Matric criteria for the uniqueness of basis number and the equivalence of algebras over a ring.

Dedicated to the memory of Tibor Szele.

By ROSS A. BEAUMONT in Seattle, Washington.

1. Introduction.

- C. J. EVERETT [1] has proved that a right free R-module over a ring R with identity has a unique basis number if the right ideals of R satisfy the ascending chain condition. By giving a symmetric form of one of EVERETT's theorems, we derive in Sec. 2, Theorem 2, a necessary and sufficient condition for the uniqueness of the basis number of a left (right) free R-module. By using results of BAER [2] and McCoy [3], we prove that any one of the following conditions on R is sufficient for the uniqueness of the basis number.
- 1. R satisfies the ascending chain condition either for right or for left ideals.
- R is commutative.
 Since R has an identity, the descending chain conditions imply the ascending chain conditions.

In Sec. 3, algebras over a non-commutative ring are discussed, and a necessary and sufficient condition (Theorem 5) is obtained for equivalence in terms of a matrix transformation of the multiplication tables of the algebras. In Sec. 4, matrix conditions for the classification of groupoids are given and a necessary and sufficient condition for isomorphism (Theorem 9) in the form of a matrix transformation of the multiplication tables is derived.

2. Units for rectangular matrices.

Let $R \neq 0$ be a ring with identity 1. We denote by ${}_{m}R_{n}$ the set of all $m \times n$ matrices and by R_{n} the set of all $n \times n$ matrices with elements in R.

DEFINITION. A matrix $A \in {}_{m}R_{n}$ is a *unit* if there exists a matrix $B \in {}_{n}R_{m}$ such that $AB = I_{m}$ and $BA = I_{n}$. We call B an *inverse* of A.

Let A be a unit in ${}_{m}R_{n}$ with inverse B. Then if either $AX = I_{m}$ or $XA = I_{n}$ for $X \in {}_{n}R_{m}$, it follows that X = B. In particular, a unit has a unique inverse.

DEFINITION. A ring R is regular for n if C, $D \in R_n$ and $CD = I_n$ implies $DC = I_n$.

Lemma 1. If R is regular for m and n, $m \neq n$, then there are no units in ${}_{m}R_{n}$

PROOF. Assume that $A \in {}_{m}R_{n}$ is a unit. Suppose first that n < m, and let $B \in {}_{n}R_{m}$ be the inverse of A. Then $A = \begin{pmatrix} A_{1} \\ A_{2} \end{pmatrix}$ where $A_{1} \in R_{n}$ and $B = (B_{1}B_{2})$ where $B_{1} \in R_{n}$. $AB = I_{m}$ gives $A_{1}B_{1} = I_{n}$, and since R is regular for n, we have $B_{1}A_{1} = I_{n}$. But $AB = I_{m}$ gives $A_{1}B_{2} = 0$ and $A_{2}B_{2} = I_{m-n}$. Since $0 = B_{1}A_{1}B_{2} = B_{2}$, this contradicts $A_{2}B_{2} = I_{m-n}$.

Similarly, if m < n, the equation $BA = I_n$ and the fact that R is regular for m leads to a contradiction.

By the lemma, there are no units in ${}_{m}R_{n}$ for every $m, n, m \neq n$ if R is regular for n for every n > 0. It follows from BAER's result ([2], p. 635), that any ring which satisfies the ascending chain condition either for left ideals or for right ideals is regular for n for every n > 0. (Since $1 \in R$, the descending chain condition implies the ascending chain condition).

Lemma 2. If R is commutative, then there are no units in ${}_{m}R_{n}$ for every $m, n, m \neq n$.

PROOF. Assume that $A \in {}_mR_n$ is a unit, $m \neq n$, and suppose n < m. There exists $B \in {}_nR_m$ such that $AB = \binom{A_1}{A_2}(B_1B_2) = \binom{A_1B_1}{A_2B_1} \binom{A_1B_2}{A_2B_2} = I_m$, where $A_1, B_1 \in R_n$. Since $A_1B_1 = I_n$, A_1 has rank n, as defined by McCoy ([3], p. 159). For $|A_1||B_1| = 1$, and if there exists $a \neq 0$ in R such that $a|A_1| = 0$, we would have $0 = a|A_1||B_1| = a$. Now suppose $B_2 \neq 0$. Then there is a

column
$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 of B_2 such that $A_1 \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, since $A_1 B_2 = 0$.

But by McCov's theorem ([3], page 159), this implies that A_1 has rank less than n, which is a contradiction. Hence $B_2 = 0$. But this contradicts $A_2B_2 = I_{m-n}$, so that the assumption of the existence of a unit leads to contradiction.

If m < n, the assumption of the existence of a unit in ${}_{m}R_{n}$ and the equation $BA = I_{n}$, gives a contradiction in the same way.

Lemma 2 may also be obtained as a corollary of Lemma 1 by noticing that a commutative ring is regular for n for every n > 0.

Let N(R) be a free left R-module with basis $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$. Throughout, we will consider left modules. There are, of course, corresponding statements of the results for right modules. A theorem of EVERETT ([1] p. 313) states that

$$\begin{pmatrix} \tau_{l1} \\ \tau_{l2} \\ \vdots \\ \tau_{lm} \end{pmatrix} = A \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}, m < n, \text{ is a basis of } N(R) \text{ if and only if } A \in {}_mR_n \text{ satisfies}$$

1. The $n \times n$ matrix $\begin{pmatrix} A \\ 0 \end{pmatrix}$ has a left inverse $B \in R_n$, that is $B \begin{pmatrix} A \\ 0 \end{pmatrix} = I_n$.

2. For $v \in {}_{1}R_{m}$, vA = 0 implies v = 0.

If $n \le m$, conditions 1. and 2. would be replaced by

1. The $m \times m$ matrix (A 0) has a right inverse $B \in R_m$, that is, $(A \ 0)B = I_m$.

2. For $v \in {}_{n}R_{1}$, Av = 0 implies v = 0.

A symmetric statement of EVERETT's theorem can be given in terms of the concept of a unit in ${}_{m}R_{n}$.

Theorem 1. Let N(R) be a free R-module with basis $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$. Then $\eta_1, \eta_2, ..., \eta_m$ is a basis of N(R) if and only if there exists a unit

$$A \in {}_{m}R_{n} \text{ such that } \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{m} \end{pmatrix} = A \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{pmatrix}.$$

PROOF. Elements $\eta_1, \eta_2, \ldots, \eta_m$ are in N(R) if and only if there exists a matrix $A \in {}_mR_n$ such that $\begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{pmatrix} = A \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$. If $\eta_1, \eta_2, \ldots, \eta_m$ is a basis of

N(R), there exists $B \in {}_{n}R_{m}$ such that $\begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{pmatrix} = B \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{m} \end{pmatrix}$, and it is a consequence of the definition of a basis that $AB = I_{m}$ and $BA = I_{n}$. Conversely,

if A is a unit, there exists $B \in {}_{n}R_{m}$ such that $B \begin{pmatrix} \eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{m} \end{pmatrix} = \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{pmatrix}$, so that

 $\eta_1, \eta_2, \ldots, \eta_m$ spans N(R). Further, we have that

$$0 = \sum_{i=1}^{m} r_i \eta_i = (r_1, r_2, \dots, r_m) \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{pmatrix} = (r_1, r_2, \dots, r_m) A \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

implies $(r_1, r_2, \ldots, r_m) A = 0$. Since $AB = I_m$, $(r_1, r_2, \ldots, r_m) = 0$, so that $\eta_1, \eta_2, \ldots, \eta_m$ is a basis.

An explicit statement of the equivalence of the above result to EVERETT's theorem is given in the following lemma.

Lemma 3. A matrix $A \in {}_{m}R_{n}$ is a unit if and only if A satisfies 1. and 2. above when m < n (1', and 2', when $n \le m$).

PROOF. The proofs are entirely similar for the two cases. We assume m < n. Let A be a unit in ${}_{m}R_{n}$ with inverse $B \in {}_{n}R_{m}$. Then $(B \ 0) \in R_{n}$ and $(B \ 0) \binom{A}{0} = BA = I_{n}$, satisfying 1. If vA = 0 for $v \in {}_{1}R_{m}$, then $0 = vA = vAB = vI_{m} = v$, so that 2. is satisfied.

 $=vAB=vI_m=v$, so that 2. is satisfied. Conversely, let $A \in {}_{m}R_{n}$ satisfy 1. and 2. Then by 1., $I_n=B\begin{pmatrix}A\\0\end{pmatrix}=$ $=(B_1B_2)\begin{pmatrix}A\\0\end{pmatrix}=B_1A$, where $B_1 \in {}_{n}R_m$. Further, we have $(AB_1-I_m)A=0$, and by 2. this implies $AB_1-I_m=0$. Hence A is a unit with inverse $B_1 \in {}_{n}R_m$.

Using the fact that for every ring R with identity, there exists a free R-module with n basis elements for every n > 0, the following result is an immediate consequence of Theorem 1.

Theorem 2. Every free R-module with a finite basis has a unique basis number if and only if there are no units in ${}_{m}R_{n}$ for every m, n, $m \neq n$.

It is a consequence of Lemma's 1 and 2 that the only rings R for which there exists a free R-module which has a basis of m elements and n elements $m \neq n$ are non-commutative rings which satisfy neither chain condition for left ideals or for right ideals. EVERETT ([1], p. 313) has given an example of such a module over a ring of infinite matrices.

3. Algebras over R.

As in Sec. 2., let $R \neq 0$ be a ring with identity, and let N(R) be a free left R-module with basis $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$. If R is commutative, then N(R) is an algebra over R if and only if there exist elements $\gamma_{jk}^{(i)} \in R$ such that multiplication (denoted by x) in N(R) is defined by

(*)
$$\alpha \times \beta = \left(\sum_{i=1}^{n} r_{i} \varepsilon_{i}\right) \times \left(\sum_{j=1}^{n} s_{j} \varepsilon_{j}\right) = \sum_{k=1}^{n} \left(\sum_{i,j=1}^{n} r_{i} s_{j} \gamma_{jk}^{(i)}\right) \varepsilon_{k}.$$

If R is not commutative the multiplication rule (*) does not imply the identity $\alpha x r \beta = r(\alpha x \beta)$ for α , $\beta \in N(R)$, $r \in R$. However the weaker identity $\varepsilon_i x r \varepsilon_j = r(\varepsilon_i x \varepsilon_j)$ holds. This suggests the following definition.

DEFINITION. N(R) is a (left) algebra of order n over R if

- i) N(R) is a (left) free R-module with a finite basis $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$.
- ii) N(R) is a ring (not necessarily associative) with respect to module addition, +, and a multiplication, x.

- iii) $(r\alpha)x\beta = r(\alpha x\beta)$ for $r \in R$, $\alpha, \beta \in N(R)$.
- iv) $\varepsilon_i \mathbf{x}(r\varepsilon_i) = r(\varepsilon_i \mathbf{x} \varepsilon_j)$ for $r \in \mathbb{R}, i, j, = 1, 2, ..., n$.

As in the commutative case, a routine calculation yields the following theorem.

Theorem 3. A free R-module N(R) with basis $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ is an algebra over R if and only if there exist elements $\gamma_{jk}^{(i)} \in R$ such that multiplication is defined by (*).

Let E be the ring of endomorphisms of N(R) as an additive abelian group and let \mathfrak{L} be the subring of linear transformations of the R-module N(R). E is an R-module which satisfies $(r\varphi)\psi = r(\varphi\psi)$ for $r \in R$, $\varphi, \psi \in E$. If N(R) is an algebra over R, then E contains:

- i) the scalar multiplications defined by $S_r(\alpha) = r\alpha$, $r \in R$, $\alpha \in N(R)$.
- ii) the right component multiplications defined by $R_t(\alpha) = R_t \left(\sum_{i=1}^n r_i \varepsilon_i \right) = \sum_{i=1}^n r_i t \varepsilon_i, \ t \in \mathbb{R}, \ \alpha \in N(\mathbb{R}).$
 - iii) the right multiplications defined by $\beta_R(\alpha) = \alpha \times \beta$, $\alpha, \beta \in N(R)$.
 - iv) the left multiplications defined by $\beta_L(\alpha) = \beta x \alpha$, $\alpha, \beta \in N(R)$.

With the above definitions, iii) in the definition of an algebra becomes $\beta_R S_r = S_r \beta_R$ for $r \in R$, $\beta \in N(R)$. Hence $\beta_R \in \mathfrak{L}$ for all $\beta \in N(R)$. Similarly iv) becomes $\varepsilon_{iL} S_r = S_r \varepsilon_{iL}$, and $\varepsilon_{iL} \in \mathfrak{L}$ for i = 1, 2, ..., n. It is also evident that $R_t \in \mathfrak{L}$ for all $t \in R$.

Theorem 3 can now be restated in the following way.

Theorem 4. A free R-module N(R) with basis $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ is an algebra over R if and only if there exists an R-homomorphism $\Phi: N(R) \to E$ with the property that $\Phi[\varepsilon_i] \in \mathfrak{L}$ for i = 1, 2, ..., n, such that multiplication is defined by $\beta x \alpha = \Phi[\beta](\alpha)$.

PROOF. If N(R) is an algebra, let Φ be defined by $\Phi[\beta] = \beta_L$. It follows from the right distributive law and iii) in the definition of an algebra that Φ is an R-homomorphism. It has already been noted that iv) implies $\Phi[\varepsilon_i] = \varepsilon_{iL} \in \mathcal{L}$. By the definition of Φ , $\beta \times \alpha = \Phi[\beta](\alpha)$.

Conversely, if an R-homomorphism Φ is given satisfying the stated conditions, multiplication is defined by $\beta x \alpha = \Phi[\beta](\alpha)$. Since $\Phi[\beta] \in E$ and since Φ is a homomorphism, both distributive laws are satisfied. Since Φ is an R-homomorphism, $(r\beta)x\alpha = \Phi[r\beta](\alpha) = \{r\Phi[\beta]\}(\alpha) = r\{\Phi[\beta](\alpha)\} = r(\beta x \alpha)$. Since $\Phi[\varepsilon] \in \mathcal{L}$,

$$\varepsilon_i \times r \varepsilon_j = \Phi[\varepsilon_i](r \varepsilon_j) = r \{\Phi[\varepsilon_i](\varepsilon_j)\} = r(\varepsilon_i \times \varepsilon_j).$$

This completes the proof.

If R is commutative, then $\varepsilon_i \times r \varepsilon_j = r(\varepsilon_i \times \varepsilon_j)$ is equivalent to $\alpha \times r \beta = r(\alpha \times \beta)$ for all $\alpha, \beta \in N(R)$, in the presence of the other postulates for an algebra.

In this case, $R_t = S_t$, and S_t , β_R , and β_L are in \mathfrak{L} .

Since an R-homomorphism Φ of a free R-module is completely determined by the images of the basis elements, the algebra N(R) is completely determined by the choice of the $\Phi[\varepsilon_i] \in \mathfrak{L}$. Moreover an arbitrary choice of the $\Phi[\varepsilon_i] \in \mathfrak{L}$ defines an R-homomorphism Φ . Let $\Gamma_i = (\gamma_{jk}^{(i)}), i = 1, 2, ..., n$

be the matrix of the linear transformation $\Phi[\varepsilon_i]$. Then $\varepsilon_i \times \varepsilon_j = \sum_{k=1}^n \gamma_{jk}^{(i)} \varepsilon_k$, and

the $n^2 \times n$ matrix $\Gamma = \begin{pmatrix} \Gamma_1 \\ \Gamma_2 \\ \vdots \\ \Gamma_n \end{pmatrix}$ is the multiplication table of the algebra, which

we will denote by $[N(R), \varepsilon_i, \Gamma]$.

Let M(R) be a free R-module with basis $\eta_1, \eta_2, ..., \eta_m$, and let $[M(R), \eta_i, \Delta]$ be an algebra, where $\Delta_i = (\delta_{jk}^{(i)}), i = 1, 2, ..., m$.

Theorem 5. The algebra $[M(R), \eta_i, \Delta]$ is isomorphic to the algebra $[N(R), \varepsilon_i, \Gamma]$ if and only if there exists a unit $A \in {}_mR_n$ such that $\Delta = (A \otimes A)\Gamma B$, where $B \in {}_nR_m$ is the inverse of A and \otimes denotes the left Kronecker product of matrices.

PROOF. Suppose first that $[M(R), \eta_i, \Delta]$ and $[N(R), \varepsilon_i, \Gamma]$ are isomorphic. Then under the given R-isomorphism the basis $\eta_1, \eta_2, \ldots, \eta_m$ of M(R) corresponds to a basis $\eta_1^1, \eta_2^1, \ldots, \eta_m^1$ of N(R). By Theorem 1, there exists a

unit
$$A = (a_{ij}) \in {}_{m}R_{n}$$
 such that $\begin{pmatrix} \eta_{1}^{1} \\ \eta_{2}^{1} \\ \vdots \\ \eta_{m}^{1} \end{pmatrix} = A \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{pmatrix}$. We have:

$$(\eta_{i} \times \eta_{j})^{1} = \left(\sum_{k=1}^{m} \delta_{jk}^{(i)} \eta_{k}\right)^{1} = \sum_{k=1}^{m} \delta_{jk}^{(i)} \eta_{k}^{1} = \sum_{k=1}^{m} \delta_{jk}^{(i)} \left(\sum_{l=1}^{n} a_{kl} \varepsilon_{l}\right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{m} \delta_{jk}^{(i)} a_{kl}\right) \varepsilon_{l}.$$

$$\eta_{i}^{1} \times \eta_{j}^{1} = \left(\sum_{k=1}^{n} a_{it} \varepsilon_{k}\right) \times \left(\sum_{s=1}^{n} a_{js} \varepsilon_{s}\right) = \sum_{l=1}^{n} \left(\sum_{s,t=1}^{n} a_{it} a_{js} \gamma_{sl}^{(t)}\right) \varepsilon_{l}.$$

Therefore, since $(\eta_i x \eta_j)^1 = \eta_i^1 x \eta_j^1$, we have

$$\sum_{k=1}^{m} \delta_{jk}^{(i)} a_{kl} = \sum_{s,t=1}^{n} a_{it} a_{js} \gamma_{sl}^{(t)} = \sum_{t=1}^{n} a_{it} \left(\sum_{s=1}^{n} a_{js} \gamma_{sl}^{(t)} \right)$$

for i = 1, 2, ..., n, j = 1, 2, ..., n, and l = 1, 2, ..., n. For i fixed, this gives

$$\Delta_i A = \sum_{t=1}^n a_{it} A \Gamma_t = (a_{i1} A, a_{i2} A, \ldots, a_{in} A) \begin{pmatrix} \Gamma_1 \\ \Gamma_2 \\ \vdots \\ \Gamma_n \end{pmatrix}.$$

Therefore
$$\begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix} A = (A \otimes A) \begin{pmatrix} \Gamma_1 \\ \Gamma_2 \\ \vdots \\ \Gamma_n \end{pmatrix}$$
, or $\Delta = (A \otimes A) \begin{pmatrix} \Gamma_1 \\ \Gamma_2 \\ \vdots \\ \Gamma_n \end{pmatrix} B$, where $B \in {}_{n}R_{m}$

is the inverse of A.

Conversely, let A be a unit in ${}_{m}R_{n}$ and suppose $d = (A \otimes A)\Gamma B$. Then

by Theorem 1,
$$\eta_1^1$$
, η_2^1 , ..., η_m^1 defined by $\begin{pmatrix} \eta_1^1 \\ \eta_2^1 \\ \vdots \\ \eta_m^1 \end{pmatrix} = A \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$ is a basis of $N(R)$.

Then the mapping λ defined by $\lambda\left(\sum_{i=1}^m r_i\eta_i\right) = \sum_{i=1}^m r_i\eta_i^1$ is a (+,x) R-isomorphism of M(R) onto N(R). It is clear that λ is an R-isomorphism of the module M(R) onto the module N(R), and the equation $\Delta = (A \otimes A) \Gamma B$ is just the condition that $\lambda(\eta_i \times \eta_j) = \lambda(\eta_i) \times \lambda(\eta_j)$.

Theorem 6. The algebra $[N(R), \varepsilon_i, \Gamma]$ is associative if and only if $\varepsilon_{jR}R_t\varepsilon_{iL} = \varepsilon_{iL}\varepsilon_{jR}R_t$ for i, j = 1, 2, ..., n and for every $t \in R$.

PROOF. If $[N(R), \varepsilon_i, \Gamma]$ is associative, then

$$(\varepsilon_i \times \alpha) \times (t\varepsilon_j) = \varepsilon_i \times (\alpha \times t\varepsilon_j)$$

for $i, j = 1, 2, ..., n, t \in R$, and $\alpha \in N(R)$.

Using the trivial identity $(t\varepsilon_j)_R = \varepsilon_{jR} R_t$, we have

$$(\varepsilon_i \times \alpha) \times (t\varepsilon_j) = (t\varepsilon_j)_R \varepsilon_{iL}(\alpha) = \varepsilon_{jR} R_t \varepsilon_{jL}(\alpha),$$

$$\varepsilon_i \times (\alpha \times t\varepsilon_j) = \varepsilon_{iL}(t\varepsilon_j)_R(\alpha) = \varepsilon_{iL} \varepsilon_{jR} R_t(\alpha).$$

Conversely if the identity $\varepsilon_{jR}R_t\varepsilon_{iL} = \varepsilon_{iL}\varepsilon_{jR}R_t$ holds in \mathfrak{L} , we have with

$$\beta = \sum_{i=1}^{n} r_i \varepsilon_i$$
 and $\gamma = \sum_{j=1}^{n} t_j \varepsilon_j$

$$(\beta x \alpha) x \gamma = \left(\sum_{i=1}^{n} r_{i} \varepsilon_{i} x \alpha\right) x \sum_{j=1}^{n} t_{j} \varepsilon_{j} - \left[\sum_{i=1}^{n} r_{i} (\varepsilon_{i} x \alpha)\right] x \sum_{j=1}^{n} t_{j} \varepsilon_{j} =$$

$$= \sum_{j=1}^{n} \left\{ \left[\sum_{i=1}^{n} r_{i} (\varepsilon_{i} x \alpha)\right] x (t_{j} \varepsilon_{j}) \right\} = \sum_{j=1}^{n} \left\{ \sum_{i=1}^{n} r_{i} \left[(\varepsilon_{i} x \alpha) x (t_{j} \varepsilon_{j})\right] \right\} =$$

$$= \sum_{j=1}^{n} \left\{ \sum_{i=1}^{n} r_{i} \left[\varepsilon_{jR} R_{t_{j}} \varepsilon_{iL}(\alpha)\right] \right\} = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} r_{i} \left[\varepsilon_{iL} \varepsilon_{jR} R_{t_{j}}(\alpha)\right] \right\} =$$

$$= \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} r_{i} \left[\varepsilon_{i} x (\alpha x t_{j} \varepsilon_{j})\right] \right\} = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} \left[(r_{i} \varepsilon_{i}) x (\alpha x t_{j} \varepsilon_{j})\right] \right\} =$$

$$= \sum_{i=1}^{n} \left\{ (r_{i} \varepsilon_{i}) x \left[\sum_{j=1}^{n} \alpha x (t_{j} \varepsilon_{j})\right] \right\} = \left(\sum_{i=1}^{n} r_{i} \varepsilon_{i}\right) x \left[\sum_{j=1}^{n} \alpha x (t_{j} \varepsilon_{j})\right] =$$

$$= \left(\sum_{i=1}^{n} r_{i} \varepsilon_{i}\right) x \left(\alpha x \sum_{j=1}^{n} t_{j} \varepsilon_{j}\right) = \beta x (\alpha x \gamma).$$

The matrix of the linear transformation ε_{iL} is $\Gamma_i = (\gamma_{jk}^{(i)})$. The matrix of the linear transformation ε_{jR} is the submatrix of Γ whose l-th row is the j-th row of Γ_l , that is the matrix $\Lambda_j = (\lambda_{lk}^{(j)})$, where $\lambda_{lk}^{(j)} = \gamma_{jk}^{(l)}$. The condition for associativity given in Theorem 6 can be written as the matrix identity.

- 1. $\Gamma_i(tI_n)\Lambda_j = (tI_n)\Lambda_j\Gamma_i$, i, j = 1, 2, ..., n and every $t \in \mathbb{R}$.
- If R is commutative, 1. is equivalent to
- 2. $\Gamma_i \Lambda_i = \Lambda_i \Gamma_i$ for i, j = 1, 2, ..., n

which is the usual associativity condition for the multiplication constants in matrix form. More generally, 1. and 2. are equivalent whenever the ε_{iL} commute with the right component multiplications R_t . In this connection the following statement is of some interest.

Theorem 7. Let $[N(R), \varepsilon_i, \Gamma]$ be an associative algebra such that for some j, ε_{jR} is a non-singular linear transformation. Then each ε_{iL} commutes with every R_t .

PROOF. Since $[N(R), \varepsilon_i, \Gamma]$ is associative, 1. and 2. are both satisfied. Now 2. implies

$$(tI_n)\Gamma_i \Lambda_j = (tI_n)\Lambda_j \Gamma_i$$
 for $i, j = 1, 2, ..., n$, and every $t \in R$.

This identity combined with 1. gives

$$\Gamma_i(tI_n)\Lambda_j = (tI_n)\Gamma_i\Lambda_j$$
.

By hypothesis, for some j, the matrix Λ_j has an inverse. Hence $\Gamma_i(tI_n) = (tI_n)\Gamma_i$ for i = 1, 2, ..., n and every $t \in R$. This is the matrix form of the statement of the theorem.

Let B be the set of basis elements $\{\varepsilon_1, \varepsilon_2, ..., \varepsilon_n\}$ of the algebra $[N(R), \varepsilon_i, \Gamma]$. Then B is a groupoid if $\varepsilon_{iL}(B) \subset B$ for i = 1, 2, ..., n. An algebra over R is a groupoid algebra if it possesses a basis B which is a groupoid. When $[N(R), \varepsilon_i, \Gamma]$ is said to be a groupoid algebra, we will mean that the basis $\{\varepsilon_1, \varepsilon_2, ..., \varepsilon_n\}$ is a groupoid.

Theorem 8. If $[N(R), \varepsilon_i, \Gamma]$ is a groupoid algebra, then conditions 1. and 2. are equivalent.

PROOF. Since $\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ is a groupoid, the matrix Γ_i of the linear transformation ε_{iL} has $1 \in R$ in exactly one position in each row and zeros elsewhere. Hence the matrices Γ_i commute with the scalar matrices tI_n , and therefore 2. implies 1. On the other hand 1. always implies 2.

4. Groupoids.

If $N = \{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ is a groupoid, then a multiplication table for N

can be given by an
$$n^2 \times n$$
 incidence matrix $= \begin{pmatrix} \Gamma_1 \\ \Gamma_2 \\ \vdots \\ \Gamma_n \end{pmatrix}$ where $\Gamma_i = (\gamma_{jk}^{(i)})$ is an

$$n \times n$$
 matrix, $i = 1, 2, ..., n$ and $\gamma_{jk}^{(i)} = \begin{cases} 1 \in R & \text{if } \varepsilon_i \varepsilon_j = \varepsilon_k \\ 0 \in R & \text{otherwise.} \end{cases}$

 Γ_i has $1 \in R$ in exactly one position in each row and zeros elsewhere. We will denote a groupoid, defined for the ordered set of elements $\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ by $[\varepsilon_i, \Gamma]$. It is convenient to classify groupoids $N = [\varepsilon_i, \Gamma]$ according to the properties of the matrix Γ . Some of the properties are trivial consequences of the definitions previously given for the submatrices Γ_i and Λ_j of Γ .

- I. N is a semigroup if and only if $\Gamma_i A_j = A_j \Gamma_i$, i, j = 1, 2, ..., n.
- II. N is commutative if and only if $\Gamma_j = A_j$, j = 1, 2, ..., n.
- III. N is a right quasi-group if and only if each Γ_i , i = 1, 2, ..., n is a permutation matrix.

PROOF. If N is a right quasi-group, then for every i and k, there exists a j such that $\varepsilon_i x = \varepsilon_k$ has a solution $x = \varepsilon_j$. Hence for every k, the matrix Γ_i must have $\gamma_{jk}^{(i)} = 1$ for some j. Since there is exactly one 1 in each row of Γ_i , Γ_i is a permutation matrix. Conversely, if each Γ_i is a permutation matrix, the equation $\varepsilon_i x = \varepsilon_k$ has a solution for every i and k.

By an argument similar to the above we have

- IV. N is a left quasi-group if and only if each A_j , j = 1, 2, ..., n is a permutation matrix.
 - V. N is a loop if and only if Γ satisfies the following conditions:
 - i) Γ_i is a permutation matrix, i = 1, 2, ..., n.
 - ii) $\sum_{i=1}^{n} \Gamma_{i} = \Im_{n}$ where \Im_{n} is a matrix with 1 in every position.
 - iii) For some $j, \Gamma_j = A_j = I_n$.

PROOF. If N is a loop, then by III, i) is satisfied. By IV, each Λ_j is a permutation matrix, so that the sum of the j-th rows of the matrices Γ_i is the row vector (1, 1, ..., 1) Hence $\sum_{i=1}^n \Gamma_i = \Im_n$. Since N has an identity ε_j , $\Gamma_j = I_n$ and $\Lambda_j = I_n$. Conversely, suppose that i), ii), and iii) are satisfied. Then N is a right quasi-group by III. Together, i) and ii) imply that each Λ_j is a permutation matrix, so that N is a left quasi-group by IV. Finally, iii) implies that ε_j is an identity element of N.

Since an associative quasi-group is a group, we combine the above results to obtain

VI. N is a group if and only if Γ satisfies the conditions:

i) Each Γ_i is a permutation matrix, i = 1, 2, ..., n.

ii)
$$\sum_{i=1}^n \Gamma_i = \mathfrak{J}_n$$
.

iii)
$$\Gamma_i \Lambda_j = \Lambda_j \Gamma_i$$
, $i = 1, 2, ..., n$, $j = 1, 2, ..., n$.

Theorem 9. The groupoid $N = [\varepsilon_i, \Gamma]$ is isomorphic to the groupoid $M = [\eta_i, \Delta]$ if and only if there exists a permutation matrix I_{Ω} such that $(I_{\Omega} \otimes I_{\Omega}) \Gamma I'_{\Omega} = \Delta$.

PROOF. The groupoids N and M are isomorphic if and only if for a suitable ordering of the elements $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ of N, the incidence matrices of N and M are identical, that is, if and only if there exists a permutation Ω of $(1, 2, \ldots, n)$ such that $N = \{\varepsilon_{\Omega(1)}, \varepsilon_{\Omega(2)}, \ldots, \varepsilon_{\Omega(n)}\}$ and $M = \{\eta_1, \eta_2, \ldots, \eta_n\}$ have identical incidence matrices. Let I_{Ω} be the permutation matrix associated with Ω . Then the theorem follows when we observe that $(I_{\Omega} \otimes I_{\Omega}) \Gamma I_{\Omega}'$ is the incidence matrix of $N = \{\varepsilon_{\Omega(1)}, \varepsilon_{\Omega(2)}, \ldots, \varepsilon_{\Omega(n)}\}$. Since $\Omega = (ij)(kl)...(sl)$, $I_{\Omega} = I_{(ij)}I_{(kl)}...I_{(sl)}$, and $I_{\Omega} \otimes I_{\Omega} = (I_{(ij)} \otimes I_{(ij)})(I_{(kl)} \oplus I_{(kl)})...(I_{(sl)} \otimes I_{(sl)})$, it suffices to prove this latter result for the case where $\Omega = (ij)$ is a transposition. But if ε_i and ε_j are interchanged, then the submatrices Γ_i and Γ_j are interchanged in Γ after which the i-th and j-th rows and the i-th and j-th columns are interchanged in each Γ_l , $l = 1, 2, \ldots, n$. This operation is accomplished by the matrix product

It should be recalled that for permutation matrices, $I' = I^{-1}$.

EXAMPLE. Using the results of III, IV, and V, a quasi-group (both a right and left quasi-group) must have either an incidence matrix $\Gamma = \begin{pmatrix} \Gamma_1 \\ \Gamma_2 \\ \Gamma_3 \end{pmatrix}$

where Γ_1 , Γ_2 , Γ_3 are the matrices $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ in some order,

or an incidence matrix $\overline{\Gamma} = \begin{pmatrix} \overline{\Gamma}_1 \\ \overline{\Gamma}_2 \\ \overline{\Gamma}_2 \end{pmatrix}$ where $\overline{\Gamma}_1$, $\overline{\Gamma}_2$, $\overline{\Gamma}_3$ are the matrices $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,

 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ in some order. Using Theorem 9 it is easy to check that there are exactly five non-isomorphic quasi-groups among the possible

twelve. They are given by:

$$\Gamma = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}, \text{ the group of order 3.}$$

$$\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

 $\Gamma = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ a quasi-group with left identity.}$

 $\Gamma = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \text{ a quasi-group with right identity.}$

$$\Gamma = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \text{ a quasi-group without identity.}$$

$$\Gamma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ a quasi-group without identity.}$$

The second and third quasi-groups exhibited above are anti-isomorphic.

Bibliography.

- [1] C. J. EVERETT, Vector spaces over rings, Bull. Amer. Math. Soc. 48 (1942), 312-316.
- [2] R. BAER, Inverses and zero divisors, Bull. Amer. Math. Soc. 48 (1942), 630-638.
- [3] N. H. McCov, Rings and ideals, Baltimore, 1948.

(Received November 19, 1955.)