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An elementary combinatorial theorem with an application
to axiomatic set theory.

In Memory of our self-sacrificing true friend, Tibor Szele.

By ANDRAS HAJNAL and LASZLO KALMAR in Szeged.

In the late SzELE we have lost not only a great algebrist but also a
master in combinatorial reasoning. His first paper’) deals with problems of
combinatorial character; but also his later papers are full of combinatorial
ideas.

Combinatorial theorems are, except the classic ones, seldom interesting
for their own sake; however, they often have interesting applications in diverse
branches of mathematics. in SzELE’s research-work, combinatorial ideas are
generally used to the solution of algebraical or geometrical problems.

In the present paper, we shall prove a combinatorial theorem of ele-
mentary character. The proof is very simple, indeed, almost trivial. However,
the theorem itself has an interesting application in axiomatic set theory, for
it makes possible to dispense with one of the axioms of the GODEL axiom
system for set theory.?)

1. Let us consider elements a, b,c,... of arbitrary character.®) Out of

1) Tisor Szere, Kombinatorikai vizsgalatok az iranyitott teljes graffal kapcsolatban
(Combinatorial investigations concerning the oriented full graph), Mat. Fiz. Lapok 50 (1943),
223—256.

2) See Kurr Goper, The consistency of the axiom of choice and of the generalized
continuum-hypothesis with the axioms of set theory, Annals of Math. Studies 8 (1940), 66
pages, especially pp. 3—6.

8) The elements a, b, ¢, ... may form a finite or an infinite set, or even a proper
class, i. e. a class which is not a set in the sense of the Neumann—BerNAYs—GODEL axio-
matic set theory (see J. v. Neumann, Eine Axiomatisierung der Mengenlebre, J. Reine Angew.
Math. 154 (1925), 219—240, and Die Axiomatisierung der Mengenlehre, Math. Z. 27 (1928),
669—752; PauL Bernavs, A system of axiomatic set theory — Part 1. J. Symbolic Logic 2
(1937), 65—77, Part 11, ibidem, 6 (1941), 1—17, Part lll, ibidem, 7 (1942), 65—89, Part IV,
ibidem, 7 (1942), 133—145, Part V, ibidem, 8 (1943), 89—106, Part VI, ibidem, 13 (1948),
65—79 and Part VII, ibidem, 19 (1954), 81—96; and Kurr Goépei, loc. cit. 2)). However,
the elements a, b, ¢, ... themselves have to be able to be elements of a set or class, there-
fore, they cannot be proper classes.
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these elements we form ordered pairs <a,a),<a, b>,...; we subjoin these to
the original elements and we form again ordered pairs such as <a,<a, b>>
or <<a, b>,<b,c>>, and so on.!) Every “iterated ordered pair” resulting thus,
the original elements as well as the uniterated ordered pairs included is cal-
led a complex.) Let be x,y,2,..., without or with subscripts, variables run-
ning through the complexes. Out of these variables we can form again
expressions such as <x, y>,<<{x, y>, 2> by (iterated) forming of ordered pairs;
also the variables themselves are regarded as expressions.’) Every expression
characterizes a particular form of complexes; e.g. all complexes are of the
form x, all complexes but (some of) the elements themselves are of the
form <x, y>, the complexes <a,a>, <b,b>,... but also <{{a, b>,<a, b>) and
{La,<{b,c>>, <a,<b,c>>> are of the form <x, x>, the complexes <<a,b), c>
and <<<a, b>, {b,¢c>>,<a,c>) are of the form {x, y>, 2).
The expressions

X, <X, Y2, <X, <P 200, <%, {3, <2, UD>), . ...
(also with any other variables instead of x,y,2,u,...) are called sequences;
they are denoted also by

3 M R YR G S Ve 5 S A ) NN
respectively. In other words, the sequence <x,...,Xx.> is defined for n=
=1,3,4,... by induction as follows:
1 <xl> =X
( ) <xls xh---:xn+l>:<x1, {Xs, ...,x,.+]>>.
The complexes x,, ..., X, are called the components of the sequence {x,, ..., Xu).
We note for subsequent application

(2) <xl! Xy Xay e ey Xn> =< Xy, Xgy {Xgy e 00y Xa)):
Indeed, we have by (1)
<x1! Xay X3y enn xﬂ>= <xl! <x‘£! X3y eony xu)) T

=<xll Xy X3y e v ey XuDDD> =< Xy, X3, X3y + + ) Xn D).

4) The case is not excluded that e. g. the ordered pair <a, b>- (or <a,<a, b>)) is one
of the original elements ¢, d,...; of course, in such case the subjunction of the ordered
pair in question to the original elements does not take place.

5) An exact definition of the notion of a complex is the following. Let us call each
of the original elements a complex of order 0; and, assuming defined the notion of a comp-
lex of order m for m < n, define a complex of order n (> 0) as an ordered pair <{x, >
where x and y, but not <x, y>, are complexes of an order less than n. Or, alternatively,
the class of complexes can be defined as the intersection of all classes containing the ori-
ginal elements as well as, together with x and y, the pair <x, y> as elements. (Both defi-
nitions involve some difficulty, in the case the original elements form a proper class, when
expressed in axiomatic set theory; however, this difficulty can be got over by appropriate
devices.)

6) 1. e. the notion of an expression can be defined analogously to that of a complex,
by giving to the variables x,y,z, ...,x;,... the role of the elements a, b,¢,...
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2. We consider operations such as

3) x =<y, x>
or

4) P> =LKy, X)

or

(5) {5, ),2> =42, X, 1);

in an operation any two expressions may stand on the lent-hand and right-
hand sides of the arrow. The operation (4), e.g., has to be interpreted as
applicable to any complex of the form <{x, y> ({<a, b>, a>, say,) and trans-
forming it into the corresponding complex <y, x>, where x and y denote, of
course, the same complexes as in <{x, y> (in our case, into <a, <{a, 6>>). Ope-
rations as (3), containing a variable on the right-hand side of the arrow
which does not figure on the left-hand side, are to be interpreted as one-
many transformations. E. g., the operation (3) is applicable to any complex
x and it transforms it into any complex of the form <{y, x> with the same
x and an arbitrary complex y; e.g., it transforms the complex <a, 6> into
any of the complexes <a,<a, b>),<b,<a, b)), <{c, <a,b)....,{a, a,{a, b>>,
Ka, b, <a, b>), ..., {a,<a,a>, {a/b)),... (An operation containing a vari-
able on the left-hand side which does not figure on the right-hand side is a
single valued transformation unless it contains another variable on the right-
hand side not figuring on the left-hand side. E. g., the operation

X pp—x
transforms any complex which is an ordered pair into its first component,
whereas the operation
X—y
transforms any complex into any other complex or itself.)

Given some primary operations, we may obtain further ones as derived
operations. E. g., given (4) and (5) as primary operations, we may transform
any complex of the form <{<{x,y>, 2> by means of (4) into the complex
{2, {x, >0, i.e. {z,x,y> (taking {x,y> for x and z for y in (4)), which in
turn may be transformed by means of (5) (taking z for x, x for y and y
for 2) into <y, z, x>. Hence, we get

((x, » Z> -2, I>

as a derived operation. One more application of the operation (5) (taking y
for x, z for y and x for 2) shows that we obtain also

X 0 20—, 3, 2,
<<x’ VW, — <x’ (y,.z»

as a derived operation.
D 28
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Generally, let be given a finite number of primary operations E,—
—F,,...,Ex—F;: (where E,F,,...,E., F., as well as E,F,G,H, G, G,,
..., G, in the sequel, denote arbitrary expressions). Then, we call G—H a
derived operation, provided for appropriate expressions G,, G.,..., G,, the
first and last of which coincide with G and H, respectively, each of the ope-
rations G,—G,,G,—G;,...,G..;— G, can be obtained form one of
E,—F,,...,E.—F. by replacing some of the variables by appropriate ex-
pressions, of course, all occurrences of the same variable in a given opera-
tion (E,— F,,..., or Eix— F:) by the same expression. (In the above example,
we have E,=<x, 0, Fi=, O, E.={&X,9,2D, F.=<{,x,y>, 6=6,=
:—"<<x1y>: Z>, G.— (z,(x,y)>=<z,x, y>r G‘-l=<yr 2, x>: G,=H =<x!y! Z>=
=<{x,{y,2)); G,— G, arises from E, —F, by replacing the variables x and
y by the expressions <x,y> and 2, respectively, G,— G, from E,—F, by
replacing the variables x, yand z by the expressions 2, xand y, respectively,
finally G;— G, from E;— F, by replacing the variables x, yandz by the
expressions y, zand x, respectively.) It is advisable to consider every opera-
tion of the form G — G a derived operation irrespective of the primary ope-
rations ; such an operation is called a frivial derived operation.

3. Given a finite number or an infinity of operations, we can ask for
a system of primary operations, as simple as possible and eventually satis-
fying some additional conditions, such that each of the given operations can
be obtained from them as a derived operation. This question is analogous
to that of finding a system of generators, as simple as possible, for all per-
rmutations of given elements, or for all even permutations, or generelly, for
a system of permutations forming a group (hence, apart notation, for an ar-
bitrary finite group); and indeed, it contains these latter questions, suitably
formulated, as particular cases.

The problem of the simplification of the axiom system of abstract set
theory (see section 7 of this paper) leads to another question of this kind,
namely to that of finding a system of primary operations, none of which con-
taining a variable on the left-hand side which does not figure on the right-
hand side of the same operation, such that each of the operations

(6) . S IR,
and
(7) <xP!xq>""<xls----xn>

(n=12,...; pg=1,...,n, p==q) can be obtained from them as a deri-
ved operation; if there are such systems of primary operations, we try to find
one of them, as simple as possible, We show that the operations (3), (4)



An elementary combinatorial theorem with an application to axiomatic set theory. 435

and (5) form a solution of this question;?) i.e., we prove the

THEOREM. Given (3), (4) and (5) as primary operations, every operation
of the form (6) and (1) (n=1,2,...; p,g=1,...,n, p¥q) can be obtained
as a derived operation.

Proor. First we show that we can obtain

®) <X 9> =<2, %, 1,

© (X, 9> —<x%,2, 9>

and

(10) %0 —<X,¥,2>

as derived operations. Indeed, we get by (3)%)

(8) <X, 90> —=<2,{x,¥>>,

i.e. (8) as a derived operation. Further, we get first by (8)°)
(11) <P X>—<2,¥,%,

then by (5)

(12) 2, ¥, x> —<X,2, >

as derived operations; hence, by (4), (11) and (12),”) the operation (9) too.
Finally, we get by (5)

(13) 2, %, 1> =<y, 2, x>
and
(14) 0,2, —+4x,9,2)

as derived operations; hence, by (8), (13) and (14), the operation (10) too.

Now, in order to prove our theorem, let n,pandg be given natural
numbers, 1=p,q=n, p=3=q (hence n = 2). It suffices to show that (7) can
be obtained as a derived operation. Indeed, we get by (3),

(15) Xp — {Xg, Xp)

7) Probably this is the simplest system of primary operations meeting the above
demands ; we propose as a problem to prove this on the basis of a reasonable definition
of simplicity. A somewhat more complicated system of primary operations, consisting of
(3), 4), (5) and
(%) X ) D>LX,2,
has been used for the same purpose by GopeL (loc. cit.2), especially proof of Theorem Mi,
pp. 9—10; see also section 7 of the present paper).

8 I e, (8) arises from (3) by replacing some of the variables (in this case, x and y)
by appropriate expressions (in this case, (x, y> and 2, respectively). Similarly later on.

9) Here we treat (8) as if it were a primary operation instead of a derived one, and
later on, we shall do the same with other derived operations too. This is allowed for by
replacing in a derived operation some of the variables by arbitrary expressions, we get
obviously a derived operation again; and together with G; > Gy, Gs > Gg,...,Gu-1+ Gy,
the operation G; > G, is a derived operation.

0) L e. the operations (4), (11), (12) and (9) are of the form G, Gs, Gy~ Gy, ...,
G,-1~+>G,, and G;» G,, respectively (in this case, n==4).
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(where ¢ may be chosed arbitrarily from the numbers 1, ..., p—1,p+41,...,n)
and by (4)

(16) {Xq, Xpp — {Xp, X

as derived operations; hence, supposed the same for (7), we get by (15),
(16) and (7) also the operation (6) as a derived operation.")

Also it suffices to consider the case p <gq in (7); for if p > g, we have
q < p, hence, provided the case p < ¢ is settled already, we have

17) {Xay Xpp —> Xy ov vy Xn
as a derived operation and, by (4), the same is true for the operation
(18) <xm x1>_"<xth xp)

and hence, by (18) and (17), for the operation (7) too.
Now, suppose 1=p<q¢ =n. In case ¢ <n we get by (10)

. <x1’! xﬂ) —_ <xp: Xg, <x¢+1, suny x..,))
PR 3

(19) Xy o Xo) =4 {p, Xy Xgsiy o+ 0r X

(see (2)) as a derived operation. In case ¢ =n, (19) (which is of course to
be read {xp, x;> — <{X,, X»> in this case,) is a trivial derived operation. In case

p<q—1 we get by (9)
{Xpy {Xgy Xgi1y « « 0 XD —> Xy Xg-1, {Xgy Xgi1, + + o) XnDD,
i. e. (see (1) and (2))
(20,) {Xpy Xqgs Xgt1y « « oy Xn) = {Xp, Xg-1, Xg, Xgt15 + + -y Xn)
further
(Xpy {Xg-1) Xgy X1+« Xup) = {Xp, Xg-2, {Xg-1, Xg, Xgi1, + - s Xn)D;
i. e. (see (1) and (2))
(20,) {Xpy Xg-1, Xqy Xgt1, - + 5 Xn) —> {Xp, Xg-2, Xg-1, Xq, Xgi1, - - » XnD,
and so on, finally
Xy X1y Xpi8s o+ o9 Xgp Xgbly o 559 Xn) —>

(20e-»-1) — {Xp, Xp+1, Xps2, Xpi3, - -+ Xg, Xgs1, « + ) Xn)

11) Instead of using (16), we could, by interchanging p and g in (7), refer to
) (Xgs Xpd + <Xy v ey Xnd
as a derived operation. Our argument fails in the case n=1, hence, p=1; howewer, in
this case (6), i. e.

Xy <Xy,

i. e. x; -+ x; (see (1)) is a trivial derived operation. Of course, we could show (6) to be a
derived operation also directly, by using an analogous (but somewhat more simple) method
as for (7).
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as derived operations; hence, by (19), (20,), (20,), ..., (20,-,-1), the operation

(21 Xpy Xg) =+ Xy, Xpy1s + o oy Xn)

too. In case p=qg—1, hence g=p-+1, (21) is the same as the derived

operation (19). '
In case p=1, the derived operation (21) is already the same as (7)

On the other hand, in case p >1, we get by (3)

(J.’P, xﬁ],. .y xn>_"<xp..l,<xp, qu.], “eey I..>>,

i. e. (see (1))
(22) Xy Mpityiiap Xy mm Clact Xps Xoths s s ip Xl
further
o e N TR iy, 30T T R . SRR, b I PR By &
i. e. (see (1))
(22, g1y Xps Xpt1s + oy X> > CXn-35 Xp=1, Xpy Xpt1y o' 69 X
and so on, finally
v AR R ¢ T ARG, SR NUPERY. &, T A A5 NEMAR. NG MOTIER, b,

as derived operations; hence, by (21),(22), (22,), ..., (22,-,), the same is true
for the operation

{Xpy XgD = X1y Xay X3y ¢ oy Xpy Xpily « o 0y XDy
i. e. (7) too, which finishes the proof.

4. The question to which the theorem of the preciding section gives
an answer arose, as mentioned, from the problem of axiomatization of ab-
stract set theory. As well known, the axiomatic foundation of set theory has
been made necessary by the set theoretical paradoxes which show that the
principle according to which to any property @ there is a set containing
those and only those elements which have the property @, generally used
in the pre-axiomatic or naive set theory, leads to contradictory consequences.
In the first system of axioms of set theory. due to ZERMELO,") this principle
is replaced by the “Axiom der Aussonderung”, postulating, for every set s
and every well-defined property (‘“definite Klassenaussage”) @, the existence
of a set sg containing those and only those elements which, besides having
the property @, belong to s. ZERMELO did not say exactly, what is to be
meant by a well-defined property. Howewer, in all cases where the axiom
in question has been used in the proof of a theorem of set theory, the pro-
perty @ can be written as a formula, containing a free variable x for the set
@ is a property of, built up from propositions of the form y€z and y=z
by means of the logical operations (conjunction, disjunction, implication,
equivalence and negation) and the quantifiers (universal or existential quan-

12) Ernst Zermero, Untersuchungen iiber die Grundlagen der Mengenlehre 1, Math.
Ann. 65 (1908), 261—281.
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tifier); here instead of y and z any set variables may stand (viz. x, or vari-
ables bound by quantifiers, or free variables other than x, denoting sets on
which the resulting set s¢ depends). Hence, for the purpose of proving set-
theoretic theorems, the definition, due to SKOLEM,") of the notion of a well-
defined property suffices, according to which a well-defined property is defi-
ned as a property which can be written as such a formula.

Using SkoLEM’s definition, the Axiom der Aussonderung amounts to an
infinity of purely set theoretic axioms (i. e. not containing notions different
from the primitive notions of the ZERMELO set theory), viz. for each formula
expressing a well-defined property a separate axiom.*) Hence the question arises
if we can replace the Axiom der Aussonderung by a finite number of purely
set theoretic axioms such that each particular case of it, belonging to a parti-
cular formula expressing a well-defined property, can be proved by means
of these axioms. This questions has been answered in the affirmative by
NEUMANN (loc. cit. *)), however, by using primitive notions entirely different
from those used by ZERMELo, viz. that of an argument (“I-Ding”), of a func-
tion (“I11-Ding”) and of the value of a function for an argument (instead of
the notions of an element, of a set and of belonging to a set as its element,
used by ZERMELO as primitive notions), and, moreover, the additional primi-
tive notions of an ordered pair formed of two arguments as well as of two
particular arguments, denoted by A and B, serving as values of characteristic
JSunctions taking over the part of sets (or classes). Later on, BERNAYS (loc.
cit. ¥)) has shown that the same effect can be reached without such a radi-
cal change of the primitive notions, however, by retaining NEUMANN’s idea of
allowing, besides of sets admitted also by ZERMELO, some more extensive
multitudes or “classes” and avoiding paradoxes by refraining them from
belonging to a set or class as its element or being an argument for which
a function is defined. Unlike NEUMANN who defined classes (“Bereiche”) as

1) TuoraLr Skorem, Einige Bemerkungen zur axiomatischen Begriindung der Men-
genlehre, Wissenschaftliche Vortrdge, gehalten auf dem fiinften Kongref der skandinavischen
Mathematiker (Helsingfors, 1922, published 1923), 217—232; see also the discussion be-
tween ZermeLo and Skorem on this question: Ernst Zermero, Uber den Begriff der Definit-
heit in der Axiomatik, Fund. Math. 14 (1929), 339—344; Tu. Skoiem, Einige Bemerkungen
zu der Abhandlung von E. Zermero: ,Uber die Definitheit in der Axiomatik, ibidem, 15
(1930), 337—341; Ernst Zermero, Uber Grenzzahlen und Mengenbereiche. Neue Untersuchun-
gen iiber die Grundlagen der Mengenlehre, ibidem, 16 (1930), 29—47, especially footnote 1)
on p. 30. Another definition of the notion of a well-defined property, using instead of the
concept of a formula in the sense of mathematical logic that of a function, has been pro-
posed by Aporr Fraenker, Zu den Grundlagen der Cantor—Zermeloschen Mengenlehre,
Math. Ann. 86 (1922), 230—237; see also the following paper and works of FRAENKEL:
Untersuchungen iiber die Grundlagen der Mengenlehre, Math. Z. 22 (1925), 250—273;
Zehn Vorlesungen iiber die Grundlegung der Mengenlehre (Leipzig and Berlin, 1927) and
Einleitung in die Mengenlehre (Berlin, second edition, 1923, third edition, 1928).

) The same is true if we use Fraenker's definition instead of SkoLem’s.
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functions taking no value different from A and B, and sets (‘““Mengen”) as
classes which are at the same time arguments, hence regarded the notion of
a class more general than that of a set, BERNAYS does not identify a set with
the class having the same elements and he distinguishes two different relati-
ons of being an element of something, according as the latter is a set or a
class. Hence, BERNAYS uses the notions of a sef, of a class as well as of being
an element of a set and of being an element of a class as primitive notions,
confining, like FRAENKEL (loc. cit. )), the elements of a set or class to be
sets. Finally, GODEL (loc. cit. ¥)) modified the BERNAYS axiom system by
avoiding the said reduplication of the sets as well as of the relation of being
an element of a set or class and performing at the same time some minor
changes on the system of axioms of BERNAYS. As primitive notions, that of
a set, of a class and of being an element of a class (which, in particular,
may be a set too) are used by GODEL.

5. In order to show, how the question treated in section 3 is connec-
ted with that of axiomatizing abstract set theory, we must survey partly the
GODEL axiom system. We use lower case italics, except m, n, p, ¢ which de-
note non-negative integers, as variables for sets and capital italics as those
for classes; X €V signifies, as usual, that X belongs to Y as one of its
elements.

The four first axioms of the GODEL axiom system are as follows.

Al. Every set is a class.

A2. If X¢€Y then X is a set.

A3. Two classes having the same sets as elements are identical (exten-
sionality axiom).

A4. For any sets x and y, there is a set z containing x and y but no
other sets as elements (pairing axiom).

These axioms enable us to define for any sets x and y, different or identical,
{x,y} as the set, existing by A4 and unique by (Al and) A3, which contains
x and y but no other sets as elements. For x=y, the set {x,y}={x, x}
contains x as its only element; this set is denoted by {x} too. Further, we
can define the ordered pair {x, y> formed of the (different or identical) sets
x and y in this order as follows:™)

<x’ y) = {{X}, {-{: Yi}-
Further, the sequences {x>,{x,y,2>,<{x,y,2, u)>,... can be defined by (1).")

15) This definition is due to C. Kuratowski, Sur le notion de I'ordre dans la théorie
des ensembles, Fund. Math. 2 (1921), 161—1T71, especially p. 171. By means of axioms Al
A3 and A4 one proves readily that <x, y> is uniquely determined by x and y and conver-
sely, it determines uniquely its first component x and second component y.

16) In axiomatic proofs, we are not allowed to use (1) as a general definition of the
sequence {Xx,....,Xx,> of n sets x,...,x, for a variable natural number n until we do not
define the general concept of a natural number by means of the primitive notions and
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The subsequent group B of axioms serves to replace the Axiom der
Aussonderung of ZERMELO, or rather the principle of naive set theory, men-
tioned above, according to which to each property there is a set containing
those and only those elements which have the given property. Now, the ele-
ments (of a set or a class) are in the GODEL set theory (like in the FRAENKEL
and BERNAYS set theories) necessarily sefs, and it is appropriate to confine
ourselves to well-defined properties in a sense suggested by SKOLEM’s defi-
nition mentioned above, i. e. to properties of a set x representable by a for-
mula @ which can be built up from propositions of the form y € z and y =z,
where instead of y and z, any set or class variables may stand, by means
of the logical operations as well as the quantifiers, confining however the
latters to those binding sef variables only. Moreover, in order to avoid para-
doxes, we do not postulate the existence of a sef but only that of a class
containing those and only those sets x as elements which have the given
property, i. e. for which the formula @ (containing x as a free variable)

holds.”)

Let vs call a formula built up from propositions of the form y €z and
y =12 with set or class variables y and z by means of the logical operations
as well as quantifiers binding set variables only an elementary formula.™)
We denote arbitrary elementary formulae by Greek capitals, followed eventu-

justify inductive definition by means of the axioms of set theory (and even afterwards, (1)
requires some re-formulation), but only as a definition of <x;> and as an abbreviation for
a definition of <x,,...,x,> for some numerically given n (e.g, for n =25, as an abbreviation

of the definition
(Xy, Xg, Xg> = <Xy, {Xa, Xg)>,

<Xy, Xg, Xg, Xg> ==Xy, {Xg, X3, XD,

Xy, Xg, X3, Xg, X50 =Xy, {Xg, Xg, X3, X527
of <xy, Xy, X3, X4, X3>). For the axiomatic proof of a given theorem of set theory, this will
always do; of course, an indefinite development of set theory based on the GopeL axiom
system will require an indefinite growth of this n. On the other hand, in considerations
about the GopeL axiom system or, more generally, about the axiomatization of set theory,
we can freely use inductive definition, hence, we can state theorems concerning sequences
in general.

17) The rest of GopeL's axioms — besides of the axiom of choice as well as an
axiom to the effect of excluding the existence of sets without an “innermost kernel”, e. g.
of a set which is the only element of itself — serve to assure that some classes are sets,
roughly speaking, those admitted as sets in the ZermeLo set theory. These axioms imply
among others that the intersection (i. e. the class of common elements) of a class and a
set is a set again. Hence, provided there is a class containing those and only those sets
as elements for which the formula @ holds, we can prove also, for every set s, the exis-
tence of a sef containing the elements of s satisfying the formula @ and no other elements;
i. e. we have a theorem (more exactly for each elementary formula @, a separate theorem)
in the GopeL set theory having the same effect as the Axiom der Aussonderung in the
Zermero set theory.

%) We use this term instead of Godel's primitive proposition function; howewer,
GopeL excludes propositions of the form y =z (which will be shown to do not matter).
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ally by some set variables in parentheses and divided by commas, e. g.
®D(x,, ..., x.). Such a denotation does not imply that the elementary formula
in question contains necessarily each of the free variables x,, ..., x,, nor that
it does not contain any other free variables; it serves only to emphasize that
we regard the elementary formula in question as a (propositional) function
of x,,..., X» which eventually does not depend really on some of these vari-
ables.”) It is clear from which is said above that the axioms of group B have
to be chosen such that for each elementary formula @(x), the folloving pro-
position can be proved by means of them (together with the axioms Al to
A4): there is a class containing those and only those sets x for which ®(x)
holds.*)

The fact that an elementary function containing a free set variable x
may be derived from another containing additional free set variables by means
of quantifiers binding them, suggests that we should require more generally
that for each elementary formula @(x,, ..., x.), the following proposition can
be proved by means of the axioms Al to A4 as well as those of the group B :
there is a class containing among the sequences of sets of the form
{Xy, ..., Xny those and only those for which ®(x,, ..., x.) holds.")

19) Of course, it is allowed to denote an elementary formula by @(x,,...,x.) irre-
spective of the order in which the variables (eventualy) occur in it.

2) Note that the italicized proposition is, for each elementary formula @(x), a set
theoretical proposition, i. €., a proposition containing no other notions than those defined
by means of the primitive notions of (the Goper) set theory (using standard logical devi-
ces of definition). On the contrary, the proposition stating that for each elementary formula
@(x), the proposition italicized above is a theorem of the GooeL set theory, provable by means
of the axioms Al to A4 and B is not a set theoretical proposition for it contains the
notion of an elementary formula which has not been defined by means of the primitive
notions of set theory. The letter proposition states a fact about set theoretical propositions,
viz. that all of them having a specified form belong to the theorems provable by means
of the GopeL axioms (or rather a part of them). Such a proposition is called sometimes
a metaproposition or, if proposed to be proved, a metatheorem. To prove a metatheorem,
methods as e.g. inductive proof are of course available even if it states provability of pro-
positions by means of axioms which do not do for justification of inductive proof.

21) See Gopet, loc. cit. 2), p. 8, General Existence Theorem M1. — For the italici-
zed proposition as well as for that stated about it, the same remark applies as in the pre-
ceding footnote for its particular case n=1. It can be shown that the above requirement
concerning elementary formulae &(x,,...,x,) is not really more general as its above par-
ticular case. Indeed, we can construct an elementary formula 2(x, x,,...,x,) stating that
x==(X;,.... X,» as we shall see (also for more general expressions instead of <x,,..., x,>)
in section 6; and the class containing those and only those sets x for which the elemen-
tary formula (Ex))---(Ex,) (2(x, xy, ..., X;) & @(xy, ..., x,)) holds, contains obviously those
and only those sequences (x,,...,x,> for which we have &(x,,...,x,). — As here, we
shall use also in the sequel the symbol & for conjuction and (Ex) as existential quantifier
(binding the set variable x); and, in addition, the symbols V for disjunction, -+ for impli-
cation, «— for equivalence, ~ for negation and (x) as universal quantifier (bilding the set
variable x). The fact that we use the sign - for operations in the sense of section 2 too
will not cause any misunderstanding.
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In order to satisfy this requirement, it suffices to satisfy it in the case
where @(x,,...,x,) does not contain any part of the form y € z unless y is
one of the free set variables x,,...,x, of @(x,,...,x,) or of the set vari-
ables bound by means of a quantifier at every place where it occurs in
D(x,,.... x,), further, z is a (class or set) variable different from y, more-
over d(x,,...,x,) does not contain any part of the form y=z. Indeed, on
account of A2, any proposition y €z which does not meet the said conditi-
ons can be replaced by (Eu)(u=y&u €z) with a set variable u which is
different from z and does not occur in @(x,,...,x,) as a free variable and
afterwards, on account of A3 and Al, any proposition y =z with set or class
variables y and z by (u)(u€y<«>u€z), u being a set variable different
from y and z and not occuring in @(x,,..., x,) as a free variable. Also, we
may confine ourselves to the case where @(x,,..., X,) does not caontain any
disjunction, implication or equivalence nor any universal quantifier, for as
well known, these logical operations can be expressed by means of conjuc-
tions and negations only and a universal quantifier can be expressed by
means of negations and existential quantifiers.

Hence, in order to satisfy the above requirement for each elementary
formula @(x,, ..., x,), it suffices (1) to satisfy it in the particular case where
D(x,, ..., Xx,) is either of the form x, € x, with 1=p,¢g=n and p==q or of
the form x,€y, with 1 = p = n, y being either a class variable or a set va-
riable different from x,,..., x,; further, (2) to ensure that provided it is satis-
fied for an elementary formula @(x,,...,x,), the same is true for the ele-
mentary formula ~ @(x,,...,x,) and provided it is satisfied for the elemen-
tary formulae @(x,,...,x,) and ¥(x,,..., x,), the same is true for the ele-
mentary formula @D(x,,...,x,)&%(x,,...,x,); finally, (3) to ensure that
provided it is satisfied for the elementary formula @(y,x,, ..., x,) with a set
variable y different from x,,..., x,, the same is true for the elementary for-
mula (Ey) D(, xi, . .., X2).)

As to (2) and (3), they have been met by GODEL (like by BERNAYS) by
means of postulating the following “logical construction axioms” :¥)

B3. For any class A, there is a class B containing those and only those
sets x as elements which do not belong to A (axiom of the complementary
class).

=) Here, of course, instead of y any other set variable (different from x,,...,x,)
might stand ; hence, in order to be consequent, we should use y instead of y (a bold-face
letter denoting, as above, indifferently any of the set variables). Note that here we use the
fact that in an elementery formula any free set variable can be treated as the “first” one
(in our case, the variable to be bound by the next quantifier); see footnote 19).

=) We enumerate them in the order we need them, retaining their notation used by
Goper. The denomination “logical construction axioms” (“logische Konstruktionsaxiome”)
has been used by Neumann (loc. cit. %)) for axioms of his system analogous to the above
axioms of the GopeL system.
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B2. For any classes A and B, there is a class C containing those and
only those sets x as elements which belong at the same time to A and to B
(axiom of the intersection).

B4. For any class A, there is a class B containing those and only those
sets x which are the second components of at least one ordered pair belon-
ging to A (axiom of the domain®)).

Indeed, provided there is a class A containing among the sequences of
the form <x,,...,x,> those and only those for which @(x,,...,x,) holds
and a class B containing those and only those sets x for which x€ A does
not hold, the class B contains a sequence of the form <x,,...,x,) if and
only if <{x,,...,x,> € A does not hold, i. e. if @(x,,...,x,) does not hold,

that is, if ~ @(x,,...,x,) holds. Further, provided there are classes A and
B containing among the sequences of the form <{x,,...,x.> those and only
those for which @(x,, ..., x,) and ¥(x,, ..., x,) holds, respectively, and a class

C containing those and only those sets x for which both x€ A and x€B
hold, the class C contains a sequence of the form <{x,,..., x,»> if and only
if both {x,,..., x> €A and <{x;,...,X.> € B hold, i.e. if both @(x,,...,Xs)
and ¥(x,, ..., x,) hold, that is, if @(x,,..., x.)&¥(x,, ..., x,) holds. Finally,
provided there is a class A containing among the sequences of the form
{¥,%,..., X%, those and only those for which @(y,x,,...,x.) holds and a
class B containing those and only those sets x for which, for at least one
set y, the ordered pair {y,x> is contained in A, the class B contains a
sequence of the form <x,,...,x.> if and only if for at least one set y
M Xiyeeis X)) =P, X1, ..., Xn)) €A, i. e if there is a set y for which
D(y, x3, ..., Xs) holds, that is, if (Ey) @(y, x,, ..., X») holds.
As to (1), the above requirement in the simplest case, viz. that in which
=p=1, @(x,) is x, €y, is satisfied automatically by the class y, whereas
in the case in which n=2, p=1, ¢=2, @(x,,x;) is x, € x;, the above
requirement has been formulated as an axiom by GODEL, viz.
B1. There is a class containing among the ordered pairs (x,y)> those
and only those for which x € y.
However, we have to meet not only the case in which n=2, p=2,
g=1, @(x,, x;) is x, € x,, but also the cases n>2 (and n=2, D(x,, x,) is
X, €y or x; €y) too.*) This obligation requires further axioms; we shall dis-

#) In the Bernavs—GopeL set theory, functions are treated as classes of ordered
pairs, the function F being indentified with the class of the pairs <{F(x),x> (in Bernavs,
¢x, F(x)»), x running trough the domain of F. If A is a function in this sense, its domain
B satisfies the requirement of B4.

%) The necessity of settling the case n > 2 is clear from the fact that, e.g., we can-
not prove the existence a class containing a sequence of the form (x,, x5, x3> if and only
if X, €xs & Xx3€ x5 holds by means of axiom B2 unless we first prove the existence of a
class A and a class B such that <x,, x,, x;>€ A if and only if x;€x, and <{xy,X,, x> €B
if and only if x, € x;.



44 A. Hajnal and L. Kalmér

cuss the question, how they are to be chosen in order to get an axiom sys-
tem as simple as possible.

6. To each operation G—H (G and H expressions) in the sense of
section 2, considering the variables occuring in it as set variables, we can
attach the proposition of set theory stating that for any class A there is a
class B such that for any sets denoted by the variables figuring in at least
one of the expressions G and H, we have H¢ B if and only if G¢€A.
E. g., to the operations (3), (4) and (5), the following propositions B5, B6
and B7, differing only in the notation of the set variables from Godels’s
axioms denoted thus, have been attached, respectively :

B5. For any class A, there is a class B such that for any sets x and y,
the ordered pair {y, x> is contained in B if and only if x € A.

B6. For any class A, there is a class B such that for any sets x and y,
the ordered pair {y, x> is contained in B if and only if {x, y> € A.

B7. For any class A, there is a class B such that for any sets x,y
and 2z, the sequence (ordered ftriple) <z, x,y> is contained in B if and only
if {x,y,2>€A.

Moreover, to the operations (6) and (7) the following propositions have
been attached, respectively :

P.,. For any class A, there is a class B such that for any sets
X,, ..., X», the sequence <x,,..., x,> is contained in B if and only if x; € A.

P.,,. For any class A there is a class B such that for any sets x;, ..., X.,
the sequence {x,, ..., x,) is contained in B if and only if {x,, x> € A.

In general, we call a proposition which has been attached to an ope-
ration in the above sense a combinaforial proposition. Thus, B5, B6, B7 and
P.;, P.,, are combinatorial propositions and so is the proposition “for any
class A, there is a class B such that for any sets x and y, we have y¢ Bif
and only if x€ A”, attached to the operation x—y. Whereas B5, B6, B7,
P., and P,,, are reasonable propositions of set theory, this does not hold
for the last proposition for it would imply that every class which is not
empty contains all sets. Indeed, if there is a class A which is not empty and
does not contain all sets, let x and x’ be sets satisfying x€ A and x'¢A.
The proposition between inverted commas would imply the existence of a
class B such that, for all sets y, we would have y€B by x€ A and y¢B
by x"& A, which is impossible.

More generally, a combinatorial proposition attached to an operation
G — H such that the expression G contains a variable x not contained in H
is unreasonable for it would imply a contradiction to the axioms Al to A4
supplemented by the proposition stating the existence of two sets, different
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from each other.”®) Indeed, let be x,, ..., x. the variables, other than x, occur-
ring in G or in H; in order to emphasize the dependence of G and H on
X, Xy,...,Xs and Xx,,..., Xa, respectively, let us write them in the form
G(x,x;,...,%s) and H(x,, ..., Xa), respectively. Then, the combinatorial pro-
position attached to the operation G(x, x,, ..., x,)— H(x,, ..., x,) states the
existence, for any class A, of a class B such that, for any sets x, x,,..., xa,
we have H(x,,...,x.) € B if and only if G(x,x,...,X.) € A. Now, let us
consider x,,..., X, as fixed sets; as a consequence of the property of orde-
red pairs, mentioned in footnote **), provable by means of the axioms Al, A3 and
A4, one proves readily that for different sets x and x’, we have G(x, x;, ..., Xa) &
+=G(X, X, ..., xa).¥) Now, let us choose two sets x and x’, different from
each other, and let us take as class A the set {G(x, xy, ..., X»)}.®) Then, the
combinatorial proposition in question implies the existence of a class B such
that we have H(x,,..., x,) € B by G(x, x,,...,X,) € A and, at the same time,
H(x,,..., %) §&B by G(X, x,..., %) & A, thus, a contradiction.

On the contrary, in the case where the expression G does not contain
any variable not contained in H, the combinatorial proposition attached to
the operation G —H is a reasonable proposition of set theory, viz. a con-
sequence of a proposition of the form: there is a class eontaining a set x if
and only if @(x) holds, @(x) being an elementary formula determined by
G and H.

To show this, first we prove that for any expression E(x,, ..., X,), con-
taining no other variables than x,,...,x,, we can construct an elementary
formula @(x, x,,..., x») which holds for sets x,x,,...,x. if and only if
x=E(x,,...,xs). This is obvious in the case E(x,,..., x,) is one of the
variables xi, ..., Xa, €. 8. Xp, for x=1x, is an elementary formula. Supposing
we can construct for two expressions E(x;, ..., x.) and F(x,, ..., x,) the ele-
mentary formulae @(x,x,,...,x,) and #(x,Xx,...,X,) such that we have
D(x, Xy, ...,Xy) if and only if x=E(x,,..., X») and P(x,x,,..., x,) if and
only if x=F(x,, ..., x,), the same is true for the expression <{E(x,,..., X.)
F(x,,..., xx)>. Indeed, we have

X E(Xyy oo Xn) F(Xy5 o0y X)) =
we {{B(Xss <5+ T TE®) o« o5 X B (i .; X))}

%) This proposition does not follow from Goper's axioms belonging to the groups
A and B; howewer, it is of course a theorem of set theory (lo be proved by using the
rest of the axioms too).

21) In order to show this in general, i. e. for an arbitrary expression G(x, xy,..., x,),
we have to use induction with respect to the order of this expression (to be defined ana-
logously to that of a complex, see footnote 5)). To show the same for a given expression
G(x, xy,...,Xx,), the order of G(x, x,,...,x,) being a given natural number, no induction
is needed.

%) Note here we use axioms A4 (in order to construct the set {G(x,x,...,x)})
and Al (in order to show that it is a class).
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if and only if there are sets y, z, # and v such that y=E(x,...,x.),
z2=F(x,..., x), u={y},v={y, 2z} and x={u, v} hold ; i. e. if D(y, x,,..., Xa),
P(z,x,,...,Xu), further, y€u, y€v, z€v, u€x, v€x hold, finally, there is
no set w such that w€w but w==y, or w€v but ws=y and w==2z, orwex
but w==u and w=£v hold. That is, we have x =<{E(x,, ..., x.), F(x;, ..., X))
if and only if
(Ey)(E2)(Eu) (Ev)(@P(¥, X1, .- 0, X)) &P (2, Xy, ..., Xu) &
&ycu&yecv&zecv&ueEx&veEx&~(Ew)(weu&~(w=y))V
Viwev&~w=p)&~(w=2))VWex&~(w=1u) &~(w=1))))
holds; and this is an elementary formula indeed. Hence our assertion has
been proved, for each expression arises from variables by (iterated) forming
of ordered pairs.*)

Now, let be G and H, or, more explicitely, G(x,,...,xs) and
H(x,,..., x,), two expressions such that no variable does occur in G unless
it occurs in H too. Contrarily to our above usage, we suppose that all vari-
ables occurring in G or H have been displayed explicitely; hence, we have
m = n. The combinatorial proposition attached to the operation G(x;;, ..., X,) —
—H(x,,..., x,) states, for any class A, the existence of a class B such that,
for any sets x,, . .., x., we have H(x,, ..., x.) € Bif and only if G(x,, ..., X») € A.
Denote @(x, x,,...,x,) and ¥(x, x,,...,xn) elementary formulae such that
we have @D(x;x,,...,X,) if and only if x=H(x,, ..., x,) and &(x, x,, ..., Xm)
if and only if x=G(x,,...,xn); and let us require that the class B should
contain those and only those sets x for which, for appropriate sets x,, ..., Xa,
we have x=H(x,,..., x.) and G(x,,..., x.) € A. If we prove the existence
of a class B satisfying this demand, we are ready, for, as easily proved, the
sets x;,..., X, are uniquely determined by the set x =H(x,, ..., x.),*) hence,
if x=H(x,,...,x,), there cannot be sets x], ..., x/, such that x=H(x], ..., x1)
and G(x;,...,xn)€ A, unless we have G(x,, ..., x») € A.¥) ,

Now, the above requirement about the class B can be stated as follows :
we have to have x € B if and only if for appropriate sets x,,...,x, and y
we have x=H(x,...,X»), y=G6G(x;,...,Xa) and y€A, i. e. if there are

%) Here again we need induction in order to prove our assertion for arbitrary ex-
pressions E(x;,...,X,) but not in order to prove it for a given expression E(xy,...,X,).

0) Here we use that each of the variables x,,..., x, occurs really in H(x,,..., X,).
In this case, the unicity of x,,..., x, with H(x,...,x,)=x for given x is an immediate
consequence of the fact that both components of a given ordered pair are uniquely deter-
mined and that given H(x;,...,x,), we can get each of the sets x;,...,x, by iterated
forming of one of the components of an ordered pair. For a formal proof of the unicity of

the sets x,,..., x, with given H(x,,...,x,) we need or do not need induction according
as we want to prove it for arbitrary expressions H(x,,...,x,) or for a given expression
H(xy,...,Xx,) only.

81) Here we use m =< n for in case m > n, x,41,...,X,, would not be determined by

H(xl....,x..).
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gels X;,.:., % and » such that we have @D(x, %, «+ 05 Xa), B(P) Xiy 0055 Xm)
and y € A. This condition can be written in the form

(Ex)) - (Exn)) (EY)(P(x, %1, .., X)) &P(P, Xy, ..., Xm) &Y € A)

which is an elementary formula indeed; hence, the combinatorial proposition
attached to the operation G(x,,..., x.)— H(x,,...,x,) is a consequence of
a proposition which we wish to get fulfilled in set theory.

Thus, the following definition has been justified: we call the combina-
torial proposition attached to an operation G—H a false or a true combi-
natorial proposition according as there is or there is not a variable occur-
ring in the expression G but not in H. E. g.,, B5, B6 and B7 are true com-
binatorial propositions and the same holds for P,, and P,,, for n=1,2,...,
1=p,g=n and p==q but not for p > n, say.

7. Returning to the requirement (1) of section 5 to the effect that if
D(x,, ..., X,) is either x,€x, with 1=p,g=n and p==q or x, €y with a
class or set variable y different from x,,....x, and 1= p = n, there is a
class containing, for any sets x,,...,x., the sequence (x,,...,x.> if and
only if @(x,,...,x,) holds, we see at once that it is the propositions P,,
and P,,, that we are needing. Indeed, in the case @(x,,...,x.) is xp € X,
by axiom Bl a class A exists such that we have {x,,x,> € A if and only if
Xp € X,; and in the case @D(x,,...,X,) is x,€y, A=y is a class such that
we have x, € A if and only if x, € y. Hence, if propositions P,.,, and P,, are
available, we may infer the existence of a class B such that, for any sets
Xy, ...y Xn, We have <x,...,x.>€B if and only if <{x,,x,> €A, that is,
x,€x,, and if and only if x, € A, that is, x, €y, respectively, i. e., if and
only if @(x,,..., x,) holds.

Now, P,, and P,,, represent an infinity of propositions, therefore, we
cannot subjoin them to the axioms Al to A4 and Bl to B4 lest we should
have an infinity of axioms. Hence, the question arises if there is a finite
number of true combinatorial propositions implying the propositions P,, and
P,y for n=1,2,..., 1=p,q=n, p=54q. In the affirmative case, we can
reach our object by subjoining these true combinatorial propositions to the
axioms Al to A4 and Bl to B4; of course, we try to choose them as simple
as possible.

This question reduces to that solved in section 3 by the following
remark. Given any primary operations E,—F,, ..., Ex— Fx, denote P,, .. ., P;
the combinatorial propositions attached to them, respectively. If an operation
G — H can be obtained as a derived operation. the combinatorial proposition
P attached to it is a consequence™)) of the propositions P, ..., P;.

32) Consequence is meant here in the sense of the restricted predicate calculus. As
a matter of fact, if universal propositions are expressed by means of free variables rather
then universal quantifiers, the only rules of inference to be used are the rule of substitu-
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Indeed, let be G,,..., G. expressions such that G, is G, G. is H and
each of the operations G,— G, ..., Gu-1— G, arises from one of E, —
—F,, ..., Ec— F. by means of replacing some of the variables by approp-
riate expressions. Then the corresponding combinatorial propositions Py,..., Py,
attached to the operations G,— G,, ..., G.-1 — G, respectively, arise by the
same replacements from the propositions P,, ..., Py, hence, each of them is
a consequence of the propositions P,,..., P, (a particular case of one of
them indeed). On the other hand, the proposition P is a consequence of the
propositions Pi, ..., P,. Indeed, let be x,,..., x. the variables figuring in at
least one of the expressions G,,..., G.. Then by Pj, for each class A =A4,,
there is a class A, such that, for any sets x,,..., x., we have G, € A,if and
only if G, € A,; similarly, by P;, there is a class A; such that, for any sets
Xy, ..., Xm, we have G;€A; if and only if G,€A4,, and so on; finally, by Py,
there is a class B= A, such that, for any sefs x,,..., Xxn, we have G.€ A,
if and only if G,.-1€A.1. Hence, for any sets x,,..., xn, we have HEB if
and only if G€ A, thus, the proposition P holds as a consequence of P, ..., P:.

Owing to the theorem proved in section 3, we get the result that axioms
B5, B6 and B7, together with Al to A4 and Bl to B4, suffice to have the
propositions italicized in section 5, for each elementary formula @(x) and
D(x,, ..., Xn), respectively, as consequences. For the same purpose, GODEL
uses (loc. cit. *)), besides the axioms B5, B6 and B7, the following axiom too:

B8. For any class A, there is a class B such that for any sets x, y
and z, the ordered triple {x, y, 2> is contained in B if and only if {x, z, y>€A.

This axiom is the combinatorial proposition attached to the operation
{x,2,y>—<x,y,2>, or, apart from notation, (5) (see footnote ”)). Indeed,
GODEL’s procedure corresponds to the fact that given (3), (4), (5) as well as
(5') as primary operations, we can obtain every operation of the form (6)
and (7) (n=1,2,..., 1=p,9=n, p==q) as a derived operation.

By what has been shown, we see not only that axiom B8 is super-
fluous for the purpose it has to serve but also that it is a consequence of
the axioms Al to A4 as well as Bl to B7.¥) Indeed, it has been shown in
section 6 that each true combinatorial proposition is a consequence of a pro-

tion (of expressions for free variables), as well as a form of chain inference leading from
propositions of the form (A,)(EAy) (@1(A)) < Py(Ay)), (A (EAy) (Dy(Ag)«— By(Ay)), .. .,
(A1) (EA,) (1 (An1) < Bo(A) to the proposition (A,) (EAL) (B, (A,)«Da(A), By,..., P
being propositional functions.

3) Gooer remarked (loc. cit. 2), p. 7, footnote 5)) that Bernavs assumes a further
axiom requiring the existence of the class of all sets of the form {x}, which allows B7
and B8 to be replaced by one axiom. From this remark it seems probable that Goper
guessed axiom B8 to be independent on his system of axioms. The same seems to hold
for Markov too, who proved that axiom B6 is a consequence of axioms B4, B5 and B8
without remarking that on the other hand, B8 is a consequence of axioms Al to A4 and
Bl to B7; see A. Mapkos, O szasucumoctu axcwomsl B6 ot apyrux akcnom Bernavs'a—
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position of the form: there is a class such that, for any set x, we have x€ A
if and only if @(x) holds, @(x) being an elementary formula; in particular,
this holds for axiom B8 too for it is a true combinatorial proposition. On
the other hand, we have seen that each proposition of the last form is a
consequence of the axioms Al to A4 and Bl to B7; hence, the same holds
for axiom B8.*)

(Received October 31, 1955.)

Gopeu's, Uasectusa Axapemun Hayk CCCP (cep. mar) 12 (1948), 569—570.
(Of course, from the result of this paper Markov's, together with that of the present paper,
it does not follow that axioms B6 and B8 can be dispensed with at the same time, for
to prove B6, Markov needs axiom B8 and to prove B8, we need axiom B6). — On the
other hand, already the above remark Gopev’s, together with that of Bernavs' (loc. cit. 2),
Part VII, p. 94) according to which the axiom of his system referred to (stating the exis-
tence of the class of all sets of the form {x}) can be proved by means of the rest of his
axioms made probable that the same holds for axiom B8 in the GopeL system.

#) For the proof of axiom B8 by means of the axioms Al to A4 and BI to B7, a
particular proposition of the above form (with a particular elementary formula @(x)) is
needed only, hence, no inductive proof is necessary. Of course, we could prove B8 by means
of the same axioms using the remark that B8 can be transformed directly to the form:
there is a class B such that, for any sets x, y and z, we have (x,y 2)€ B if and only if
&(x, y, z) holds, @(x, y, z) denoting a particular elementary proposition containing, besides
the free set variables x, y, z, the class variable A.
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