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Analytic Besov space BP, 0 < p < 1

By MIROLJUB JEVTIC (Beograd)

Abstract. For a measurable function f on the unit ball B in C™, n > 1, we define
M f(z), z € B, to be the mean modulus of f over a hyperbolic ball with center at z
and of a fixed radius. The space L'P(7), 0 < p < 1, where 7 is M-invariant measure
on B, is defined by the requirement that My f € LP(7). The analytic Besov space B?,
0 < p < 1, can be naturally embedded as a complemented subspace of L1'P(7) by a
topological embedding Vi,,s : BP +— Ll*i"(r). We show that Vi, s o Ps, where Ps is
an integral operator whose reproducing kernel is vs(1 — |w|2)%(1 — (z, w))~(*T1+5) g
projection on this embedded copy. The embedding is applied to show that for each
0 < p < 1 the dual space of the Besov space BP is isomorphic to the Bloch space B>
(with equivalent norms) under certain integral pairing.

1. Introduction

Let B be the open unit ball in C™, n > 1, and v the 2n-dimensional
Lebesgue measure on B normalized so that v(B) = 1.

For f analytic on B, f € H(B), and any positive integer m we
write 0™ f(z) = (0%f(2))ja|=m and 0™ f(2)] = 32 = [0%f(2)|, where

|ex]
0%f(z) = W, a a multiindex.

Let 0 < p < oo and let m be a positive integer, m > n/p. We define
the analytic Besov space B? by

BY ={f € H(B): (1—[])™0™ f(2)| € L (7)},

where d7(z) = (1 —|z|?)"" "1 dv(z) is M-invariant measure on B (see [8]).
We note that the definition is independent of m.
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For z€ B,0<r <1, E.(z) ={w € B : |p.(w)| <r}. Asusual, p,
is the standard automorphism of B taking 0 to z (see [8]). An integration
in polar coordinates shows that 7(E,(2)) = r2*(1 —r2)~" =: 7(r), z € B.

For a complex measurable function f on B we define

Moo f(2) = Moo, f(2) = esssup{[f(w)| : w € E,(2)}
and

M1 = M f2) = (= [ |f<w>|pdr<w>)1/p, 0<p< oo

7(r)
E.(2)

For 0 < p,q < oo, we define LP9(7) to be the space of all measurable
functions f on B for which

[ fllzzacry = [[Mpr fllLa(ry < oo

Since the definition is independent of r, 0 < r < 1, we will write LP9(T)
instead of LP-9(7) (see [3] and [11]).

Throughout this paper we assume s is a real number satisfying
s > —1. Let v be a positive normalizing constant such that the measure
dvs(z) = vs(1 — |2]?)® dv(2) has total mass 1 on B.

Following FORELLI and RUDIN ([4]) we let

Ty e L R
B

We now introduce some differential operators that are of great impor-
tance in the rest of the paper.
Let s > —1 and m > 0 . We define a linear operator R™ on L!(v) by

R;”f(z) =, / (1 — ‘wP)Sf(w) dy(w)

B (1= (zw))rtitstm -

If 1 <p<ooand s> —1then BP = P;LP(7) (see [7], [10]). In this
note we show that the analytic Besov space BP, 0 < p < 1, can be nat-

urally embedded as a complemented subspace of L1'P(7) by a topological
embedding V,,, s : B? — LYP(7) defined by V,,, s f(2) = (1—|2|?)"R™ f(2),
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where mp > n and s > —1 . We show that V,,, ; o Ps is projection on this
embedded copy and BP = P,L1P(7).

Our work was motivated by the paper [6] where the coresponding
problem for the Bergman space was considered.

Further, we show that for each 0 < p < 1 the dual space of the Besov
space BP is isomorphic to the Bloch space B> (with equivalent norms)
under certain integral pairing.

2. Analytic Besov space BP, 0 < p < 1

First, we give a characterization of the Besov space BP in terms of
the differential operators R} .

Lemma 2.1. Let 0 < p < o0, s > —1 and let m be a positive integer,
m > n/p. If f € H(B) then the following are equivalent:

(i) f e B,
(i) [(1—|z]*)™P|R™ f(2)|P d7(z) < oo, where R denotes the radial deriv-
B

ative R = j;l zja—zj,
(iii) [(1—|z|?)"P|RT f(2)|P d7(z) < oc.
B

PROOF. In [2] it is shown that (i) <= (i7)
The implication (i) = (i7i) follows from the following identities:
RYf = P,f = f and

(2.1)
RI'f=[n+1+s+m) 'R+ I|RI"'f, fe B

(a straightforward calculation, see [7]).
Assume now that (i4¢) holds. Then using the reproducing property of
the operator P, and Fubini’s theorem we obtain

(22) / (1 — "LU| )S+mR;nf(w) du(w)
B

(= (e wpiies

1_w25+m 1—525.]“5
:/(1(_ <Z’7 u[);n—&-l-&-s |:'75/(1 E <w7’£‘>))n+1<+3+m dv(&)|dv(w)
B B
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. [a-ePyr©
B
(1 — |w]?)**™ dy(w) )
- [B/ (1 — (w, &))ntitstm(1 — (z, w))nti+s dv ()

G
/ : dn(e) = — f(2).

B Vs+m 4 1- <Za€>)n+1+s Vs+m

Taking derivatives inside integral gives

|amf ’<C/ 1_ ”LU| S+m|Rmf( )‘ dl/(w)

|1 _ Z w ‘n—i—l—i—s—&—m

By Theorem 1.1 ([5]), f € BP.

Here and elsewhere constants are denoted by C' which may indicate a
different constant from one occurrence to the next.

Remark. Carefully examining the proof of Lemma 2.1 above we actu-
ally see that the following are equivalent “norms” on BP for the appropriate
p’s:

1/p
W (fa-Epmenierae) v X ot
B

|aj<m

@ (fa-Errirnser d¢<z>)1/p F1£O)]
B

@ (fo- |z2>mpR;”f<z>|PdT<z>>1/p L1FO)].

In the sequel by || f|| g» we will mean any of the expressions (1), (2) and (3).
A similar argument shows that

| fll B 22 [£(0)] + sup (L —[2[*)™ R} f(2)].
zEB

Theorem 2.2. Let 0 < p < 1. Then for any s > —1, Py : LYP(1) —
BP is a continuous linear map. Moreover if m is an integer, m > n/p,
Vins : BP — LYP(7) is a topological embedding.
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To prove Theorem 2.2 we need the following two lemmas.

Lemma 2.3. Let s > —1 and let k and m be non-negative integers.
If f € L*(vs), then R  REf = RI"trf.

PROOF. Same as the equality (2.2).

The following lemma is proven in [6]. The proof is simple and it will
be included for a reader convenience.

Lemma 2.4 [6]. If 0 < p < 1, then L*?(7) C L'(7) and the inclusion
map is continuous.

PROOF. Let 0 < § <e<1,26=¢(l+6?),and let f € LLP(7). The
invariance of the measure 7 and Fubini’s theorem shows that

(2.3) Li(t) = L*9(7), forany ¢, 0 < g < oc.

Thus, we have

Il = Wlgor <€ [[ [ 17@1arte)]arte

Es(z)
1-p p
<cessw| [ irlar@] [ [ n@lo)] ae.
Es(z) B Es(z)
It is easy to see that if w € Fs(z) then Es(w) C Ec(z). Thus,

/[Moo’(s(MLgf)(Z)]pdT(Z) < C/[M17€f(z)]pd7'(z).
B

B

On the other hand,

ess sup(Ml,(;f(w))pT(é) = esssup XEé(w)(z)(ML(;f(w))pdT(z)
weB weB 2

< /eSSS]lgleEé(z)(U))(M1,5f(w))pd7_(z)

we

_ / (Moo s(My5£)(2)]dr(2).

B
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Combining the above inequalities we find that || f|| 17y < C||f[|L1.p(r)-

PROOF of Theorem 2.2. Let f € LYP(7) and let m be any integer
larger than n/p. Using Lemma 2.4 we see that

m 1—|“LU| )" S| f(w)]
|RS f(2)] < C/ 11— (2, w) [prits+m dr(w)

<ol [ ] 4 o] ]

e(w

for some fixed ¢, 0 < € < 1.
Since 1 — [£]* 21— |w|? and |1 — (2,&) | 2 |1 — (2,w) |, if £ € Ec(w),
we have

_ (n+1+s) D
R (2 w<c/}y_zﬁbﬁﬁuﬁm{/”u&nm&ﬂdﬂw.

E.(w)

Using Lemma 2.3 and (2.1) we obtain

11 = [21)™ R Pefll ooy = (1 = |2*) ™ RSB |l o)

ﬂM—VWW@NmméCUﬁ—VWW

B
(e ] o] wmlec]
Be(w)

— C[/(l — |w[?)pntits) [ / |f(§)|d7(£)r
’ Ee(w)

4 “‘VWW%*”@}mmr7

1= (2 w) PO

by Fubini’s theorem.
By standard estimates ([8], p. 17)

(L= [z du(= ) 2\—p(n+1+s)
/ 11— (z,w) [p(ntitmts) — < O(1 = Jw[7) .
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Therefore
11— |2*)™ R Psfllo(ry < C I flLro(r)-

Using Lemma 2.4 we find that

[P fO)] < Cllfllzrwy < Clfllera < ClfllLir)-

Thus, ||Psf|lBr < C|fllz1r(r), by the Remark following Lemma 2.1,
and we have proved that P, : L1'P(7) — BP is continuous.

Let now f € BP. By (2.3) [,(1 — [2))"P[M, R f(2)]"dr(z) <
C||fl%p, for some €, 0 < e < 1. Let 0 < § < e < 1,26 = ¢(1+6%). The
function RY'f € H(B) and therefore the function |R." f(¢w)|P, w € B, is
subharmonic, whence

R7 F(w)” = |[RT f (o (0)] < 672" / R F(0(2)) Pdi(2)
B
<5 / R f(u(2)) Pdr(z) = 5727 / R (=) Pdr(2).
5B Es(w)
From this we find that My ;R f(2) < Mo sRY' f(z) < CM, R f(z),
z € B.

Thus, [|[(1 — [2[*)" M1 sR fllLe(r) < Cllfllsr-
Since

10— |2 R fll gy 2 N~ 2PV M1 6RT 1o,

we see that || Vi, o fllL1er) < CllfllBr.
Using again the fact that 1 — [2|2 2 1 — |w|?, if z € E.(w), we get

Vin,sfll L1y = [/[ / (1- |Z2)m|R;nf(Z)‘7'(2):|pdT(w):|l/p
B E.(w)
p 1/p
> CU(l - Iw\2)mp[ / \RTf(Z)I”dT(z)} dT(w)] 1/p
B B (w)

> Cll(1 = [2[*)" Ry S|

Lr(r)-
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Here we have used the estimate M, (R)' f(w) < M, R} f(w), w € B.
Using (2.2) and Lemma 2.4 we see that

1FO)] < ClVin,s fllLre(r)-

Thus, ||fl|r = |Vim,sfllL1e(r), i-e. Vins is a topological embedding.

We note that V,, s o Ps is projection from L"?(7) onto V,, s(BF). See
the next section. As a corollary of (2.2) and Lemma 2.4 we have that
BP = P,LYP(7).

3. Duality

A linear functional A on BP, 0 < p < 1, is said to be bounded if

Il = sup{ [A(H)] : I fllB» < 1} < oo.

The dual space of BP, denoted (BP)*, is then the space of all bounded
linear functionals on BP.

In [12] it is shown that each dual (L2*)*, 0 < p < 1, s > —1, of the
weighted Bergman space LP® = LP(v,) N H(B), can be indentified with
B®° via volume integral pairing

(fg)a=lim [ f2g@ dva(a). f e LY, g€ B,
B

where [ = %H‘S — (n+1). In this note we show that (BP)*, 0 <p <1,
can also be indentified with B°°, but via a different pairing.

Theorem 3.1. Let 0 < p < 1 ,let m be a positive integer, mp > n,
and s = m —n — 1. The integral pairing
(F:)s = [ Vi) Vg dr(2)
B
induces the following duality: (BP)* = B*.

PROOF. First, assume that ¢ is a function in B>. Then

sup|Vin,59(2)| = sup(1 — [2[*)™|R*g(2)| < C'|lgl| ==
z€EB z€B
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We show that g gives rise to a bounded linear functional on B? under
the pairing (-, -),. By Theorem 2.2 and Lemma 2.4 if f € BP then

1fllBe = CllVins fllLre) 2 ClVins fllLi)-

Thus if f € BP, then we have

[(fo9)] < Sgglvm,sg(z)‘ ”Vm,SfHLl(T) < C|flsr llgll B

Conversely, assume that A is a bounded linear functional on BP; we
show that A arises from a function in B*°. Since V,, s is a topological

embedding of B into L'?(7), Ao V,; | is a bounded linear functional on

the image space of V,,, g in LYP(7). Since LY P(7) C LY(7), by the Hahn-
Banach theorem AoV, L extends to a bounded linear functional on L*(7).
Thus, there exists a functlon ¢ € L>(7) such that

AoV, /w o(2)dr(z), ¢ e L'(r).

When f € BP, then V,,, o f € LY?(7) C L'(7). Therefore

A(f)—/ Viof(2)0(z) dr(2), € BP.

B

Let h = P;(p). Then h € B* and by Lemma 2.3
Vinsh(z) = (1= [2)" R (Pep)(2) = (1 = [2]*)" R ¢(2) = Vin,s0(2).-
To finishe the proof of Theorem 3.1 it remains to show that

<Vm75f’ Vm7590>7' = <Vri,sf7 S0>T and Ym+s7Vs 1V2 f = Vm,sf'

Note that s = m —n—1. This follows easily from Fubini’s theorem and the
reproducing property of P;. We leave the details to the interested reader.
Thus,

_ / Vi of(2) Vg (2) dr(2),  f € B,
B

where g = Vs 1m7s th € B*.
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The proof of Theorem 3.1 shows that the dual space of B! can also
be identified with B under the integral pairing (-, -),. See also [13].

Using the term “Mackey topology” (see [9]), we can refrase Theo-
rem 3.1 as follows.

Corollary 3.2. Suppose 0 < p < 1. Then the norm of B! induces the
Mackey topology on BP; and B! is the Mackey completion of BP.
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