On a problem in set theory.

To the memory of Professor Tibor Szele.

By G. FODOR in Szeged.

Let E be a given non countable set of power m and suppose that there exists a relation R between the elements of E such that for any $x \in E$, the power of the set H(x) of elements $y \in E$ ($y \neq x$) for which xRy holds, is smaller than a given cardinal number n which is smaller than m. Two distinct elements x and y of E are called *independent* if neither xRy nor yRx holds. We say that a subset of E is a *free* set if any two points of this subset are independent. Let Z(x) denote, for every $x \in E$, the set of $y \in E$ ($y \neq x$) for which yRx holds; further, let Z[F] denote, for every $F \subseteq E$ the set $\bigcup_{x \in F} Z(x)$.

The following problem is due to RUZIEWICZ [1]:

Does there always exist a free subset of power m of E?

The answer to this problem is affirmative if $n = \aleph_0$ and m is either of the form 2^q or of the form $\aleph_{\alpha+1}$ [2], [3], and also if m is a regular cardinal number or if m is a countable sum of cardinals smaller than m [4], [5], finally, in the general case, assuming the generalized continuum hypothesis [6].

We prove the following

Theorem. If m is a singular cardinal number and if for every $x \in E$ the power of the set $Z(x) = \{y \in E : yRx\}$ is smaller than m, then the answer to the problem is affirmative.

PROOF.¹) Let φ be the initial number of \mathfrak{m} and φ^* the smallest ordinal number ψ for which φ is confinal to ψ . There exist regular cardinal numbers $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_{\xi}, \ldots (\xi < \varphi^*)$ such that $\max{\{\mathfrak{n}, \bar{\varphi}^*\}} < \mathfrak{m}_{\xi} < \mathfrak{m} \ (\xi < \varphi^*), \ \mathfrak{m}_{\alpha} > \mathfrak{m}_{\beta}$ for $\alpha > \beta$ and

$$\mathfrak{m} = \sum_{\xi < \varphi^{\bullet}} \mathfrak{m}_{\xi}.$$

¹⁾ The proof is similar to the proof of a theorem of Dushnik, Miller and Erdős. ([7] p. 606, Theorem 5,22.)

Define the free sets N_{η} ($\eta < \varphi^*$) by transfinite induction as follows. Let M_1 be an arbitrary subset of power \mathfrak{m}_1 of E. Since \mathfrak{m}_1 is regular and $\mathfrak{n} < \mathfrak{m}_1$, by the result of S. PICCARD [4], M_1 contains a free subset G_1 of power \mathfrak{m}_1 . Let $G_{1\xi}$ be the set of elements x of G_1 for which $\overline{Z(x)} \leq \mathfrak{m}_{\xi}$. It is obvious that

$$G_1 = \bigcup_{\xi < \sigma^{\bullet}} G_{1\xi}.$$

Since \mathfrak{m}_1 is regular and $\overline{\varphi}^* < \mathfrak{m}_1$, there exists therefore an ordinal number $\xi_1 < \varphi^*$ such that the power of $G_{1\xi_1}$ is \mathfrak{m}_1 . It is obvious that the power of the set

$$Z[G_{1\xi_1}] = \bigcup_{x \in G_{1\xi_1}} Z(x)$$

is not greater than $m_1 \cdot m_{\xi_1}$. Put

$$N_1 = G_{1\xi_1}$$
.

Let α be a given ordinal number $1 < \alpha < \varphi^*$ and suppose that the free set N_{ξ} is defined for every $1 \le \xi < \alpha$ such that $\overline{N}_{\xi} = \mathfrak{m}_{\xi}$ and $\overline{Z[N_{\xi}]} < \mathfrak{m}$. Since $\alpha < \varphi^*$, we have that the power of the set

$$E_{\alpha} = E - (\bigcup_{\xi < \alpha} (N_{\xi} \cup Z[N_{\xi}]),$$

is m. Let M_{α} be an arbitrary subset of power m_{α} of E_{α} . Let now N_{α} be defined starting from M_{α} in the same way as N_1 is defined starting from the set M_1 .

Put

$$B_{\xi} = N_{\xi} - \bigcup_{\gamma < \xi} (\bigcup_{x \in N_{\gamma}} H(x)) \qquad (\xi < \varphi^*).$$

By the hypothesis $\overline{H(x)} < n$ and $\max \{n, \overline{\varphi}^*\} < m_{\eta}$ for every $\eta < \varphi^*$. It follows that

$$\overline{\bigcup_{x \in N_{\gamma}} H(x)} \leq \mathfrak{n} \cdot \mathfrak{m}_{\gamma} = \mathfrak{m}_{\gamma}.$$

Since $m_{\gamma} < m_{\xi} (\gamma < \xi)$ and $\bar{\xi} < \bar{\phi}^* < m_{\xi}$, we have by the regularity of m_{ξ} that

$$\overline{\bigcup_{\gamma<\xi}(\bigcup_{x\in N_{\gamma}}H(x))}<\mathfrak{m}_{\xi}.$$

Consequently $\overline{\overline{B}}_{\xi} = m_{\xi}$. Let

$$B = \bigcup_{\xi < \varphi^{\bullet}} B_{\xi}.$$

It is obvious that $\overline{\overline{B}} = m$.

Now we prove that B is a free set. Indeed, let y and z be two distinct elements of B. If $y \in B_{\alpha}$ and $z \in B_{\alpha}$ for some $\alpha < \varphi^{\bullet}$, then it follows, by the definition of N_{α} and the relation $B_{\alpha} \subseteq N_{\alpha}$, that y and z are independent. Let now $y \in B_{\alpha}$ and $z \in B_{\sigma}(\alpha \neq \sigma)$. Obviously we may suppose that $\alpha < \sigma$. It follows from

$$B_{\sigma} \subseteq E_{\sigma} = E - \bigcup_{\xi < \sigma} (N_{\xi} \cup Z[N_{\xi}])$$

that z non Ry. On the other hand, we have by the equality

$$B_{\sigma} = N_{\sigma} - \bigcup_{\xi < \sigma} (\bigcup_{x \in N_{\xi}} H(x))$$

that y non Rz. Thus the set B is free, and so our theorem is proved.

Bibliography.

- S. Ruziewicz, Une généralisation d'un théorème de M. Sierpiński, Publications Math. de l'Université de Belgrade 5 (1936), 23—27.
- [2] W. Sierpiński, Sur un problème de la théorie des relations, Fund. Math. 28 (1937), 71-74.
- [3] D. Lázár, On a problem in the theory of aggregates, Compositio Math. 3 (1936), 304.
- [4] SOPHIE PICCARD, Sur un problème de M. Ruziewicz de la théorie des relations, Fund. Math. 29 (1937), 5—9.
- [5] Sophie Piccard, Solution du problème de M. Ruziewicz de la théorie des relations pour les nombres cardinal $m < \aleph_Q$, Comptes Rendus Varsovie, 30 (1937), 12—18.
- [6] P. Erdős, Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950), 133-137.
- [7] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.

(Received October 13, 1955.)