned above, N is the central projection of the edges of a convex poly-
hedron V containing S, while OP,,...,OP, are the normals of the faces
and g is the function considered just now, then

4
vz [eepus,
5

with equality only if V is circumscribed about S. On the other hand
Ig(A P)dS equals the volume of the quadrirectangular tetrahedron OAB’C’,
4

where AB’C’ is the radial projection of the right spherical triangle ABC
upon the plane p. Thus, in order to obtain the desired estimating formula

for V in terms of S, f,e, v and the space-constant, we have only to compute
the last integral.

Uy

B > 5’

Introducing on S spherical polar coordinates ¢— AP, ¢ =< CAP and
putting S=4nh? the area element becomes

dS=hsin %dpdtp.
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Hence the volume T of the tetrahedron OAB’'C’ is given by

a e
-} o . @
T—EJGJS——“4“hnIJG sin dedg,
P | 0

where o — AP, denoting by P the point of intersection of the great circle
AP and the side CB. We have

¥ it
cot A = cot } COS P,

where the side b= AC is given by

We have now to express the volume G of the sphere of radius R= AP’ as
a function of ¢. Denoting the curvature of the space by ¢,

7
G=—=(2)cR—sin2)cR
ya¢ VeR—sin2J/cR)
and
cot JeR = cot Vcr-cos -,
where r==0A denotes the radius of S*).
Introducing in the integral

0
/ =J'G sin %dp
0

the new variable R, we obtain

_ ah [ 2VcR—sin2VcR
~ ccot VErJ’ sin’/c R

where R— OP’, P’ being the intersection of OP and B'C’. Since R is
given by

/ dR,

cot)/cR= cot)/cr-cos

SIS

]

b3

—c8

(sinh 2 =¢cR—2V=¢R) and

4) The above formulae are equivalent to G=

coth —cR = coth V—crcos-f? ’
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we find in virtue of the relation

H

2(xcotx)'=2(cotx— = )zsm2_x;—2x
sin x sin’x

e ——————[VcR cot V_R] —Lh(r—l?cos Ve o).

Vc‘cot Ve cot er

Expressing R and o in terms of ¢ and applying the notation

b sine

fp=gec h~ cosp’

we get
I/ — ein?
'rh ;l ,"ffs_‘f__ arc tan (tan Ver—2 F—sn qp)!

— sin*g cos ¢

Hence, finally® ),
Vi — sin’ t,o)( de.

1 (V= S¢
AL J"cr po —-——-—arctan[tan cr
2)¢ 'l V& — sin’ fe cosg
We recapitulate our result in the following theorem®):
If in a three-dimensional space of constant curvature ¢==0 a convex

polyhedron having f faces, e edges and v vertices contains a sphere of radius r,
then its volume V satisfies the inequality

afi2e
L VE—sin®
V= 2—8, [ ;F’Er— H,—_-ms_____——“_'i——— arc tan (tan Ver LM)! d
Ve, V k*— sin*¢ cosgp J\
0
where
sin g}[
k= ;
cos s
2e

Equality holds only for a regular polyhedron circumscribed about the sphere.
Making use of the relation

4 1
x—/4arc tan-—tan x .
A 1—22

lim . = —
a-pl) x‘ 34‘.!
%) E. g. in case ¢ =—1 we have
cos k2—sin®
2. T..J L4 ar tanh [tanh r V—____tp ] dg—ar.
I(k‘l—sm— cosy

%) This theorem can be extended by suitable definitions to star polyhedra. Cf. [4].
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we get in the limiting case ¢ —0
afl2e
2er® [ K— A 2er“ nf
V=— - R cos“zp (K — l)ta ‘
0
This is just the inequality for Euclidean polyhedra mentioned in the intro-
duction.
Let us still remark that the edge r= OA of the tetrahedron 7= QAB’C’
can be expressed in terms of «, # and the third non-right dihedral angle y
of 7, i.e. the angle at B'C’. In fact, in the right triangle OAC’ the angle
at C’ is just y, whilst the angle at O equals b/h. Consequentely

cos 7 sin & cos y
cos|er= e
N Vsin’e—cos?g
sin 7

Eliminating r by means of this relation from the above formula for 7, we
obtain the volume 7 in terms of «, 8 and 7, i. e. an explicit formula for the
functions of SCHLAFLI and LOBATSCHEFSKY. This formula can be used for
numerical computation, though in the applications to the theory of regular
polytopes and honeycombs it is largely superseded by the series given by
COXETER [I].

As an example we compute the volume of the characteristic tetrahedron
(see [2], p. 284) of the regular star-polytope {3, 3,5/2}, which is a quadri-
rectangular spherical tetrahedron (¢ = 1) of angles e = /3, 8= 7/3, y = 27/5.

We have k= |/3 and cosr=l/ % sin 18°, whence

I} — i i
r——I vt o arc tan (tan r M‘—?—) de.

J/3—sin’y cos @
Substituting x =sing¢ and writeing for abbreviation
3—x
arctan(tanr-. W]
da= =3
we obtain
V3i2

2T=%r— f F(x)dx.

Making use of SiMsON’s formula

JT

2T~ r— V3 F(0)+4F(V3J-|-F( )t=0,52246---.
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The honeycomb {3, 3,5/2} is made up of 14400 such fetrahedra, on

account of which the density’) d of it is given by

14400 T
d= ——2:"?——- ~~ l%, 6.
I'he exact value of 4 is 191.
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) d is the number of times the honeycomb will cover the (spherical) space, i. e

the surface of a 4-dimensional unit sphere.



