Analytic Besov space $B^{p}, 0<p<1$

By MIROLJUB JEVTIĆ (Beograd)

Abstract

For a measurable function f on the unit ball B in $C^{n}, n \geq 1$, we define $M_{1} f(z), z \in B$, to be the mean modulus of f over a hyperbolic ball with center at z and of a fixed radius. The space $L^{1, p}(\tau), 0<p<1$, where τ is M-invariant measure on B, is defined by the requirement that $M_{1} f \in L^{p}(\tau)$. The analytic Besov space B^{p}, $0<p<1$, can be naturally embedded as a complemented subspace of $L^{1, p}(\tau)$ by a topological embedding $V_{m, s}: B^{p} \mapsto L^{1, p}(\tau)$. We show that $V_{m, s} \circ P_{s}$, where P_{s} is an integral operator whose reproducing kernel is $\gamma_{s}\left(1-|w|^{2}\right)^{s}(1-\langle z, w\rangle)^{-(n+1+s)}$, is projection on this embedded copy. The embedding is applied to show that for each $0<p<1$ the dual space of the Besov space B^{p} is isomorphic to the Bloch space B^{∞} (with equivalent norms) under certain integral pairing.

1. Introduction

Let B be the open unit ball in $C^{n}, n \geq 1$, and ν the $2 n$-dimensional Lebesgue measure on B normalized so that $\nu(B)=1$.

For f analytic on $B, f \in H(B)$, and any positive integer m we write $\partial^{m} f(z)=\left(\partial^{\alpha} f(z)\right)_{|\alpha|=m}$ and $\left|\partial^{m} f(z)\right|=\sum_{|\alpha|=m}\left|\partial^{\alpha} f(z)\right|$, where $\partial^{\alpha} f(z)=\frac{\partial^{|\alpha|} f(z)}{\partial z^{\alpha}}, \alpha$ a multiindex.

Let $0<p \leq \infty$ and let m be a positive integer, $m>n / p$. We define the analytic Besov space B^{p} by

$$
B^{p}=\left\{f \in H(B):\left(1-|z|^{2}\right)^{m}\left|\partial^{m} f(z)\right| \in L^{p}(\tau)\right\},
$$

where $d \tau(z)=\left(1-|z|^{2}\right)^{-n-1} d \nu(z)$ is M-invariant measure on B (see [8]). We note that the definition is independent of m.

For $z \in B, 0<r<1, E_{r}(z)=\left\{w \in B:\left|\varphi_{z}(w)\right|<r\right\}$. As usual, φ_{z} is the standard automorphism of B taking 0 to z (see [8]). An integration in polar coordinates shows that $\tau\left(E_{r}(z)\right)=r^{2 n}\left(1-r^{2}\right)^{-n}=: \tau(r), z \in B$.

For a complex measurable function f on B we define

$$
M_{\infty} f(z)=M_{\infty, r} f(z)=\operatorname{ess} \sup \left\{|f(w)|: w \in E_{r}(z)\right\}
$$

and

$$
M_{p} f(z)=M_{p, r} f(z)=\left(\frac{1}{\tau(r)} \int_{E_{r}(z)}|f(w)|^{p} d \tau(w)\right)^{1 / p}, \quad 0<p<\infty
$$

For $0<p, q \leq \infty$, we define $L_{r}^{p, q}(\tau)$ to be the space of all measurable functions f on B for which

$$
\|f\|_{L_{r}^{p, q}(\tau)}=\left\|M_{p, r} f\right\|_{L^{q}(\tau)}<\infty
$$

Since the definition is independent of $r, 0<r<1$, we will write $L^{p, q}(\tau)$ instead of $L_{r}^{p, q}(\tau)$ (see [3] and [11]).

Throughout this paper we assume s is a real number satisfying $s>-1$. Let γ_{s} be a positive normalizing constant such that the measure $d \nu_{s}(z)=\gamma_{s}\left(1-|z|^{2}\right)^{s} d \nu(z)$ has total mass 1 on B.

Following Forelli and Rudin ([4]) we let

$$
P_{s} f(z)=\gamma_{s} \int_{B} \frac{\left(1-|w|^{2}\right)^{s} f(w) d \nu(w)}{(1-\langle z, w\rangle)^{n+1+s}}, \quad z \in B, f \in L^{1}\left(\nu_{s}\right)
$$

We now introduce some differential operators that are of great importance in the rest of the paper.

Let $s>-1$ and $m \geq 0$. We define a linear operator R_{s}^{m} on $L^{1}\left(\nu_{s}\right)$ by

$$
R_{s}^{m} f(z)=\gamma_{s} \int_{B} \frac{\left(1-|w|^{2}\right)^{s} f(w) d \nu(w)}{(1-\langle z, w\rangle)^{n+1+s+m}}
$$

If $1 \leq p \leq \infty$ and $s>-1$ then $B^{p}=P_{s} L^{p}(\tau)$ (see [7], [10]). In this note we show that the analytic Besov space $B^{p}, 0<p<1$, can be naturally embedded as a complemented subspace of $L^{1, p}(\tau)$ by a topological embedding $V_{m, s}: B^{p} \rightarrow L^{1, p}(\tau)$ defined by $V_{m, s} f(z)=\left(1-|z|^{2}\right)^{m} R_{s}^{m} f(z)$,
where $m p>n$ and $s>-1$. We show that $V_{m, s} \circ P_{s}$ is projection on this embedded copy and $B^{p}=P_{s} L^{1, p}(\tau)$.

Our work was motivated by the paper [6] where the coresponding problem for the Bergman space was considered.

Further, we show that for each $0<p<1$ the dual space of the Besov space B^{p} is isomorphic to the Bloch space B^{∞} (with equivalent norms) under certain integral pairing.
2. Analytic Besov space $B^{p}, 0<p<1$

First, we give a characterization of the Besov space B^{p} in terms of the differential operators R_{s}^{m}.

Lemma 2.1. Let $0<p<\infty, s>-1$ and let m be a positive integer, $m>n / p$. If $f \in H(B)$ then the following are equivalent:
(i) $f \in B^{p}$,
(ii) $\int_{B}\left(1-|z|^{2}\right)^{m p}\left|R^{m} f(z)\right|^{p} d \tau(z)<\infty$, where R denotes the radial derivative $R=\sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}}$,
(iii) $\int_{B}\left(1-|z|^{2}\right)^{m p}\left|R_{s}^{m} f(z)\right|^{p} d \tau(z)<\infty$.

Proof. In [2] it is shown that $(i) \Longleftrightarrow(i i)$
The implication $(i i) \Longrightarrow(i i i)$ follows from the following identities:

$$
\begin{gather*}
R_{s}^{0} f=P_{s} f=f \text { and } \\
R_{s}^{m} f=\left[(n+1+s+m)^{-1} R+I\right] R_{s}^{m-1} f, \quad f \in B^{p} \tag{2.1}
\end{gather*}
$$

(a straightforward calculation, see [7]).
Assume now that (iii) holds. Then using the reproducing property of the operator P_{s} and Fubini's theorem we obtain

$$
\begin{align*}
& \int_{B} \frac{\left(1-|w|^{2}\right)^{s+m} R_{s}^{m} f(w)}{(1-\langle z, w\rangle)^{n+1+s}} d \nu(w) \tag{2.2}\\
& =\int_{B} \frac{\left(1-|w|^{2}\right)^{s+m}}{(1-\langle z, w\rangle)^{n+1+s}}\left[\gamma_{s} \int_{B} \frac{\left(1-|\xi|^{2}\right)^{s} f(\xi)}{(1-\langle w, \xi\rangle)^{n+1+s+m}} d \nu(\xi)\right] d \nu(w)
\end{align*}
$$

$$
\begin{aligned}
= & \gamma_{s} \int_{B}\left(1-|\xi|^{2}\right)^{s} f(\xi) \\
& \times\left[\int_{B} \frac{\left(1-|w|^{2}\right)^{s+m} d \nu(w)}{(1-\langle w, \xi\rangle)^{n+1+s+m}(1-\langle z, w\rangle)^{n+1+s}}\right] d \nu(\xi) \\
= & \frac{\gamma_{s}}{\gamma_{s+m}} \int_{B} \frac{\left(1-|\xi|^{2}\right)^{s} f(\xi)}{(1-\langle z, \xi\rangle)^{n+1+s}} d \nu(\xi)=\frac{1}{\gamma_{s+m}} f(z) .
\end{aligned}
$$

Taking derivatives inside integral gives

$$
\left|\partial^{m} f(z)\right| \leq C \int_{B} \frac{\left(1-|w|^{2}\right)^{s+m}\left|R_{s}^{m} f(w)\right|}{|1-\langle z, w\rangle|^{n+1+s+m}} d \nu(w) .
$$

By Theorem 1.1 ([5]), $f \in B^{p}$.
Here and elsewhere constants are denoted by C which may indicate a different constant from one occurrence to the next.

Remark. Carefully examining the proof of Lemma 2.1 above we actually see that the following are equivalent "norms" on B^{p} for the appropriate p's:

$$
\begin{align*}
& \left(\int_{B}\left(1-|z|^{2}\right)^{m p}\left|\partial^{m} f(z)\right|^{p} d \tau(z)\right)^{1 / p}+\sum_{|\alpha|<m}\left|\partial^{\alpha} f(0)\right|, \tag{1}\\
& \left(\int_{B}\left(1-|z|^{2}\right)^{m p}\left|R^{m} f(z)\right|^{p} d \tau(z)\right)^{1 / p}+|f(0)|, \tag{2}\\
& \left(\int_{B}\left(1-|z|^{2}\right)^{m p}\left|R_{s}^{m} f(z)\right|^{p} d \tau(z)\right)^{1 / p}+|f(0)| .
\end{align*}
$$

In the sequel by $\|f\|_{B^{p}}$ we will mean any of the expressions (1), (2) and (3).
A similar argument shows that

$$
\|f\|_{B^{\infty}} \cong|f(0)|+\sup _{z \in B}\left(1-|z|^{2}\right)^{m}\left|R_{s}^{m} f(z)\right| .
$$

Theorem 2.2. Let $0<p<1$. Then for any $s>-1, P_{s}: L^{1, p}(\tau) \mapsto$ B^{p} is a continuous linear map. Moreover if m is an integer, $m>n / p$, $V_{m, s}: B^{p} \mapsto L^{1, p}(\tau)$ is a topological embedding.

To prove Theorem 2.2 we need the following two lemmas.
Lemma 2.3. Let $s>-1$ and let k and m be non-negative integers. If $f \in L^{1}\left(\nu_{s}\right)$, then $R_{s+k}^{m} R_{s}^{k} f=R_{s}^{m+k} f$.

Proof. Same as the equality (2.2).
The following lemma is proven in [6]. The proof is simple and it will be included for a reader convenience.

Lemma 2.4 [6]. If $0<p<1$, then $L^{1, p}(\tau) \subset L^{1}(\tau)$ and the inclusion map is continuous.

Proof. Let $0<\delta<\epsilon<1,2 \delta=\epsilon\left(1+\delta^{2}\right)$, and let $f \in L_{\epsilon}^{1, p}(\tau)$. The invariance of the measure τ and Fubini's theorem shows that

$$
\begin{equation*}
L^{q}(\tau)=L^{q, q}(\tau), \quad \text { for any } q, 0<q<\infty . \tag{2.3}
\end{equation*}
$$

Thus, we have

$$
\begin{gathered}
\|f\|_{L^{1}(\tau)} \cong\|f\|_{L_{\delta}^{1,1}(\tau)} \leq C \int_{B}\left[\int_{E_{\delta}(z)}|f(\xi)| d \tau(\xi)\right] d \tau(z) \\
\leq C \underset{z \in B}{\operatorname{ess} \sup }\left[\int_{E_{\delta}(z)}|f(\xi)| d \tau(\xi)\right]^{1-p} \int_{B}\left[\int_{E_{\delta}(z)}|f(\xi)| d \tau(\xi)\right]^{p} d \tau(z) .
\end{gathered}
$$

It is easy to see that if $w \in E_{\delta}(z)$ then $E_{\delta}(w) \subset E_{\epsilon}(z)$. Thus,

$$
\int_{B}\left[M_{\infty, \delta}\left(M_{1, \delta} f\right)(z)\right]^{p} d \tau(z) \leq C \int_{B}\left[M_{1, \epsilon} f(z)\right]^{p} d \tau(z) .
$$

On the other hand,

$$
\begin{aligned}
\underset{w \in B}{\operatorname{esssup}}\left(M_{1, \delta} f(w)\right)^{p} \tau(\delta) & =\underset{w \in B}{\operatorname{ess} \sup } \int_{B} \mathcal{X}_{E_{\delta}(w)}(z)\left(M_{1, \delta} f(w)\right)^{p} d \tau(z) \\
& \leq \int_{B} \underset{w \in B}{\operatorname{ess} \sup } \mathcal{X}_{E_{\delta}(z)}(w)\left(M_{1, \delta} f(w)\right)^{p} d \tau(z) \\
& =\int_{B}\left[M_{\infty, \delta}\left(M_{1, \delta} f\right)(z)\right]^{p} d \tau(z) .
\end{aligned}
$$

Combining the above inequalities we find that $\|f\|_{L^{1}(\tau)} \leq C\|f\|_{L^{1, p}(\tau)}$.
Proof of Theorem 2.2. Let $f \in L^{1, p}(\tau)$ and let m be any integer larger than n / p. Using Lemma 2.4 we see that

$$
\begin{gathered}
\left|R_{s}^{m} f(z)\right| \leq C \int_{B} \frac{\left(1-|w|^{2}\right)^{n+1+s}|f(w)|}{|1-\langle z, w\rangle|^{n+1+s+m}} d \tau(w) \\
\leq C\left[\int_{B}\left[\int_{E_{\epsilon}(w)} \frac{\left(1-|\xi|^{2}\right)^{n+1+s}|f(\xi)|}{|1-\langle z, \xi\rangle|^{n+1+s+m}} d \tau(\xi)\right]^{p} d \tau(w)\right]^{1 / p},
\end{gathered}
$$

for some fixed $\epsilon, 0<\epsilon<1$.
Since $1-|\xi|^{2} \cong 1-|w|^{2}$ and $|1-\langle z, \xi\rangle| \cong|1-\langle z, w\rangle|$, if $\xi \in E_{\epsilon}(w)$, we have

$$
\left|R_{s}^{m} f(z)\right|^{p} \leq C \int_{B} \frac{\left(1-|w|^{2}\right)^{p(n+1+s)}}{|1-\langle z, w\rangle|^{p(n+1+s+m)}}\left[\int_{E_{\epsilon}(w)}|f(\xi)| d \tau(\xi)\right]^{p} d \tau(w) .
$$

Using Lemma 2.3 and (2.1) we obtain

$$
\begin{gathered}
\left\|\left(1-|z|^{2}\right)^{m} R_{s}^{m} P_{s} f\right\|_{L^{p}(\tau)}=\left\|\left(1-|z|^{2}\right)^{m} R_{s}^{m} R_{s}^{0} f\right\|_{L^{p}(\tau)} \\
=\left\|\left(1-|z|^{2}\right)^{m} R_{s}^{m} f\right\|_{L^{p}(\tau)} \leq C\left[\int_{B}\left(1-|z|^{2}\right)^{m p}\right. \\
\left.\times\left[\int_{B} \frac{\left(1-|w|^{2}\right)^{p(n+1+s)}}{|1-\langle z, w\rangle|^{p(n+1+s+m)}}\left[\int_{E_{\epsilon}(w)}|f(\xi)| d \tau(\xi)\right]^{p} d \tau(w)\right] d \tau(z)\right]^{1 / p} \\
=C\left[\int_{B}\left(1-|w|^{2}\right)^{p(n+1+s)}\left[\int_{E_{\epsilon}(w)}|f(\xi)| d \tau(\xi)\right]^{p}\right. \\
\left.\times\left[\int_{B} \frac{\left(1-|z|^{2}\right)^{m p-n-1} d \nu(z)}{|1-\langle z, w\rangle|^{p(n+1+s+m)}}\right] d \tau(w)\right]^{1 / p}
\end{gathered}
$$

by Fubini's theorem.
By standard estimates ([8], p. 17)

$$
\int_{B} \frac{\left(1-|z|^{2}\right)^{m p-n-1} d \nu(z)}{|1-\langle z, w\rangle|^{p(n+1+m+s)}} \leq C\left(1-|w|^{2}\right)^{-p(n+1+s)} .
$$

Therefore

$$
\left\|\left(1-|z|^{2}\right)^{m} R_{s}^{m} P_{s} f\right\|_{L^{p}(\tau)} \leq C\|f\|_{L^{1, p}(\tau)} .
$$

Using Lemma 2.4 we find that

$$
\left|P_{s} f(0)\right| \leq C\|f\|_{L^{1}\left(\nu_{s}\right)} \leq C\|f\|_{L^{1}(\tau)} \leq C\|f\|_{L^{1, p}(\tau)} .
$$

Thus, $\left\|P_{s} f\right\|_{B^{p}} \leq C\|f\|_{L^{1, p}(\tau)}$, by the Remark following Lemma 2.1, and we have proved that $P_{s}: L^{1, p}(\tau) \mapsto B^{p}$ is continuous.

Let now $f \in B^{p}$. By (2.3) $\int_{B}\left(1-|z|^{2}\right)^{m p}\left[M_{p, \epsilon} R_{s}^{m} f(z)\right]^{p} d \tau(z) \leq$ $C\|f\|_{B p}^{p}$, for some $\epsilon, 0<\epsilon<1$. Let $0<\delta<\epsilon<1,2 \delta=\epsilon\left(1+\delta^{2}\right)$. The function $R_{s}^{m} f \in H(B)$ and therefore the function $\left|R_{s}^{m} f\left(\varphi_{w}\right)\right|^{p}, w \in B$, is subharmonic, whence

$$
\begin{aligned}
& \left|R_{s}^{m} f(w)\right|^{p}=\left|R_{s}^{m} f\left(\varphi_{z}(0)\right)\right|^{p} \leq \delta^{-2 n} \int_{\delta B}\left|R_{s}^{m} f\left(\varphi_{w}(z)\right)\right|^{p} d \nu(z) \\
& \leq \delta^{-2 n} \int_{\delta B}\left|R_{s}^{m} f\left(\varphi_{w}(z)\right)\right|^{p} d \tau(z)=\delta^{-2 n} \int_{E_{\delta}(w)}\left|R_{s}^{m} f(z)\right|^{p} d \tau(z) .
\end{aligned}
$$

From this we find that $M_{1, \delta} R_{s}^{m} f(z) \leq M_{\infty, \delta} R_{s}^{m} f(z) \leq C M_{p, \epsilon} R_{s}^{m} f(z)$, $z \in B$.

Thus, $\left\|\left(1-|z|^{2}\right)^{m} M_{1, \delta} R_{s}^{m} f\right\|_{L^{p}(\tau)} \leq C\|f\|_{B^{p}}$.
Since

$$
\left\|\left(1-|z|^{2}\right)^{m} R_{s}^{m} f\right\|_{L_{\delta}^{1, p}(\tau)} \cong\left\|\left(1-|z|^{2}\right)^{m} M_{1, \delta} R_{s}^{m} f\right\|_{L^{p}(\tau)}
$$

we see that $\left\|V_{m, s} f\right\|_{L^{1, p}(\tau)} \leq C\|f\|_{B^{p}}$.
Using again the fact that $1-|z|^{2} \cong 1-|w|^{2}$, if $z \in E_{\epsilon}(w)$, we get

$$
\begin{aligned}
\left\|V_{m, s} f\right\|_{L^{1, p}(\tau)} & =\left[\int_{B}\left[\int_{E_{\epsilon}(w)}\left(1-|z|^{2}\right)^{m}\left|R_{s}^{m} f(z)\right| \tau(z)\right]^{p} d \tau(w)\right]^{1 / p} \\
& \geq C\left[\int_{B}\left(1-|w|^{2}\right)^{m p}\left[\int_{E_{\epsilon}(w)}\left|R_{s}^{m} f(z)\right| d \tau(z)\right]^{p} d \tau(w)\right]^{1 / p} \\
& \geq C\left[\int_{B}\left(1-|w|^{2}\right)^{m p}\left[\int_{E_{\epsilon}(w)}\left|R_{s}^{m} f(z)\right|^{p} d \tau(z)\right] d \tau(w)\right]^{1 / p} \\
& \geq C\left\|\left(1-|z|^{2}\right)^{m} R_{s}^{m} f\right\|_{L^{p}(\tau)}
\end{aligned}
$$

Here we have used the estimate $M_{p, \epsilon} R_{s}^{m} f(w) \leq M_{1, \epsilon} R_{s}^{m} f(w), w \in B$.
Using (2.2) and Lemma 2.4 we see that

$$
|f(0)| \leq C\left\|V_{m, s} f\right\|_{L^{1, p}(\tau)} .
$$

Thus, $\|f\|_{B^{p}} \cong\left\|V_{m, s} f\right\|_{L^{1, p}(\tau)}$, i.e. $V_{m, s}$ is a topological embedding.
We note that $V_{m, s} \circ P_{s}$ is projection from $L^{1, p}(\tau)$ onto $V_{m, s}\left(B^{p}\right)$. See the next section. As a corollary of (2.2) and Lemma 2.4 we have that $B^{p}=P_{s} L^{1, p}(\tau)$.

3. Duality

A linear functional λ on $B^{p}, 0<p<1$, is said to be bounded if

$$
\|\lambda\|=\sup \left\{|\lambda(f)|:\|f\|_{B^{p}} \leq 1\right\}<\infty .
$$

The dual space of B^{p}, denoted $\left(B^{p}\right)^{\star}$, is then the space of all bounded linear functionals on B^{p}.

In [12] it is shown that each dual $\left(L_{a}^{p, s}\right)^{\star}, 0<p<1, s>-1$, of the weighted Bergman space $L_{a}^{p, s}=L^{p}\left(\nu_{s}\right) \cap H(B)$, can be indentified with B^{∞} via volume integral pairing

$$
\langle f, g\rangle_{\beta}=\lim _{r \rightarrow 1} \int_{B} f(r z) \overline{g(z)} d \nu_{\beta}(z), \quad f \in L_{a}^{p, s}, g \in B^{\infty}
$$

where $\beta=\frac{n+1+s}{p}-(n+1)$. In this note we show that $\left(B^{p}\right)^{\star}, 0<p<1$, can also be indentified with B^{∞}, but via a different pairing.

Theorem 3.1. Let $0<p<1$, let m be a positive integer, $m p>n$, and $s=m-n-1$. The integral pairing

$$
\langle f, g\rangle_{\tau}=\int_{B} V_{m, s} f(z) \overline{V_{m, s} g(z)} d \tau(z)
$$

induces the following duality: $\left(B^{p}\right)^{\star}=B^{\infty}$.
Proof. First, assume that g is a function in B^{∞}. Then

$$
\sup _{z \in B}\left|V_{m, s} g(z)\right|=\sup _{z \in B}\left(1-|z|^{2}\right)^{m}\left|R_{s}^{m} g(z)\right| \leq C\|g\|_{B^{\infty}}
$$

We show that g gives rise to a bounded linear functional on B^{p} under the pairing $\langle\cdot, \cdot\rangle_{\tau}$. By Theorem 2.2 and Lemma 2.4 if $f \in B^{p}$ then

$$
\|f\|_{B^{p}} \geq C\left\|V_{m, s} f\right\|_{L^{1, p}(\tau)} \geq C\left\|V_{m, s} f\right\|_{L^{1}(\tau)}
$$

Thus if $f \in B^{p}$, then we have

$$
|\langle f, g\rangle|_{\tau} \leq \sup _{z \in B}\left|V_{m, s} g(z)\right|\left\|V_{m, s} f\right\|_{L^{1}(\tau)} \leq C\|f\|_{B^{p}}\|g\|_{B^{\infty}}
$$

Conversely, assume that λ is a bounded linear functional on B^{p}; we show that λ arises from a function in B^{∞}. Since $V_{m, s}$ is a topological embedding of B^{p} into $L^{1, p}(\tau), \lambda \circ V_{m, s}^{-1}$ is a bounded linear functional on the image space of $V_{m, s}$ in $L^{1, p}(\tau)$. Since $L^{1, p}(\tau) \subset L^{1}(\tau)$, by the HahnBanach theorem $\lambda \circ V_{m, s}^{-1}$ extends to a bounded linear functional on $L^{1}(\tau)$. Thus, there exists a function $\varphi \in L^{\infty}(\tau)$ such that

$$
\lambda \circ V_{m, s}^{-1}(\psi)=\int_{B} \psi(z) \overline{\varphi(z)} d \tau(z), \quad \psi \in L^{1}(\tau)
$$

When $f \in B^{p}$, then $V_{m, s} f \in L^{1, p}(\tau) \subset L^{1}(\tau)$. Therefore

$$
\lambda(f)=\int_{B} V_{m, s} f(z) \overline{\varphi(z)} d \tau(z), \quad f \in B^{p}
$$

Let $h=P_{s}(\varphi)$. Then $h \in B^{\infty}$ and by Lemma 2.3

$$
V_{m, s} h(z)=\left(1-|z|^{2}\right)^{m} R_{s}^{m}\left(P_{s} \varphi\right)(z)=\left(1-|z|^{2}\right)^{m} R_{s}^{m} \varphi(z)=V_{m, s} \varphi(z) .
$$

To finishe the proof of Theorem 3.1 it remains to show that

$$
\left\langle V_{m, s} f, V_{m, s} \varphi\right\rangle_{\tau}=\left\langle V_{m, s}^{2} f, \varphi\right\rangle_{\tau} \quad \text { and } \quad \gamma_{m+s} \gamma_{s}^{-1} V_{m, s}^{2} f=V_{m, s} f .
$$

Note that $s=m-n-1$. This follows easily from Fubini's theorem and the reproducing property of P_{s}. We leave the details to the interested reader.

Thus,

$$
\lambda(f)=\int_{B} V_{m, s} f(z) \overline{V_{m, s} g(z)} d \tau(z), \quad f \in B^{p},
$$

where $g=\gamma_{s+m} \gamma_{s}^{-1} h \in B^{\infty}$.

The proof of Theorem 3.1 shows that the dual space of B^{1} can also be identified with B^{∞} under the integral pairing $\langle\cdot, \cdot\rangle_{\tau}$. See also [13].

Using the term "Mackey topology" (see [9]), we can refrase Theorem 3.1 as follows.

Corollary 3.2. Suppose $0<p<1$. Then the norm of B^{1} induces the Mackey topology on B^{p}; and B^{1} is the Mackey completion of B^{p}.

References

[1] P. Ahern and M. Jevtić, Duality and multipliers for mixed norm spaces of analytic functions, Michigen Math. J. 30 (1983), 53-64.
[2] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions, Disser. Math. 276 (1989), 1-57.
[3] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, Journal of Functional Analysis 93 (1990), 310-350.
[4] F. Forelli and W. Rudin, Projection on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
[5] M. Jevtić, Projection theorems, fractional derivatives and inclusion theorems for mixed-norm spaces on the ball, Analysis 9 (1989), 83-105.
[6] M. Mateljević and M. Pavlović, An extension of the Forelli-Rudin projection theorem, Proc. Edingb. Math. Soc. 36 (1993), 375-389.
[7] M. Peloso, Möbius invariant spaces on the unit ball, Thesis, University of Washington, 1990.
[8] W. Rudin, Function theory in the unit ball of C^{n}, Springer-Verlag, New York, 1980.
[9] J. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
[10] K. Zhu, Analytic Besov spaces, Journal of Math. Analysis and Applications 157 (1991), 318-336.
[11] K. Zhu, BMO and Hankel operators on Bergman spaces, Pacific J. Math. 155 (1992), 377-395.
[12] K. Zhu, Bergman and Hardy spaces with small exponents, Pacific J. Math. 162 (1994), 189-199.
[13] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, II, Indiana University Mathematics J. 44 (1995), 1017-1031.
[14] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, Quart. J. Math. Oxford 46 (1995), 239-256.

```
MIROLJUB JEVTIĆ
MATEMATIČKI FAKULTET
STUDENTSKI TRG }1
11000 BEOGRAD
YUGOSLAVIA
```

