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1. INTRODUCTION. Let ¢ =p" and m|q+ 1. Consider the equation
(1.1) §+-+E8=1.

FAIRCLOTH [1] has proved that N’, the number of non-zero solutions of (1.1)
with & € GF(¢), satisfies
(1.2)  ¢N'=(@—1){(mg—g—1)+(m—1) (—g—1)""}/m.
The proof makes use of the generalized Jacobi—Kummer cyclotomic function
and in particular of a theorem of MITCHELL [2].

If N denotes the fofal number of solutions of (1.1), then it is easily
verified that (1.2) is equivalent to
(1.3) ¢'N=¢"—(—9)'+((m—1)'—(=1)") (¢" —g—1)/m.

In the present note we determine the number of solutions of the more
general equation
(1.4) el + -t albl =ea,

where m|g+1 and a;, € GF(¢®), a;==0.

Let y denote a generator of the multiplicative group of GF(q*) and let
A; consist of the numbers y™+, j=0,..., ((¢*—1)/m)—1; i=0,..., m—1.
Also let s; denote the number of coefficients ax € A;, so thats,+ «++ 4 Sm-1=S5.
Then we prove the following

Theorem 1. Let N(&) denote the number of solutions of (1.4). Then
l'f @ € Ax

m-1
(1.5) ¢N@ ="+ (m—1Y*(=1) % —¢'(g+ 1)m 3, (m— 1) (—1)"™,
while for ¢ =0 .

m-1
16 CNO=+¢ @ —1)m S (m—1(—1)".
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It is easily verified that when @¢,=---=e,=a=1, (1.5) reduces to
(1,3). For s=2 compare [3, Theorem 2].

2. Let x(a) denote a character of the multiplicative group of GF(g?)
satisfying y™ = x,, where x, is the principal character. Put
2n-1

@.1) (@) =emor, ta)=3 o
and define
(2.2) (=2 2@ e (@),

the summation extending over all numbers of GF(g?.
Let 6 € GF(¢°), 6¢ GF(g). For p>2 we may assume that 6°=—6.
The following lemma holds.

Lemma.

2
@.3) T(")zigx@ (p>2)

(p=2).

This result is due to STICKELBERGER [4, p. 340]. For completeness we
give the following simple proof.

(i) p>2. Let e =a+ b6, where a, b€ GF(q). Then by (2. 1) e(a)=e(a).
Thus (x)= fl?";g(ﬂ +b6)e(a+ b6) =“§x(a + b6)e(a).

Since for a € GF(g), a==0,
a'e-im — gle-1) @H)m — |

it follows that y(«)=1. Consequently
()= 2 200+ 2 2@+b6)e(@) = —1) 2(6) 2 2(1+56) Ze(@) =

=@—D2O— ;=7 2@+ —@— )0 + = 2 260 =42().
a0

(ii) p==2. Let 6°+6=c==0; also let e,(@) denote the function (2, 1)
for the GF(g). Then for e =a+ b6, a?+a=bc so that e(e) = e,(bc). Thus

() =2 2@+b6)e(b) = 2 2@+ 2, x(a+b6)ex(be) =

1
7 3 2@+ b0)—
a, b
b0

=gq—1+ ;x(a+6)b%eo(bc)= g—1—

1
=g—1+ ﬁ;x(“)=Q-

This completes the proof of the Lemma.
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3. Put
(3.1) S(a)= ;e(aﬁ").
Then it is familiar that
(3-2) S(@) =2 #@)(z) (@=0).
Then by (2. 3)
(3.3 $@ =92 2(a) 20) =9 2 2(a67) (p2).
Since
m (e € A)
(3.4) Zx‘ 1("):I 0. (otherwise),
it is clear that for p=2
g(m—1) (@67 € Ay)
(3.5) S(“)"‘“:l g (otherwise).
Similarly for p==2 we get
g(m—1) (x€A)
(3.6) S(a)=’ —q (otherwise).
4. Since
=T (e=0)
a et @D= 1 0 (¢0)

it follows that N(«), the number of solutions of (1.4) satisfies

-----

—Se(—af) 3 e(A@d + - +aE)= Se(—ah) 1I5@m—

=g +ﬂ%‘e(—-aﬁ'l) QS(a.-ﬁ'l).

Now assume first that p==2 and let s; denote the number of «;€ A..
Then by (3.3) and (3.4) we get

CN@=q"+¢ Ze(—af) [T 2 1(@b'6)=
4.2) —=g¥+ ¢ %e(-aﬁ" 6") g z%: ylaif")y=

m-1

=gt X 3 e(—af07) (m—1)7(—1)""
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Suppose now that « € A;. Let » be a fixed number of A; so that
e(—af'6")=e(—as'v'67"),
o el ) = Ze(—ar v 0
1 +m¢Z e(—aﬁ'16'1)=S(—av'16'l)=

' g(m—1) (@r'€Ay)
N (otherwise),

by (3.5). Thus (4.2) becomes

EN@=g*—g(g-+1)/m g (m—1y (—1)"% +

+of —ﬂ]w—n‘*(—lr* G+ m— 1 1)

—q @+ 1)/m ;(m—l)’f(—l)"a

This completes the proof of (1.5).
When « =0, (4.2) becomes

FNO=g e S S (m— (1) =

=q2'+q’(4*—1)!mg (m—1)(—1)"",
which proves (1. 6).
5. If we use the fuller notation
(5.1) N(®, 845 35-1)
for the number of solutions of (1.4), then it is evident that

(5.2) 2 N(E Sos.-es Sm-t) Ny toy . o oy tm-t) = N(@, So+ 1o, - Sm-1+Em-1)

+q—c
for arbitrary non-negative s;, #; such that s;+---+su =1, L+ - +taa=1.
When sy=::-=s,.1=0, we may define

N(;0,...,00=0 (z==0), N(0;0,...,0)=1,

which is in agreement with (1.5) and (1. 6) We then find that (5.2) holds
for all non-negative integral values of s;, f;. Indeed a further generalization
is possible. If we define N(e; s;,..., Sm- .) by means of (i.5) and (1.6) for
arbitrary integral values of s,,...,S.-1 then we can assert that (5.2) holds
for all s;, #;; in fact if we use (1.5) and (1.6) for complex values of the
parameters (with ¢'=e''%% (—1)'=e™, etc.) then (5.2) holds in this
case also. A direct proof is rather complicated. However the formula can be
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proved rapidly in the following way. Exactly as in the proof of Theorem 1,
we may show that

V@ S .y Sr) = S e(—af) g % (3:8),

where d; € A; but is otherwise arbitrary. Now employing (4. 1), (5.2) follows
immediately. This proves

Theorem 2. The function N(e; s,...,Sn-1) satisfies (5.2) for arbitrary
complex values of s, t;.
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