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On the convergence of series of independent random
variables.

To the memory of Professor Tibor Szele.

By ANDRAS PREKOPA in Budapest.

Introduction.

Let &,&;,... denote a sequence of independent random variables. In
the present paper two theorems concerning the convergence (regardless of the
order of summation) of the series

1) 3

k=1
are proved.
Troughout the paper I denote by § the set of all finite subsets and by
§ the set of all subsets of the set of natural numbers. Let

(2) g(A) =%§k

provided the series on the right converges with probability 1 regardless of
the order of summation. Let F(x,A) denote the distribution function and
f(t,A) the characteristic function of the random variable §(A).

Let 0<A<1, and let & denote a random variable. We say that Q(2) is
a A-qantile of § if PE=Q@A)) =4 and P(E= Q(4)) =1—A4. An arbitrary
A-quantile of the random variable E(A) will be denoted by Q(4,A).

In the literature many necessary and sufficient conditions are given
concerning the convergence of the series (1). These conditions are expressed
generally in terms of mean values, dispersions and characteristic functions.
In what follows such conditions are given in terms of the compactness of
certain sets of distribution functions and of the quantiles.
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§ 1. Preliminary lemmas.

In this § three lemmas are proved. The first two contain some asser-
tions relative to the set of random variables {&;, z2€ Z}, where Z is an arbti-
trary given set. Let F(x,z) denote the distribution function and f(t,2) the
characteristic function of the random variable &..

P. LEvy has introduced the notion of distance between two distribution
functions. The distance L(F;, F;) between F,(x) and F;(x) is defined as the
lower bound of the values h, for which

) Fi(x—h)—h = Fy(x) = Fi(x+h) +h.

It is known that the axioms of the metric space are fulfilled relative to the
distance L:

a) L(F, F;)=0 if and only if F,(x)=F,(x);

b) L(F,, F))=L(F,, F));

¢) L(F, F) = L(F, F)+L(F., F).

Let us consider the set & of all one dimensional distribution functions.
From what has been said it follows that & is a mefric space relative to the
distance L. According to (3), & is bounded and by Theorem 2 of [2], p. 42.
it is also complete. In Theorem 1 of [2], p. 38. it is proved, that the relation
L(F,, F)—0 holds if and only if F,(x)— F(x) at every continuity point of
F(x). From this fact it is easy to see that the space & is not compact. For
instance sequences of distribution functions can be given, which converge in
every point to 0. The first two lemmas give answers tho the question: under
what conditions is a subset & = {F(x, 2), z€ Z} of the space & compact?

To fixed values of 4, and z there corresponds generally not only one
Q(4, z), therefore the set {Q(4,2),z€ Z} is generally not uniquely deter-
mined.

Lemma 1. If to every 1, for which 0<A< 1, the quantiles Q(%,2)
can be chosen in such a way that |Q(4,2)| < K(&) for z € Z, where K(Z) is
independent of z, then the set &' is compact.

Conversely, if the set &' is compact, then to every i for which 0 < i< 1,
there corresponds a K(A) such that |Q(4,2)| < K (4) for every A-quantile Q(4, z)
of the variable &..

Proof of the first part. Let ¢>0,0<4<é¢ and x<— K(4). From our
hypothesis it follows that

F(x,2)=F(—K@),2)=PE<—K@R)=PE<QA2)=i<s
On the other hand if A>1—¢ and x > K(4), then we obtain

F(x,2) = F(K(4),2)=PE<K@A))=PE=Q42))=i>1—-

It follows that
F(x,2) =0 if x——o00,F(x,2)—1 if x—=4 00
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uniformly in z. Accerding to HELLY’s theorem we can choose a sequence
F(x, z;) which converges to a non-decreasing, left continuous function F(x)
at every point of continuity of the latter. By the preceding relation F(x)
must be a distribution function.

Proof of the second part. Obviously the relations

F(x,2)—=»0 if x——o>, F(x,2)—1 if x— 4
hold uniformly in 2. If 0 < &< 1, then there is a positive number K(¢) such that

F(x,2)<e if xé-—-—f—('z(ﬂ,

1—F(x,2)<e i xz—}(%.
In this case

— K(&) < Q(¢,2) < K(¢) for z€ Z,
as was to be proved.

Lemma 2. The set & is compact if and only if the characteristic func-
tions f(t,2),z€ Z are equicontinuous at t =0, i. e. if to every >0 there
corresponds a o such that

(4) [1— f(t,2)|<e if |t|<d.
Proof of the first part. Suppose that for a fixed pair & 0 of positive
numbers the relation (4) holds. In view of

sin x ) S 35
1—T>ﬁ if [XJ:—_I

we obtain

&> -—jl 1—f(t 2)|dt = —ij(l —e™) dtd F(x, z)

w

=_f(1— Si(?xdx)df'(x,z) = J (1— Sg'fx)dF(x.z)éill—oP( IE.-I>(%],

|T|.'>F

whence
F(—x,2)+1—F(x,2) < 10¢ if x>%.

To every « there corresponds such a d, therefore if F(x,2z) is a sequence
of &', Eim F(x, 2;) == F(x) at every point of continuity of the latter, where
=+ 0

F(x) is a left continuous function, then F(x) must be a distribution function.
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Proof of the second part. If & >0, then there is a number K such that
P(&|>K) <.

&
Let d=ﬁ- Then for |f| < d we have

1—12)=| | (1 —e=)aF(x,2)| ;5__[ |1 —eit|dF(x,2) =

it [ IxldFeo2)+2P(s]> K) <[tlK+ 5 <
|z| =K
Lemma 3. Let 7y, 7,,... denote a sequence of random variables for
which
P(lim 7, = o0) =1.

Then if 0<A <1 and Q(4,n) is a i-quantile of 7., we have
lim Q(4, n)==oo.

n—=m

ProOOF. Let L2,.. denote the event that
T > M.

lim P(Qm)=1,

n-=»=o

Since

there exists a number N such that if n > N,
P(R2me) > 1—A4.

Q(4,n) > m.
As m can be chosen arbitrarily, this implies the assertion of Lemma 3.

But in this case

Corollary. If the random variables §&,,§&,, ... are non negative and
there exists a number i (0 <A < 1) for which

Q@ A=K if AcS,
where K is a constant, then the series (1) converges with probability 1.

PROOF. By the zero-one law (see [3], p. 60.) either

P(Zm' &< oo)=1,

| ™1

P(é:&<oo)=l.

But now the first case is impossible because it would imply that for every 4
lim Q(4,{1,2,...,n}) = oco.

or
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§ 2. Necessary and sufficient conditions of the convergence
of the series (1).

In this § two theorems are proved.

Theorem 1. If the set {F(x, A), A€§} is compact, the series (1) con-
verges with probability 1 regardless of the order of summation.

Conversely, if the series (1) converges with probability 1 regardless of
the order of summation, then the set {F(x, A), A € 8} is compact.

Proof of the first part. Let us consider the sequence

Fla, D POrd1a2))s o o0 FOL T D s 005 BEY 004

Since the set {F(x, A), A € §} is compact, there is an increasing subsequence
n; of the natural numbers with the property that the sequence

F(x,{1,2,...,m})

converges to a distribution function F(x) at every point of continuity of the
latter. It follows that if

1= [ e=ar),
then .
tim T7 1, 0)=£0.
Since the sequence
176 o)
is non-increasing, we obtain that
11176, )= /)

Since f(t) is a characteristic function, there is a number 7 > 0 such that
|f(f)| >0 if |t| = T. . According to Theorems 2.7 and 2.6 of [1], Chapter
Ill, there is a sequence ¢;, ¢s,... of real numbers such that the series

é@—m

converges with probability 1 regardless of the order of summation. Therefore
it is sufficient to prove that

@
>lex| < ee.
k=1

Let us suppose that this is not true. In this case there exists a rearrange-
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L]
ment ¢, ¢,,... of the sequence ¢i,cz,..., for wihch either Zc;,,=—— +oo or
™ |

Zcq=—°°- It suffices to consider the first case as the second can be
k=1

reduced to the first by considering the variables {; = — &. Itt follows that

(5) g&kzé‘(&,‘—&k)ﬁ- é:(.‘fk-'oo if n — oo,

Let An={i1,i,...,i.}. By (5) and Lemma 3 we obtain that for every fixed
A0<i<) :

Q(4, Ay)— oo if n— oo,
But this contradicts our supposition that the set {F(x, A), A€§} is compact

because by Lemma 1 to every 4 (0 <4 < 1) there corresponds a number K(1)
for which

1Q(4, A)|=K().AES.

Proof of the second part. If the series (1) converges with probability
1 regardless of the order of summation then the series

o)
2 1= (k)|
converges uniformly in every finite #-interval (See [1], Chapter III, Theorem
2.7). Using the inequality
M—zize....2|=|l—2a|+|1—2|+ ... +|1—2]

valid for every sequence 2, 2, ..., 2, of complex numbers with the property
|z1|=1,|z|=1,...,Jz:| = 1, we obtain that

n—I 76, GiH) = ZN—F il

Let us put A= {j1,/s,...}. If r— oo, we obtain the following inequality:

© 1—f 1= 3 11—f6 D)= 3 11—16 (kD)

The series on the right of (6) is uniformly convergent, hence the continuity
of the terms implies the continuity of the sum. Since the relation (6) holds
for every A € 8, the characteristic functions f(f, A), A € 8, are equicontinuous
at t=0, and thus by Lemma 2 the set {F(x, A), A € 8} is compact, as it
was to be proved.

Corollary. If for every i (0 <4< 1) the quantiles Q (4, A) (A€J) can
be chosen in such a way that they are bounded, then the series (1) con-
verges with probability 1 regardless of the order of summation.
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Conversely, if the series (1) converges with probability 1 regardless of
the order of summation, then to every A (0 <i < 1) there is a K(A) such that

|Q(4, A)| = K1), A€S.
Proor. The assertion is an immediate consequence for Lemma 1 and

Theorem 1.
In the above corollary to Theorem 1 the condition implying the conver-
gence of the series (1) can be essentially reduced. This fact is contained in

the following theorem.

Theorem 2. Let us suppose that there can be found two numbers
A1, 42 for which 0 < 4, < 42 < 1, such that the quantiles Q(4,, A) and Q(4z, A)
can be chosen in such a manner, that the sets Q= {Q(4,A), A€§} and
Q:={Q(42, A), A€ §}are bounded. Then the series (1) converges with proba-
bility 1 regardless of the order of summation.

PRrROOF. Let K be such a number for which by choosing appropriately
the values Q(4:, A) and Q (42, A), we have

[Q(llﬁ A)l = Kr Q(lls A) € Ql
and

1Q(4, A)| =K, Q(4, A)€ Q.
for A€ . It follows that

sup P(|§(A)|> K) =sup P(§(A) <—K)+supPE(A) > K) =+ 1—A< 1.
AE§ AcY Ac§

It follows simply that
inf P(|E(A)|= K)=e>0.
Ac§

Thus
IimP(| & =K)=e>0.

-+ } =]

The last inequality, together with Theorems 2.9 and 2.6 of [1], Chapter III,
implies the existence of constants ¢, ¢2, ... which have the property that the
series

é (gk_’ck)

converges with probability 1 regardless of the order of summation. Applying
the same reasoning as in the proof of Theorem 1 it can be shown that

@™
Dlex] < oo,
R==|

because in the contrary case all the sets {Q(4,A), A€J)}, 0<i<1 were
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inbounded. Taking into account the equality

ZE‘]; s Z(gl'k_cr})+ ZCI}!
k=l k=1 k=1
we obtain that the series (1) converges with probability 1 regardless of the
order of summation. Hence Theorem 2 is proved.
Corollary. Let us suppose that the random variables §. are symmetry-
cally distributed. Then if there exisfsl#%sach that with a convenient choice

of the quantiles Q(4, A), the set {Q(4, A), A€J} is bounded, the series (1)
converges with probability 1 regardless of the order of summation.
PrROOF. The assertion follows from the fact that in this case O is a

%-quantile of §(A) for A€ §, hence the conditions of Theorem 2 are fulfilled.

REMARK. It is easy to see that the boundedness of only one set of
the type {Q(4, A), A€§} does not imply the convergence of the series (1).
For instance if the random variables & are equally and symmetrically distri-
buted, moreover P(§.=0) < 1, then the series (1) diverges for every ordering

of the terms, but 0 is a %-quantile of E(A) for A€S.

Finally / mention a problem. Let us suppose that the series (1) conver-
ges with probability 1 regardles of the order of summation. Let A,, A,,...

be a sequence of sets of & such that if B, = A+ As1+ -+, then I_Il B,=0.
By the inequality (6) it follows that e
E(A)=>0, if k— oo.

Does the ordinary limit of the sequence §(A:) exist with probability 1? If
the series (1) converges absolutely, then this is true, but the series (1) may
be convergent by every ordering of the terms and not absolutely convergent.
Such series is the following:

o 5_3“_511’;'_%_”2‘ 0=x=1.
n=1
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