A note on regular rings.

To the memory of my beloved teacher Professor Tibor Szele.

By LAszLO KOVACS in Debrecen.

It is well known, that in a regular') ring R every left (right) ideal / is
idempotent (i. e. /*=1). The question, whether or not this is a characteristic
property of the regular rings, seems to be of some interest. In this little note
we give three theorems related to this problem. In Theorem 1 we charac-
terize the regular rings by a condition for one-sided ideals, which in the
commutative case is equivalent to the idempotency of the ideals in R. In
Theorem 2 we solve an analogous problem, the result shows that the regular
rings without nonzero nilpotent elements are characterized by the idempotency
of their quasi-ideals. Applying this result and a theorem of A. KERTESZ we get
Theorem 3, which is a criterion for decomposibility of rings into a direct
sum of division rings. — | am indebted to A. KERTESZ for his valuable help.

The concept of the quasi-ideal was introduced by O. STEINFELD in [5].
A submodule M of the ring R is said to be a quasi-ideal if RMnMR S M.
Elementary facts connected with this concept: a quasi-ideal is a subring,
but not every subring is a quasi-ideal; the intersection of one-sided ideals
is always a quasi-ideal; in the presence of a one-sided unity every quasi-
ideal is intersection of one-sided ideals, etc. These and further results on
quasi-ideals are to be found in [6] and [7].

In an arbitrary ring R
) JLE/nL
holds for any right-ideal / and any left-ideal L of R. Our first theorem cha-
racterizes the rings in which equality holds in (1) in every case. Namely,
we prove the following

Theorem 1. An arbitrary ring R is regular if and only if
(2) JL=]nL
holds for every right-ideal | and left-ideal L of R.

1) In the sense of ]. von Neumann [4). — Numbers in brackets refer to the biblio-

graphy at the end of this note.
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First we assume (2) and show that R is regular. Let @ be an arbitrary
element of R. The right-ideal generated by a is the set [an-ar] of all ele-
ments of the form an+ar (n integer, r € R). By (2)

[an+arl=lan+arlnR=[an+ar]lR=aR
and so a € aR. Analogously a € Ra and hence
a€aRnRa=akKa,
i. e. a=axa, R is regular.

The converse statement is almost trivial. Let R be a regular ring, by
(1) we have only to show that any element @ of /nL is in JL. From
a=axa, a€jJ, xa€L we conclude a€ /L.

In what follows we shall give a characterization of regular rings
without nonzero nilpotent elements, in terms of quasi-ideals.

Theorem 2. For an arbitrary ring R the following conditions are
equivalent :

@) R is a regular ring without nonzero nilpotent elements;

B) every quasi-ideal of R is idempotent;

y) for every right-ideal | and every left-ideal L of R

JL=]JnLEL]
holds ;

d) R is regular and isomorphic to a subdirect sum of division rings.?)

@) implies 8). Let M be a quasi-ideal of R and a an arbitrary element
of M. Since M is a subring, M’S M and so we have only to prove MS M?,
i. e. a € M*. By the regularity of R we have a —axa. Here xa is an idem-
potent and so, since R has no nonzero nilpotents, xa is in the center of R.
Using also MREMSEMRNRMEM we get

a=(ax)a(xa)=(ax)(xa)a=(ax*a)a € MR*°M-M S M?,

qu. e. d.

B) implies y). Let M and N denote quasi-ideals in R, then MnN is
also a quasi-ideal. By the idempotency of MnN we have

MAN=MnN)}SMNnNM.
On the other hand
MNNNMEMRNRMEM

analogously MNNnNMSN, and so MNN=MNnNM.

Now let / be a right-ideal, L a left-ideal in R. Since a one-sided ideal
is always a quasi-ideal, we have JnL=JLnLJ, but JLS/nL and so
JL=JnLESL].

%) The equivalence of a) and d) has been proved by A. Forsythe and N. H. McCoy in
[2]; we prove it here only for completness’ sake.
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y) implies d). Let R be a subdirect sum of the subdirectly irreducible
rings Ry, ..., Ry,....°) Since every R, is a homomorphic image of R, all
the R,’s have property 7). Thus, by Theorem 1,R and all the R,’s are
regular. Suppose, that one of the R,’s has divisors of zero, i. e. for some
nonzero elements @ and & of R, we have ab=0. Then by y)

bR,-R,a=0bR,NR,aS R,a-bR,=0
and so
R,bR,NR,aR,—R,bR,-R,aR,—0

where, by a=(ax)a(xa) € R,aR, and b= (by)b(yb) € R,bR,, none of these
ideals is 0. This contradicts to the supposition that R, is subdirectly irre-
ducible, and so we have that all the R,’s are regular rings without divisors
of zero, i. e. all the R,’s are division rings.

That d) implies @) does not need a proof.

Corollary. A commutative ring R is regular if and only if every ideal
is idempotent in R.

This follows immediately from Theorem 2, since in a commutative ring
every quasi-ideal is an ideal, and a commutative regular ring can have no
nonzero nilpotents. Our statement is also a simple corollary of Theorem 1,
since (2) in the case /= L implies the idempotency of the ideals, and the
proof of the converse statement is analogous to that of &) implies y) in
Theorem 2.

As an application of Theorem 2 we have

Theorem 3. A ring R is a direct sum*) of division rings if and only
if R satisfies the descending chain condition for principal (two-sided) ideals
and every quasi-ideal of R is idempotent.’)

The proof is based on the following (not yet published) theorem of
A. KERTESZ:

Let ¢ be a property defined for simple rings. A ring R is a direct
sum of simple nings with property ¢ if and only if R satisfies the des-
cending chain condition for principal ideals and contains a system of its
maximal ideals M,, the intersection of which is O and for which all the
factor rings R/M, have property ¢.

Since a direct sum R of division rings is a regular ring without non-
zero nilpotent eiements, by Theorem 2 every quasi-ideal of R is idempotent;

%) According to a theorem of G. Birknorr [1] such a representation always exists.

1) By a direct sum we always mean a two-sided (ring-theoretical) discrete direct sum,
but we use the term “subdirect sum*“ in the usual sense, i.e. for certain subrings of the
complete direct sum.

%) Another criterion is given by A. Gerrtschikorr [3].
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moreover it is evident, that R satisfies the descending chain condition for
principal ideals. Conversely, if R satisfies the conditions of Theorem 3, then
by Theorem 2 it is a subdirect sum of division rings, i. e. there exists a
system of maximal ideals M, in R, the intersection of which is O and for
which every factor ring R'M, is a division ring. So we have by the above
theorem of A. KERTESZ (in our case property ¢ characterizes the division-
rings) that R is a direct sum of division rings.

RemARK. | am indebted to Professor L. FucHs who has kindly directed
my attention to the fact that

A ring R is a finite direct sum of division rings if and only if it has
no nilpotent quasiideals and satisfies the descending chain condition for
quasi-ideals.

This is an immediate consequence of the WEDDERBURN—ARTIN structure
theorem, and also of GERTSCHIKOFF's theorem [3].
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