Sur les espaces à connexion affine localement euclidiens.

Dédié à la mémoire de T. Szele.

Par G. VRĂNCEANU à Bukarest.

ELIE CARTAN a montré 1) qu'un espace de Riemann V_n localement euclidien qui est en même temps simplement connexe et normal (complet) est globalement equivalent à l'espace euclidien E_n . Je veux montrer de quelle manière ce théorème s'étend aux espaces à connexion affine analitique localement euclidiens et puis je vais donner une démonstration plus directe du théorème de Cartan.

Soit donc $A_n(x^1, ..., x^n)$ un espace à connexion affine $\Gamma_{jk}^i = \Gamma_{kj}^i$ localement euclidien. Cela veut dire que le système d'équations

$$\frac{\partial^2 u}{\partial x^j \partial x^k} = - F_{jk}^s \frac{\partial u}{\partial x^s}$$

est complètement intégrable. J'ai montré 2) que la solution u de ce système est une fonction analytique dans chaque voisinage D où Γ^i_{jk} sont des fonctions analytiques et si l'on prend n solutions $u^i(x^1, \ldots, x^n)$ le déterminant $|\partial u^i/\partial x^j|$ est différent de zéro dans D s'il est différent de zéro dans un point P_0 de D. Dans le système de variables u^1, \ldots, u^n les composantes de la connexion de l'espace A_n sont toutes nulles. Nous disons que les u^1, \ldots, u^n sont pour A_n des coordonnées cartésiennes même si la transformation de variables $u^i = u^i(x^1, \ldots, x^n)$ n'est pas biunivoque.

Il en résulte qu'étant donné un espace A_n analitique localement euclidien dans une voisinage D, il en existe de coordonnées cartésiennes valables dans D.

Supposons maintenant que l'espace A_n est défini comme une variété différentielle globale par un ensemble de voisinages $V, V', \ldots, V^{(p)}, \ldots$ Il en résulte que dans chaque voisinage on peut introduire des coordonnées cartesiennes $u^1, \ldots, u^n; u'^1, \ldots, u'^n; \ldots$ Quant au passage des coordonnées u^i aux coordonnées u'^i dans la région commune aux deux voisinages V, V', il se fait par une transformation linéaire. On peut donc changer les coordonnées dans V' de façon que ce passage soit donné par les formules $u'^i = u^i$. Donc

¹⁾ ELIE CARTAN, Leçons sur les espaces die Riemann, Paris, 1951, p. 62.

²) G. Vrănceanu, Lecții de geometrie diferențială, vol. II, Bucarest, 1951, p. 350-353.

au deux voisinages V, V' correspond dans l'espace euclidien $E_n(u^1, \ldots, u^n)$ une certaine région connexe. De même on peut s'arranger de façon que dans la région commune de V' et V'' nous ayons $u''^i = u'^i$, mais on ne peut plus en général avoir $u''^i = u^i$ dans la partie commune de V et V'' si ces deux voisinages ont elles aussi une partie commune. Il est certainement ainsi si cette partie commune appartient en partie aussi à V'. Donc, si chacune des trois voisinages V, V', V'' a des points communs avec les deux autres, on peut s'arranger de façon que dans les parties communes la transformation des coordonnées soit l'identité, donc ces voisinages peuvent s'arranger dans l'espace euclidien E_n de façon qu'à chaque point d'un de ces voisinages il en correspond un seul point dans E_n .

Nous allons voir que si l'espace A_n est simplement connexe et localement euclidien on peut s'arranger de façon que dans les parties communes des voisinages $V, V' \dots, V^{(p)} \dots$ la transformation de coordonnées cartésiennes soit toujours l'identité.

Soit W_0, \ldots, W_q , une suite de voisinages dont deux termes consécutifs ont une partie commune. On peut imposer de proche en proche à W_q les coordonnées cartésiennes de W_0 . Soit (C) une courbe continue qui unit un point P_0 de W_0 et un point P de W_q et qui traverse tous les voisinages W_0, \ldots, W_q . Si l'on déforme par continuité la courbe en conservant les extrémités, il peut arriver qu'à un certain moment la courbe quitte un des voisinages W_1, \ldots, W_{q-1} , par exemple W_1 . Soit R_1 le point frontière de W_1 qui est le dernier point de (C) avec W_1 . Le point R est contenu dans un voisinage W_1' de R_1 et R_1' a évidemment une partie commune avec R_1' , donc on peut imposer à R_1' les mêmes coordonnées cartésiennes de R_1' donc de R_2'

Étant donc donné une courbe (C) qui unit un point P de W_0 et un point P_0 de W_0 et si l'on considère la courbe (C) couverte d'un certain nombre de voisinages, on peut imposer à ces voisinages le même système de coordonnées cartésiennes et ce système ne varie pas par une déformation continue de la courbe (C) qui conserve les extrémités.

Il en résulte le théorème :

A chaque point P d'un espace $A_n(x^1, ..., x^n)$ localement euclidien et simplement connexe correspond dans l'espace euclidien $E_n(u^1, ..., u^n)$ un seu! point.

L'espace A_n étant simplement connexe, il est évidemment possible qu'à un point P de E_n il en correspond plusieurs points de A_n et qu'il y en a des points de E_n qui n'ont pas des correspondants dans A_n , ce qu'on peut voir sur des exemples.¹)

¹⁾ G. VRĂNCEANU, Leçons de géométrie différentielle, (Bucarest, 1956.) chap. VI. — Pour une bibliographie sur les espaces sulocalement euclidiens voir aussi: L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Ann. of Math. 62 (1955), 139—151.

Si l'espace A_n est un espace V_n à métrique définie positive, la première possiblité ne peut pas se présenter car si M_0 , M_1 sont des points de A_n correspondants à des points P_0 , P_1 de E_n , la distance M_0M_1 dans V_n est égale à la distance P_0P_1 dans E_n , et si la seconde est nulle la première est aussi nulle.

Donc pour un espace V_n localement euclidien, simplement connexe, à métrique définie positive la correspondance entre les points de V_n et E_n est biunivoque.

Supposons maintenant que l'espace V_n est complet, donc que chaque suite infinie de points M_0, \ldots, M_q, \ldots , dont les distances, dans V_n à un certain point O sont bornées, possède un point limite M appartenant à V_n . Supposons alors que P est un point de E_n qui n'a pas de correspondant dans V_n et soit P_0 un point de E_n correspondant à M_0 de V_n . Sur la droite P_0P de E_n il y aura un point Q qui sépare les points qui ont un correspondant dans A_n de ceux qui n'ont pas. Considérons alors une suite de points $P_0, P_1, \ldots, P_{\lambda}, \ldots$ tendante vers Q: les points correspondants $M_0, M_1, \ldots, M_{\lambda}, \ldots$ tendent vers un point M qui correspond à Q et le point M appartient à V_n car les distances M_0M_i sont respectivement égaux aux P_0P_i qui sont évidemment bornées. Il existe donc un voisinage de M dans V_n qui se transforme dans un voisinage de Q dans Q0 n'ont pas des correspondants dans Q1. Donc le théorème de Cartan est démontré.

(Reçu le 10 octobre 1955.)