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1. Introduction.

C. J. EvererT [1] has proved that a right free R-module over a ring
R with identity has a unique basis number if the right ideals of R satisfy
the ascending chain condition. By giving a symmetric form of one of EvE-
RETT’s theorems, we derive in Sec. 2, Theorem 2, a necessary and sufficient
condition for the uniqueness of the basis number of a left (right) free R-
module. By using results of BAER [2] and McCoy {3], we prove that any
one of the following conditions on R is sufficient for the uniqueness of the
basis number.

1. R satisfies the ascending chain condition either for right or for
left ideals.

2. R is commutative.

Since R has an identity, the descending chain conditions imply the ascending
chain conditions.

In Sec. 3, algebras over a non-commutative ring are discussed, and a
necessary and sufficient condition (Theorem 5) is obtained for equivalence
in terms of a matrix transformation of the multiplication tables of the algebras.
In Sec. 4, matrix conditions for the classification of groupoids are given and
a necessary and sufficient condition for isomorphism (Theorem 9) in the
form of a matrix transformation of the multiplication tables is derived.

2. Units for rectangular matrices.

Let R4=0 be a ring with identity 1. We denote by ,.R, the set of all
m X n matrices and by R, the set of all n X n matrices with elements in R.

DEFINITION. A matrix A € R, is a unit if there exists a matrix B € .Rm
such that AB=1/, and BA=1,. We call B an inverse of A.
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Let A be a unit in ,R, with inverse B. Then if either AX=1/. or
XA=1I, for X¢€.R., it follows that X=B. In particular, a unit has a
unique inverse.

DEFINITION. A ring R is regular for n if C, D€ R, and CD =1, implies
DC=1,.

Lemma 1. If R is regular for m and n, m==n, then there are no
units in R,

PROOF. Assume that A € ,.R, is a unit. Suppose first that n<m, and

let B € .R.. be the inverse of A. Then A= [:‘) where A, € R, and B=(B,5,)
2

where B, € R.,. AB=1,, gives A,B,=1/,, and since R is regular for n, we
have B,A,=1I,. But AB=/, gives AB,=0 and A,B,= /... Since
0=B,A,B,= B,, this contradicts A,B; = /,,-..

Similarly, if m <n, the equation BA =1/, and the fact that R is regular
for m leads to a contradiction.

By the lemma, there are no units in R, for every m,n,m==n if R
is regular for n for every n>0. It follows from BAER’s result ([2], p. 635),
that any ring which satisfies the ascending chain condition either for left
ideals or for right ideals is regular for n for every n>0. (Since 1€ R, the
descending chain condition implies the ascending chain condition).

Lemma 2. If R is commutative, then there are no units in R, for
every m,n, m==n.

PROOF. Assume that A€.,.R, is a unit, m==n, and suppose n<m.
There exists B € R, such that AB'=( A‘)(BB)_—_[A‘B’ A’B*]=1 where
; o A, e A.B, AB, e
A, B,€ R,. Since A,B,=1,, A, has rank n, as defined by McCov ([3], p.
159). For |A,||B,|=1, and if there exists a==0 in R such that a|A,|=0,
we would have 0=alA,||B,|=a. Now suppose B,==0. Then there is a

column b:’ == O of B, such that A, b‘ = 0 , since A,B,=0.
b, 0 6,) \o

But by McCoy’s theorem ([3], page 159), this implies that A, has rank less
than n, which is a contradiction. Hence B, = 0. But this contradicts A,B, — /.-,
so that the assumption of the existence of a unit leads to contradiction.

If m<n, the assumption of the existence of a unit in ,R, and the
equation BA—/,, gives a contradiction in the same way.

Lemma 2 may also be obtained as a corollary of Lemma 1 by noticing
that a commutative ring is regular for n for every n>0.
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Let.N(R) be a free left R-module with basis &, ¢, ..., &. Throughout,
we will consider left modules. There are, of course, corresponding statements
of the results for right modules. A theorem of EVERETT ([1] p. 313) states that

T &
&

=A

Tim En

1. The nXxn matrix(g) has a left inverse B € R,, that is B [‘g )=l...

iz , m<n, is a basis of N(R) if and only if A€ ,.R. satisfies

2. For v € ,R», vA=0 implies v=0.
If n = m, conditions 1. and 2. would be replaced by

1. The mxm matrix (A 0O) has a right inverse B¢ R., that is,
(A 0)B=1,.

2! For v€.R,, Av=0 implies v=0.
A symmetric statement of EVERETT’s theorem can be given in terms of the
concept of a unit in .R,.

Theorem 1. Let N(R) be a free R-module with basis é&,,é,,...,é&x.
Then n,, My, ..., 4w is a basis of N(R) if and only if there exists a unit

N &
A€ R, such that | ™ | =a4| "
Nm En
ProoF. Elements #,,7%s,..., = are in N(R) if and only if there exists
L &
a matrix A € R, such that q = A *L.u Ny Ny ..., m 1S a basis of
T &
&' ’ilw
N(R), there exists B € R, such that pll ? , and it is a conse-
&n Tjm
quence of the definition of a basis that AB=1/, and BA = [,. Conversely,
(T &
if A is a unit, there exists BE,Rw such that B | | =| % |, so that
\7 ‘,
Ty N2y -+, jm Spans N(R). Further, we have that
Th &
< Ta &
0=Zri']i=(rl:r2!°":r'ﬂ) . =(rllr?!---)rm)A .

'}m "-':n



472 R. A. Beaumont

implies (r,7s,...,7m) A=0. Since AB=/., (1,73 ...,’m)=0, so that

MMy «+osMm is a basis.
An explicit statement of the equivalence of the above result to EVERETT’s

theorem is given in the following lemma.

Lemma 3. A matrix A€ ..R. is a unit if and only if A satisfies 1. and
2. above when m<n (I. and 2. when n = m).

PrOOF. The proofs are entirely similar for the two cases. We assume
m<n. Let A be a unit in R, with inverse B¢ .R.. Then (B 0)€R. and

(B 0)(3) =BA=/,, satisfying 1.1f vA=0 for v€,R., then 0=vA=

=vAB=vl,.=v, so that 2. is satisfied. A
Conversely, let A€ .R. satisfy 1. and 2. Then by 1., 1,.-=B( )

w(BlB,)(g]==B,A, where B, € ,R.. Further, we have (AB,—/.)A =0, and

by 2. this implies AB,—/,,=0. Hence A is a unit with inverse B, € .Rn..

Using the fact that for every ring R with identity, there exists a free R-
module with n basis elements for every n>0, the following result is an
immediate consequence of Theorem 1. :

Theorem 2. Every free R-module with a finite basis has a unique
basis number if and only if there are no units in .R. for every m, n,m==n.

It is a consequence of Lemma’s 1 and 2 that the only rings R for
which there exists a free R-module which has a basis of m elements and n
elements m==n are non-commutative rings which satisfy neither chain con-
dition for left ideals or for right ideals. EVERETT ([1], p. 313) has given an
example of such a module over a ring of infinite matrices.

3. Algebras over R.

As in Sec. 2., let R340 be a ring with identity, and let N(R) be a
free left R-module with basis &,&,...,&. If R is commutative, then N(R)
is an algebra over R if and only if there exist elements y{)€ R such that
multiplication (denoted by x) in N(R) is defined by

*) e [g&&J (JZ s,s,] k=1(u,‘§ ol ]

If R is not commutative the multiplication rule (%) does not imply the iden-
tity exr@=r(expf) for e, g€ N(R), r€ R. However the weaker identity
&xre;=r(&xsj) holds. This suggests the following definition.

DErFINITION. N(R) is a (left) algebra of order n over R if

i) N(R) is a (left) free R-module with a finite basis &, &,, ..., &

ii) N(R) is a ring (not necessarily associative) with respect to module
addition, 4, and a multiplication, x.
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iii) (re)xB=r(exp) for r€ R, a, € N(R).
iv) &x(r&) =r(eixg) for r€ R, i,j,=1,2,..., i
As in the commutative case, a routine calculation yields the following theorem.

Theorem 3. A free R-module N(R) with basis &,&,...,& is an
algebra over R if and only if there exist elements y\)€ R such that multipli-
cation is defined by ().

Let E be the ring of endomorphisms of N(R) as an additive abelian
group and let € be the subring of linear transformations of the R-module
N(R). E is an R-module which satisfies (r@)y=r(pvy) for r€ R, @, w€E.
If N(R) is an algebra over R, then E contains:

i) the scalar multiplications defined by S,(e¢)=re, r€ R, « € N(R).

ii) the right component multiplications definedby R.(e)= R (é‘ r.-a.-)=
=2 ritei, t€R, c€N(R).

iii) the right multiplications defined by fx(e¢)=ax8, «, 8€ N(R).

iv) the left multiplications defined by 8.(e) =@xe, e,B€ N(R).

With the above definitions, iii) in the definition of an algebra becomes
BrS,=S,Bx for r€ R, 8€ N(R). Hence Bz € £ for all 8& N(R). Similarly iv)
becomes &S, =S, &z, and &z €L for i==1,2,...,n. It is also evident that
R. €2 for all t€R.

Theorem 3 can now be restated in the following way.

Theorem 4. A free R-module N(R) with basis &,8,...,8, is an
algebra over R if and only if there exists an R-homomorphism ®@: N(R)— E
with the property that @[e) €& for i=1,2,...,n, such that multiplication
is defined by fxa = D|[f)().

PRrROOF. If N(R) is an algebra, let @ be defined by @[f]=4.. It fol-
lows from the right distributive law and iii) in the definition of an algebra
that @ is an R-homomorphism. It has already been noted that iv) implies
Dle] =& € €. By the definition of @, gxe= P[f](c).

Conversely, if an R-homomorphism @ is given satisfying the stated
conditions, multiplication is defined by fxe = ®@[f](«). Since P@[F] € E and
since @ is a homomorphism, both distributive laws are satisfied. Since @ is an
R-homomorphism, (rg)xe= @[rf](e)= {r P[f]}(c) = r{P[f)(e)} =r(bxa).
Since P[e] €8,

gxre;= @[&)(re;) =r | Ple](g) } =r(e:xs)).
This completes the proof.

If R is commutative, then &xrs==r(e:xe) is equivalent to exrf=—
=r(aexp) for all «, € N(R), in the presence of the other postulates for
an algebra.
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In this case, R,=S:, and S, Bz, and S are in L.

Since an R-homomorphism @ of a free R-module is completely deter-
mined by the images of the basis elements, the algebra N(R) is completely
determined by the choice of the ®@[s] € L. Moreover an arbitrary choice of
the @[e] €L defines an R-homomorphism @. Let I't=(y{),i=1,2,...,n

be the matrix of the linear transformation ®[s]. Then &xs — Zy}%?a, and
k=

I
T,

the n* x n matrix I'=| "." | is the mutiplication table of the algebra, which
L.

we will denote by [N(R), &, I'].

Let M(R) be a free R-module wnth basis 17, n,...,n,.., and let
[M(R), 7:, 4] be an algebra, where 4= (d}R),i=1,2,.

Theorem 5. The algebra [M(R), n;, 4] is momorpmc to the algebra
[N(R), &, I'] if and only if there exists a unit A € R, such that 4= (A®QA)I'B,
where B € ,R,, is the inverse of A and ® denotes the left Kronecker product
of matrices.

PROOF. Suppose first that [M(R), 7, 4] and [N(R), &, '] are isomor-
phic. Then under the given R-isomorphism the basis #,, 7, ..., m of M(R)
corresponds to a basis #i, 73, ..., 7 of N(R). By Theorem 1, there exists a

n &
1
unit A = (a;) € R. such that ’f.’ —A ? . We have:
7 £
iy =3 0] = 3 a0k = 382 (3 aua) = 35 3 8200
k=1 k=1 == = | =1 k=1
i X7 (1_:1 ﬂg&) X [.—:1 O‘J,SS] — g L%‘l a,ga,x}'&: ] &

Therefore, since (7:x7;)' = nix7;, we have

Zd.(?k Q= Zl a ajs‘ygl‘ = gaﬂ (Z:apj’i?)

k==1

for i=1,2,...,n,j=12,...,n, and [=1,2,...,n. For i fixed, this gives
I

diAzZa,-,AF,=(a;1A,aeA,...,a.-..A) .

== | .
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41 rl rl
Ag rﬂ
Therefore - | A=(A®A4) , or 4= (AR A)
ﬁim r!! rll
is the inverse of A.
Conversely, let A be a unit in R, and suppose 4= (A® A)I"B. Then

r,

B, where B¢ .R..

n} &
anl

by Theorem 1, 73, 73, ..., 7 defined by | ™ | = 4| % | is a basis of N(R).
Nm &n

Then the mapping 4 defined by 4 (Zr,» q,-) - Z;mﬂ is a (4,x) R-iso-
=1 (==
morphism of M(R) onto N(R). It is clear that 4 is an R-isomorphism of the
module M(R) onto the module N(R), and the equation 4=(A®A)I'B is
just the condition that 4(nix;)=4(%:)x4(%;).
Theorem 6. The algebra [N(R),s; I'] is associative if and only if
&pRiei=2¢8rR: for i,j=1,2,...,n and for every t€R.
PrOOF. If [N(R), &, I'] is associative, then
(sixa)x (te;) =& x(axts)
for i,j=1,2,...,n,t€R, and « € N(R).
Using the trivial identity (f&)r=¢xzR:, we have
(exa)x(te;) = (t&)reir (¢) = &r Retj (@),
six(axts) =& (te)r(a) = s 8 Ri().
Conversely if the identity &gzReir ==&&zR: holds in €, we have with
B= r:& and }’=gfj£j

(Bxa)xy = (g; r;s.-xo:) xg t,8 — [é' r.-(a,-xa)] xé; b i
= 3)[Zrtexa| xwe| = 3| Sriexaxtan =

=

= 313 ntuR,ea @l = 3| Sreatai (@)
= 31 Sriex@xtapl = 2| Sierxtexten| =
N TN T £ W i
=[2=; r.-a,-]x[a xgtjsj) — Bx(axy).
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The matrix of the linear transformation & is ;= (y%). The matrix of
the linear transformation & is the submatrix of I" whose /-th row is the j-th
row of I, that is the matrix 4; = (i), where 4 =). The condition for
associativity given in Theorem 6 can be written as the matrix identity.

1. Ii(tlh)Adj=(tlh)4;I;, i,\j=1,2,...,n and every t€ R.

If R is commutative, 1. is equivalent to

2. I'idj== A;T; for i,j=1,2,...,n
which is the usual associativity condition for the multiplication con-
stants in matrix form. More generally, 1. and 2. are equivalent whenever
the &, commute with the right component multiplications R;. In this
connection the following statement is of some interest.

Theorem 7. Let [N(R),#,I") be an associative algebra such that for
some j, &g is a non-singular linear transformation. Then each &, commutes
with every R,.

PROOF. Since [N(R), s, I'] is associative, 1. and 2. are both satisfied.
Now 2. implies

(th)id; = (th)4;l for i,j=1,2,...,n, and every € R.
This identity combined with 1. gives
ri(th) ;= (th)I'i4;.

By hypothesis, for some j, the matrix 4; has an inverse. Hence I'(t/,)=
=(thL)I for i=1,2,...,n and every € R. This is the matrix form of the
statement of the theorem.

Let B be the set of basis elements {¢,s,...,&} of the algebra
[N(R), &, I'). Then B is a groupoid if &,(B)cB for i=1,2,...,n. An al-
gebra over R is a groupoid algebra if it possesses a basis B which is a
groupoid. When [N(R),&,I'] is said to be a groupoid algebra, we will
mean that the basis {&,¢,,...,&,} is a groupoid.

Theorem 8. If [N(R), &, I'] is a groupoid algebra, then conditions 1.
and 2. are equivalent.

PROOF. Since {&,,&,...,&} is a groupoid, the matrix I"; of the linear
transformation &; has 1€ R in exactly one position in each row and zeros
elsewhere. Hence the matrices I; commute with the scalar matrices f/,, and
therefore 2. implies 1. On the other hand 1. always implies 2.
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4. Groupoids.

If N={e&,#&,..., 8} is a groupoid, then a multiplication table for N
I

can be given by an n*Xxn incidence matrix = I;’ where I'i=(7Q) is an
r,

1€ER if 88j=28
10 € R otherwise.

I'; has 1 € R in exactly one position in each row and zeros elsewhere.
We will denote a groupoid, defined for the ordered set of elements
{&1,8,...,8) by [& I']. It is convenient to classify groupoids N=|s;, I']
according to the properties of the matrix I". Some of the properties are tri-
vial consequences of the definitions previously given for the submatrices
I': and 4; of I

I. N is a semigroup if and only if I'id;=4;I;, i,j=1,2,...,n.

II. N is commutative if and only if I;=4;, j=1,2,...,n.

IlI. N is a right quasi-group if and only if each I;, i=1,2,...,n is
a permutation matrix.

ProOF. If N is a right quasi-group, then for every i and &, there exists
a j such that &x=g& has a solution x=g¢;. Hence for every k, the matrix
I'; must have y4)=1 for some j. Since there is exactly one 1 in each row
of I';, I': is a permutation matrix. Conversely, if each I'; is a permutation
matrix, the equation &x=—g: has a solution for every i/ and k.

By an argument similar to the above we have

IV. N is a left quasi-group if and only if each 4,, j=1,2,...,n is a
permutation matrix.

V. N is a loop if and only if I satisfies the following conditions :

i) I'; is a permutation matrix, i=1,2,...,n.

nXxXn matrix, i=1,2,...,nand y‘j2:=

ii) > I'i=23,. where 3, is a matrix with 1 in every position.

=1
iii) For some j, I'j=A;=1,.

ProoF. If N is a loop, then by IIl, i) is satisfied. By IV, each 4; is a
permutation matrix, so that the sum of the j-th rows of the matrices I is

the row vector (1,1,...,1.) Hence 2 Ii=3S.. Since N has an identity

==l
&, I'j=1, and 4;=1I,. Conversely, suppose that i), ii), and iii) are satisfied.
Then N is a right quasi-group by Ill. Together, i) and ii) imply that each
A; is a permutation matrix, so that N is a left quasi-group by IV. Finally,
iii) implies that & is an identity element of N.
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Since an associative quasi-group is a group, we combine the above
results to obtain

VI. N is a group if and only if I' satisfies the conditions:
i) Each I'; is a permutation matrix, i=1,2,...,n.

i) 3 r=3..

i=1

iii) Nidj= AL, i=1,2,...,n, j=1,2,...,n.

Theorem 9. The groupoid N = &, I'] is isomorphic to the groupoid
M = |n;, 4] if and only if there exists a permutation matrix Io such that
(le®1Io)'Io= 4.

Proor. The groupoids N and M are isomorphic if and only if for a
suitable ordering of the elements &,s,,...,s, of N, the incidence matrices
of N and M are identical, that is, if and only if there exists a permutation
2 of (1,2,...,n) such that N= {ea(), £0)..., 2w} and M={n, 1, ..., fa}
have identical incidence matrices. Let /o be the permutation matrix asso-
ciated with £2. Then the theorem follows when we observe that (/o ® lo)I' /2
is the incidence matrix of N= {s0(), é2@@), .- ., fom}. Since 2= (ij)(k])...(s?),
Io=Igplwy. .. Iy, and Io@® lo = (Lip ® Lip) oy D lowy)- - - (Jisty @ L)), it suf-
fices to prove this latter result for the case where £ = (ij) is a transposition.
But if & and & are interchanged, then the submatrices I'; and I'; ate inter-
changed in I" after which the i-th and j-th rows and the i-th and j-th
columns are interchanged in each I, [=1,2,...,n. This operation is
accomplished by the matrix product

b d

I(i:) I !(-‘ﬂ Fl l('.‘_.)

- 2 ; .
’ i Dk 54 (0 G

(Vip @ Iip) I' Iy, = e ¥ N lp=|"" < T}

¥ I+ -0 [ Lap i 1G5

lip $ :
]la'j'l tl‘u !‘i.t) Ri!l?j)

It should be recalled that for peimutation matrices, /' =1"".
ExampLE. Using the results of IlI, IV, and V, a quasi-group (both a

.rl
I;
r;

right and left quasi-group) must have either an incidence matrix I'=
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100\ (010) (001
where Iy, I,, I'; are the matrices {0 10},|001|,|1 00| in some order,

001 100/ \010
B I_:, T S 100
or an incidence matrix /"= I, | where I, I',, I'; are the matrices [0 0 1|,
¥ g 010

010y (001
100), |0 10] in some order. Using Theorem 9 it is easy to check that
001 100

there are exactly five non-isomorphic quasi-groups among the possible
twelve. They are given by:

, the group of order 3.

-0 00O O =0 =0

e
I
c-—o—-cococo -

, a quasi-group with left identity.

=000 = QOO =
CO= =000 —=0 OO0= =000 0O OO =~=0O=0O=00

>
I
S—coo—-—00o

, a quasi-group with right identity.

ﬁ

I
—coo—-ococo~-
o~000==00
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, a quasi-group without identity.

™
l
—-— 0000 =0 =0

O~ 0O =0 =00 O=0O=0000—
— 0O 000 ~0=0 OO0 =0—=00

, @ quasi-group without identity.

—0=000Q m

o
o

The second and third quasi-groups exhibited above are anti-isomorphic.
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