Групповые алгебры счетных абелевых р-групп

С. Д. БЕРМАН

Введение

В настоящей статье изучаются групповые алгебры GK счетных периодических абелевых групп G над произвольным полем K. Основные результаты статьи дают необходимые и достаточные условия изоморфизма групповых алгебр GK и G_1K , где G и G_1 -счетные абелевы p-группы (p-простое).

Оказывается, групповая алгебра GK счетной абелевой p-группы G над полем K характеристики p определяет группу G с точностью до изоморфизма (этот результат для конечных p-групп получен Дескинсом [1]). Если char $K \neq p$, то в общем случае групповая алгебра GK определяется некоторыми свойствами подгруппы P элементов бесконечной высоты в G и факторгруппы G/P.

В работе найдены также необходимые и достаточные условия изоморфизма групповых алгебр GD и G_1D счетных периодических абелевых групп G и G_1 над полем вещественных чисел D и изучена мультипликативная группа алгебры GK, где G-p-группа, а K-поле характеристики p.

В заключительной части статьи дается описание всех неприводимых представлений произвольной (не обязательно счетной) периодической абелевой группы G над произвольным полем K характеристики нуль.

Результаты этой статьи доложены автором на Международном математическом конгрессе в Москве.

Формулировки некоторых теорем статьи опубликованы в [5], [6].

§ 1. Модулярные групповые алгебры счетных примарных абелевых групп

1. Дескинс [1] показал, что из изоморфизма групповых алгебр GK и G_1K конечных абелевых p-групп G и G_1 над полем K характеристики p вытекает изоморфизм групп G и G_1 .

В этом параграфе изучаются групповые алгебры счетных абелевых p-групп над полем характеристики p.

Теорема 1. 1. Групповые алгебры GK и G_1K двух счетных абелевых р-групп G и G_1 над полем K характеристики p изоморфны тогда и только тогда, когда изоморфны группы G и G_1 .

Доказательство теоремы 1.1 основано на ряде вспомогательных предложений, не участвующих в доказательстве Дескинса.

Следующая лемма часто применяется при исследовании групповых алгебр:

Лемма 1.1. Пусть G-произвольная группа, H-нормальный делитель группы G, T-любое поле, а V-двусторонний идеал алгебры GT, порожденный элементами h-1, где $h \in H$. Тогда

$$GT/V\cong \widetilde{G}T$$
, где $\widetilde{G}=G/H$.

Доказательство. Если $x = \sum \lambda_i h_i \in HT$ ($\lambda_i \in T$, $h_i \in H$), то положим $n(x) = \sum \lambda_i$. Пусть $\{g_j\}$ система представителей смежных классов группы G по нормальному делителю H. Произвольный элемент $y \in GT$ можно записать в виде $y = \sum_j y_j g_j$, где $y_j \in HT$. Тогда отображение $y \to \sum_j n(y_j)(g_j H)$ определяет гомоморфизм алгебры GT на алгебру GT, ядром которого является идеал V.

Следствие. Пусть алгебра R над полем T обладает двумя групповыми базисами: $R=GT=G_1T$, Если H и H_1 -такие нормальные делители соответственно G и G_1 , что $HT=H_1T$, то $\tilde{G}T\cong \tilde{G}_1T$, где $\tilde{G}=G/H$, $G_1=\tilde{G}_1/H_1$.

В дальнейшем будут рассматриваться только абелевы p-группы и их групповые алгебры над полем K характеристики p. Для абелевых p-групп мы

будем употреблять терминологию книги [2].

Пусть G-счетная примарная абелева группа. Условимся говорить, что элемент $y \in GK$ имеет бесконечную высоту, если для любого натурального числа n найдется такой элемент $x \in GK$, что $x^{p^n} = y$. Элемент $y \in GK$ будем называть элементом типа p^{∞} , если существует такая последовательность $x_1 = y, x_2, ..., x_n, ...$ элементов алгебры GK, что $x_i = x_{i+1}^p$.

Определим в GK следующие подалгебры:

 \overline{A} -подалгебра, порожденная всеми элементами бесконечной высоты в GK; \overline{P} -подалгебра, порожденная всеми элементами типа p^{∞} ;

 $\overline{C}^{(n)}$ $(n=0,1,\ldots)$ -подалгебра, порожденная всеми элементами x^{p^n} , где $x\in GK$;

 \overline{N} -подалгебра, порожденная всеми элементами $x \in GK$, удовлетворяющими условию $x^p = 0$.

Обозначим соответственно через A, P, $C^{(n)}$, N подгруппу элементов бесконечной высоты в G, максимальную полную подгруппу в G, подгруппу, порожденную p^n -степенями элементов группы, и нижний слой группы G.

Лемма 1. 2. $\overline{A} = AK$; $\overline{P} = PK$; $\overline{C}^{(n)} = C^{(n)}K$. Подалгебра \overline{N} совпадает с идеалом V алгебры GK, порожденным элементами h-1, где h пробегает подгруппу N.

Доказательство. В алгебре GK имеет место упрощенная формула бинома Ньютона: $(a+b)^{p^n}=a^{p^n}+b^{p^n}$ Очевидно, $AK\subseteq \overline{A}$. Пусть $x=\sum\limits_i\alpha_ig_i$ ($\{g_i\}$ -различные элементы группы $G;\ \alpha_i\in K;\ \alpha_i\neq 0$)-элемент бесконечной высоты в GK. Тогда при любом натуральном n существует такой элемент $\sum\limits_i\alpha_jg_j\in GK$, что

 $x = \sum\limits_{i} \alpha_{i} g_{i} = (\sum\limits_{j} \alpha_{j} g_{j})^{p^{n}} = \sum\limits_{j} \alpha_{j}^{p^{n}} g_{j}^{p^{n}}$. Следовательно, для каждого элемента g_{i} найдется такой элемент $g_{j} \in G$, что $g_{i} = g_{j}^{p^{n}}$, т. е. g_{i} -элемент бесконечной высоты в G. Таким образом, $\overline{A} \subseteq AK$ и $\overline{A} = AK$. Аналогично доказываются равенства $\overline{P} = PK$; $\overline{C}^{(n)} = C^{(n)}K$.

Пусть $g_1',...,g_S',...$ -система представителей смежных классов группы G по нижнему слою N этой группы. Произвольный элемент $x \in GK$ можно записать

в виде:

 $x=y_{i_1}g'_{i_1}+\ldots+y_{i_r}g'_{i_r},\ \ z\partial e\ \ y_{i_j}\in NK.$ Тогда $x^p=y_{i_1}^pg'_{i_1}^p+\ldots+y_{i_r}^pg'_{i_r}^p=\lambda_1g'_{i_1}^p+\ldots+\lambda_rg'_{i_r}^p(\lambda_i\in K),$ ибо $y^p=\lambda\cdot 1\ (\lambda\in K)$ для любого элемента $y\in NK.$ Элементы $g'_{i_1}^p,\ldots,g'_{i_r}^p$ попарно различны, так как из равенства $g'_{i_1}^p=g'_{i_r}^p$ вытекает, что элементы g'_{i_1} и g'_{i_1} принадлежат одному смежному классу группы G по подгруппе N. Если $x^p=0$, то отсюда следует, что $\lambda_1=\ldots=\lambda_r=0$ т. е. $y'_{i_1}^p=0,\ldots,y'_{i_r}^p=0.$ Но тогда $y_{i_j}=\sum\limits_{s}\gamma_{js}h_s\ (\gamma_{js}\in K,h_s\in N),$ где $\sum\limits_{s}\gamma_{js}=0,$ и, следовательно, $x\in V$. Таким образом, $\overline{N}\subseteq V$. Обратное включение $V\subseteq \overline{N}$ очевидно. Лемма доказана.

Лемма 1. 3. Пусть G-абелева p-группа, а H-подгруппа группы G, разлагающаяся в прямое произведение t циклических групп порядка p, где t-натуральное число или счетная мощность. Пусть V-идеал алгебры GK, порожденный элементами h-1, где $h \in H$. Идеал V нильпотентен тогда и только тогда, когда t-конечное число, причем в этом случае, индекс нильпотентности идеала V равен t(p-1)+1.

Доказательство. Пусть $H=(a_1)\times ... \times (a_t)$ $(a_i^p=1;\ i=1,\ ...,\ t)$. Тогда произведение $(a_1-1)^{p-1}...(a_t-1)^{p-1}\neq 0$. С другой стороны, произведение

любых t(p-1)+1 элементов идеала V равно нулю.

В самом деле, элементы (h-1) $(h\in H;h\neq 1)$ образуют базис идеала V_1 алгебры HK размерности p^t-1 над K. Другой базис идеала V_1 образует элементы $(a_1-1)^{\alpha_1}...(a_t-1)^{\alpha_t}(0\leq \alpha_i\leq p-1;(\alpha_1,...,\alpha_t)\neq (0,...,0))$. Отсюда вытекает, что произведение любых t(p-1)+1 элементов идеала V_1 равно нулю $((a_i-1)^p=0)$. Произвольный элемент $x\in V$ записывается в виде $x=\sum_{h\in H}\Lambda_h(h-1)$, где $\Lambda_h\in GK$. Следовательно, произведение любых t(p-1)+1 элементов идеала V также равно нулю. Если $H=(a_1)\times...\times (a_m)\times...$, то для любого натурального n произведение $(a_1-1)...(a_n-1)\neq 0$, и, значит, идеал V не нильпотентен. Лемма доказана.

Следствие. Если в условиях леммы 1. 3 идеал V нильпотентен, то индекс нильпотентности s этого идеала однозначно определяет число t прямых множителей в разложении группы H.

Доказательство. В силу леммы 1.3, s=t(p-1)+1, откуда $t=\frac{s-1}{p-1}$.

Лемма 1.4. Пусть G и G_1 -счетные полные примарные абелевы группы. Если $GK \cong G_1K$, то $G \cong G_1$.

Доказательство. Пусть $R=GK=G_1K$, где G и G_1 -счетные полные абелевы p-группы. Пусть $N(N_1)$ -нижний слой группы $G(G_1)$ и $\overline{N}=\{x\in R,\, x^p=0\}$. Согласно лемме 1. 2, идеал \overline{N} порождается элементами $h-1(h_1-1)$, где $h\in N$

 $(h_1 \in N_1)$. Применяя лемму 1. 3 и следствие из этой леммы, получим, что группы N и N_1 разлагаются в произведение одного и того числа циклических групп простого порядка, а это число равно числу групп типа p^{∞} в прямых разложениях полных групп G и G_1 . Лемма доказана.

Лемма 1.5. Пусть G и G_1 -счетные примарные абелевы группы, причем $G = P \times F$, $G_1 = P_1 \times F_1$, где P и P_1 -полные, а F и F_1 -редуцированные группы. Если $GK = G_1K$, то $P \cong P_1$ и $FK \cong F_1K$.

Доказательство. В силу леммы 1. 2, имеет место равенство $\overline{P} = PK = P_1K$, и, на основании леммы 1. 4, $P \cong P_1$. Ввиду следствия из леммы 1. 1, получим, что $\widetilde{G}K \cong \widetilde{G}_1K$, где $\widetilde{G} = G/P$, $\widetilde{G}_1 = G_1/P_1$, т. е. $FK \cong F_1K$.

Лемма 1. 6. Пусть F и F_1 -счетные редуцированные примарные группы, а

$$(1.1) F\supset F^{(1)}\supset ...,$$

$$(1.2) F_1 \supset F_1^{(1)} \supset \dots$$

— ряды Ульма для групп F и F_1 . Если $FK\cong F_1K$, то ряды (1. 1) и (1. 2) имеют один и тот же порядковый тип, и, при этом, $\widetilde{F}^{(i)}K\cong \widetilde{F}_1^{(i)}K$, где $\widetilde{F}^{(i)}=F^{(i)}/F_1^{(i+1)}$; $\widetilde{F}_1^{(i)}=F_1^{(i)}/F_1^{(i+1)}$.

Доказательство. Очевидно, можно предполагать, что имеет место равенство $FK = F_1K$. Предположим, что для всех i < w уже доказано равенство $F^{(i)}K = F_1^{(i)}K$. Если w-трансфинитное число первого рода, то имеет место равенство $F^{(w-1)}K = F_1^{(w-1)}K$. Так как $F^{(w)}$ и $F_1^{(w)}$ -подгруппы элементов бесконечной высоты соответственно в группах $F^{(w-1)}$ и $F_1^{(w-1)}$, то тогда, на основании леммы 1.2, $F^{(w)}K = F_1^{(w)}K$. Если w-трансфинитное число второго рода, то $F^{(w)}K = \bigcap_{i < w} F^{(i)}K$, $F^{(w)}K = \bigcap_{i < w} F^{(i)}K$, и снова $F^{(w)}K = F^{(w)}K$. Утверждение леммы следует теперь из следствия из леммы 1.2.

Лемма 1. 7. Пусть G и G_1 -счетные примарные абелевы группы без элементов бесконечной высоты. Если $GK \cong G_1K$, то $G \cong G_1$.

Доказательство. Пусть $GK = G_1K$. Тогда на основании леммы 1. 2 имеет место равенство

$$G^{p^n}K=G_1^{p^n}K=R.$$

Пусть $\overline{N}=\{x\in R,\, x^p=0\}$. Образуем подалгебру $G^{p^{n+1}}K=G_1^{p^{n+1}}K=\widetilde{R}$. Пусть $\widetilde{N}=\{x\in \widetilde{R},\, x^p=0\}$, а V-идеал алгебры R, порожденный идеалом \widetilde{N} алгебры \widetilde{R} . Очевидно, $V\subseteq \overline{N}$.

Пусть

$$(1.3) G^{p^n} = (b_1) \times ... \times (b_r) \times ... \times (a_1) \times ... \times (a_s) \times ...,$$

где b_i -элементы порядка p, а каждый из элементов a_i имеет порядок p^{β_i} , где $\beta_i \ge 2$. Тогда нижний слой N группы G^{p^n} представляется в виде произведения

$$N = (b_1) \times ... \times (b_r) \times ... \times (a_1^{p\beta_1-1}) \times ... \times (a_s^{p\beta_s-1}) \times ...,$$

а нижний слой N' группы $G^{p^{n+1}}$ в виде произведения

$$N'=(a_1^{p\beta_1-1})\times ... \times (a_s^{p\beta_s-1})\times ...$$

Ввиду леммы 1.2, идеал \tilde{N} алгебры R порождается всеми элементами h-1 $(h\in N)$, а идеал V-всеми элементами h'-1 $(h'\in N')$. Элементы вида $(b_{i_1}-1)^{\alpha_1}...(b_{i_r}-1)^{\alpha_r}$ $(0<\alpha_j< p)$ принадлежат идеалу \overline{N} и не принадлежат идеалу V. Если число подгрупп (b_i) в разложении (1.3) бесконечно, то факторкольцо \overline{N}/V не является нильпотентным. В самом деле, в этом случае для любого натурального m в \overline{N} существует произведение

$$(b_1-1)...(b_m-1) \in V$$
.

Пусть число множителей (b_i) в (1.3) конечно и равно t.

Тогда фактор-кольцо \overline{N}/V -нильпотентное кольцо с показателем нильпотентности t(p-1)+1.

Действительно, $(b_1-1)^{p-1}...(b_t-1)^{p-1}\overline{\in}V$, но всякое произведение из t(p-1)+1 множителей идеала \overline{N} уже принадлежит идеалу V.

Для фиксированного простого p число t(p-1)+1 однозначно определяет число t. Таким образом, групповая алгебра $GK = G_1K$ вполне определяет число прямых множителей порядка p в прямом разложении групп G^{p^n} и $G_1^{p^n}$ (n=0, 1, ...). Следовательно, $G \cong G_1$. Лемма доказана.

Доказательство теоремы 1.1. Счетная абелева p-группа G записывается в виде прямого произведения $G = P \times F$, где P-полная группа, а F-редуцированная группа. Группа F с точностью до изоморфизма определяется своими ульмовскими факторами. Поэтому теорема 1.1 вытекает из сопоставления лемми 1.5, 1.6 и 1.7.

2. Исследуем теперь мультипликативную группу M(G) групповой алгебры GK примарной абелевой *p*-группы над полем K характеристики p. Группа M(G) состоит из тех и только тех конечных линейных комбинаций $\sum_{i=1}^{\infty} \alpha_{ig} g$ $(\alpha_g \in K)$, для которых $\sum_a \alpha_g \neq 0$. Легко видеть, что имеет место прямое разложение $M(G) = K^* \times S(G)$, где K^* -мультипликативная группа поля K, а S(G)силовская p-подгруппа группы M(G):

$$S(G) = \{ x = \sum_{g \in G} \alpha_g g, \sum_{g \in G} \alpha_g = 1 \}.$$

Лемма 1.2'. Пусть Р-максимальная полная подгруппа группы G, а G'подгруппа элементов бесконечной высоты этой группы. Тогда S(P) и S(G')соответственно максимальная полная подгруппа и подгруппа элементов бесконечной высоты группы S(G). Кроме того, $S^{pn}(G) = S(G^{pn})$ (n=0, 1, ...). Ряды Ульма для групп G/P и S(G)/S(P) имеют один и тот же порядковый тип. Лемма доказывается такими же рассуждениями, как и лемма 1.2.

Теорема 1.2. Пусть K = GF(q)-конечное поле. Конечные абелевы р-группы G и G_1 изоморфны тогда и только тогда, когда изоморфны группы S(G) и $S(G_1)$.

Доказательство. Пусть G-конечная абелева группа, а N-нижний слой группы G. Обозначим через \widetilde{N} нижний слой группы S(G). Каждый элемент $x \in \widetilde{N}$ можно записать в виде:

$$x = \sum_{j} b_{j} \sum_{a \in N} \alpha_{ja} a \qquad (\alpha_{ja} \in K),$$

где $\{b_j\}$ $(b_1=1)$ -система представителей смежных классов группы G по подгруппе N. Имеем

$$x^p = \sum_i b_j^p \sum_{a \in N} \alpha_{ja}^p = 1,$$

откуда

$$(1.4) \sum_{a \in N} \alpha_{1a} = 1; \sum_{a \in N} \alpha_{ja} = 0 (j \neq 1).$$

Пусть p^t -порядок нижнего слоя группы G. Тогда каждое из уравнений системы (1. 4), имеет точно $q^{(p^t-1)}$ решений, а число r решений системы равно

$$(1.5) r = q^{(p^t - 1)l},$$

где l=(G:N).

Из формулы (1. 5) вытекает, что в случае конечного поля K порядок нижнего слоя \widetilde{N} группы S(G) однозначно определяет порядок нижнего слоя группы G, так как числа l и q являются степенями фиксированного простого числа p. Далее, имеет место формула

(1.6)
$$S^{p^i}(G) = S(G^{p^i}).$$

Из формул (1.5) и (1.6) теперь следует, что группа $S^{pi}(G)$ однозначно определяет порядок нижнего слоя группы G^{pi} . Таким образом, группа S(G) однозначно определяет порядок нижнего слоя N_i группы G^{pi} ($i=0,1,\ldots$). Так как порядки групп N_i ($i=0,1,\ldots$) определяют группу G с точностью до изоморфизма, то, тем самым, теорема 1.2 доказана.

Пусть G-произвольная счетная примарная абелева группа, а G'-подгруппа элементов бесконечной высоты в G. Тогда, в силу леммы 1. 2, S(G')-подгруппа элементов бесконечной высоты в S(G). Образуем фактор-группу B = S(G)/S(G'). Эта группа не содержит элементов бесконечной высоты и, следовательно, разлагается в прямое произведение циклических p-групп.

Обозначим через \hat{N}_i нижний слой группы B^{p^i} (i=0,1,...).

Лемма 1. 8. Если $G'\neq 1$, то фактор-группа \hat{N}_i/\hat{N}_{i+1} для любого $i=0,\,1,\,\dots$ имеет бесконечный порядок.

Доказательство. Фактор-группа D = G/G' разлагается в прямое произведение циклических групп. Так как $G' \neq 1$ то порядки прямых множителей в этом разложении не ограничены. Значит, группы D^{p^i} и $D^{p^{i+1}}$ также разлагаются в прямое произведение счетного числа циклических групп:

$$D^{p^i} = (b_1 G') \times \dots \times (b_r G') \times \dots;$$

$$D^{p^{i+1}} = (b_{j_1}^p G') \times \ldots \times (b_{j_r}^p G') \times \ldots$$

Обозначим через N' нижний слой группы G'. Введем в рассмотрение следующие элементы группы B^{p^i} :

$$\eta_r = (1 + b_{j_r} \sum_i \alpha_i g_i) S(G'),$$

где $\sum_i \alpha_i = 0$ и $g_i \in N'$. Очевидно, $\eta_r \in \hat{N}_i$

Покажем, что элементы η_r и η_m принадлежат различным смежным классам группы \hat{N}_i по подгруппе \hat{N}_{i+1} . Действительно, произвольный элемент группы $S^{p^{i+1}}(G) = S(G^{p^{i+1}})$ записывается в виде:

$$\sum b_{j_{i_1}}^{p\alpha_{i_1}} \dots b_{j_{i_t}}^{p\alpha_{i_t}} A_{i_1,\dots,i_t}$$

где $A_{i_1,\dots,i_t}\in G'K$. Если η_r и η_m $(m\neq r)$ принадлежат одному смежному классу группы \hat{N}_i по подгруппе \hat{N}_{i+1} , то

(1.7)
$$(1+b_{j_r} \sum_{i} \alpha_i g_i) = (1+b_{j_m} \sum_{i} \alpha_i' g_i) (\sum b_{j_{i_1}}^{p\alpha_{i_1}} \dots b_{j_{i_t}}^{p\alpha_{i_t}} A_{i_1, \dots, i_t}) C,$$
 rate
$$C \in S(G'), \quad A_{i_1, \dots, i_t} \in G'K \quad (\alpha_i, \alpha_i' \in K).$$

Равенство (1. 7) невозможно, ибо элемент в левой части содержит элементы группы G из смежного класса b_j , G', не встречающиеся в правой части. Так как число элементов η , бесконечно, то, тем самым, мы показали, что

индекс $(\hat{N}_i:\hat{N}_{i+1})$ бесконечен. Лемма доказана.

Следствие. В условиях леммы 1.8, фактор-группа S(G)/S(G') разлагается в прямое произведение циклических групп таким образом, что каждая циклическая группа порядка p^i (i=1,2,...) входит в это разложение бесконечное число раз.

В самом деле, число множителей порядка p^i в прямом разложении группы S(G)/S(G') определяется индексом $(\hat{N}_{i-1}:\hat{N}_i)$ (i=1,2,...).

Лемма 1.9. Пусть группа G разлагается в прямое произведение счетного числа циклических групп:

$$(1.8) G = (a_1) \times ... \times (a_s) \times ...,$$

а K-конечное поле. Тогда в прямом разложении группы S(G) встречается бесконечно много циклических множителей порядка р.

Доказательство. Если разложение (1.8) содержит только конечное число множителей порядка p^i , где $i \ge 2$, то утверждение леммы очевидно.

В самом деле, если бы в этом случае в разложении группы S(G) встречалось только конечное число множителей порядка p, то подгруппа $S^p(G)$ была бы бесконечной. С другой стороны, $S^p(G) = S(G^p)$, а подгруппа G^p -конечна, что ведет к противоречию.

Предположим, что в прямом разложении (1.8) встречается бесконечно много множителей с порядком, большим, чем р.

Положим $H = (b_1) \times (b_2) \times ...$, где (b_i) -такие прямые множители в разложении (1. 8), что $b_i^p \neq 1$. Образуем элементы

$$(1.9) 1 + b_i \sum_j \alpha_j g_j,$$

где $\{g_j\}$ -элементы нижнего слоя группы G и $\sum_i \alpha_i = 0$.

Так же, как и в предыдущей лемме, устаналиваем, что элементы (1.9) принадлежат различным смежным классам нижнего слоя \tilde{N} группы S(G) по нижнему слою N' группы $S^p(G) = S(G^p)$. Значит, $(\tilde{N}: N') = \infty$, что и доказывает утверждение леммы.

Следствие. Если порядки прямих множителей в (1.8) не ограничены, то в прямом разложении группы S(G) каждая циклическая группа порядка p^i (i=1,2,...) встречается бесконечное число раз. Если эти порядки ограничены и p^α -наибольший из порядков прямых множителей в (1.8), $p^\beta(\beta \le \alpha)$ -наибольший из порядков тех прямых множителей, которые входят в (1.8) бесконечное число раз, а H-прямое произведение прямых множителей (1.8), порядки которых не превосходят p^β , то в прямое разложение группы S(G) циклические множители порядков $p, ..., p^\beta$ входят бесконечное число раз, а множители порядка p^γ , где $\beta < \gamma \le \alpha$ встречаются в этом разложении столько раз, сколько их участвует в разложении конечной группы S(G/H).

Доказательство. Обозначим через N_i порядок нижнего слоя группы $S^{pi}(G) = S(G^{pi})$. Если порядки прямых множителей группы G не ограничены, то из леммы 1. 9 следует для каждого i (i = 0, 1, ...) индекс (N_i : N_{i+1}) бесконечен. Отсюда вытекает первое утверждение леммы.

Если порядки прямых множителей в (1. 8) ограничены и p^{α} -наибольший из этих порядков, то, в силу леммы 1. 9, индексы $(N_{i-1}:N_i)$ $(i=1,...,\beta)$ не ограничны. Индексы $(N_{\bar{\beta}}:N_{\beta+1}),...,(N_{\alpha-1}:N_{\alpha})$ совпадают с соответствующими индексами для группы S(G/H). Отсюда, в силу теоремы 1. 2, следует второе утверждение леммы.

Лемма 1. 10. Пусть G = (a)-циклическая группа порядка p^n , а K-счетное поле характеристики p. Тогда в прямое разложение группы S(G) входят только циклические группы порядков $p, ..., p^n$, причем каждая подгруппа порядка p^i $(1 \le i \le n)$ встречается в этом разложении счетное число раз.

Доказательство. Рассмотрим группы $S^{p^i}(G) = S(G^{p^i})$ и $S^{p^{i+1}}(G) = S(G^{p^{i+1}})$ $(i=0,\dots,n-1)$. Тогда элементы вида

$$1 + a^{p^i}(\alpha + \beta a^{p^{n-1}}) \qquad (\alpha + \beta = 0)$$

принадлежат нижнему слою N_i группы $S^{p^i}(G)$. Возьмем элементы

$$1 + a^{pt}(\alpha + \beta a^{p^{n-1}})$$
 и $1 + a^{pt}(\alpha_1 + \beta_1 a^{p^{n-1}})$. (1. 10)

Если эти элементы принадлежат одному смежному классу группы $S^{p^i}(G)$ по подгруппе $S^{p^{i+1}}(G)$, то

$$(1.11) 1 + a^{p^i}(\alpha + \beta a^{p^{n-1}}) = [1 + a^{p^i}(\alpha_1 + \beta_1 a^{p^{n-1}})](\sum_j \gamma_j a^{jp^{i+1}}).$$

Если $\sum_{j} \gamma_{j} a^{jp^{i+1}} \neq \gamma_{1} \cdot 1$, то равенство (1. 11) невозможно, а если $\sum_{j} \gamma_{j} a^{jp^{i+1}} = \gamma_{1} 1$, то $\gamma_{1} = 1$ и $\alpha_{1} = \alpha$; $\beta_{1} = \beta$. Таким образом, для различных пар (α, β) и (α_{1}, β_{1}) $(\alpha + \beta = 0)$; $\alpha_{1} + \beta_{1} = 0$) элементы (1. 11) принадлежат различным смежным классам группы $S^{pi}(G)$ по подгруппе $S^{pi+1}(G)$. Так как поле K содержит бесконечно много элементов, то отсюда следует, что индекс $(N_{i}: N_{i+1})$ бесконечен.

Значит, в прямом разложении группы S(G) встречается бесконечно много циклических прямых множителей порядка p^{i+1} (i=0,...,n-1). Так как для любого элемента $x \in S(G)$ $x^{p^n} = 1$, то утверждение леммы доказано.

Лемма 1.11. Пусть группа G разлагается в прямое произведение циклических p-групп:

 $G = G_1 \times ... \times G_s \times ... \quad (G_i = (a_i)),$

а K-произвольное поле характеристики p. Тогда подруппа $S(G_i)$ является сервантной подгруппой группы S(G).

Доказательство. Имеет место прямое разложение: $G=G_i \times H$, где $H=\prod\limits_{j\neq i} \times G_j$.

Пусть теперь $x \in S(G_i)$ и $x = z^{p^n}$, где $z \in S(G)$. Элемент z можно записать в виде:

$$z=\sum\limits_{j}A_{j}h_{j},$$
 где $A_{j}\!\in\!G_{i}K,$ $h_{j}\!\in\!H.$

Тогда

$$x = z^{p^n} = \sum_j A_j^{p^n} h_j^{p^n}.$$

Значит.

$$x = A_{i_1}^{p^n} + \dots + A_{i_r}^{p^n},$$

где $i_1,\,...,\,i_r$ - такие индексы, что $h_{i_1}^{p^n}=...=h_{i_r}^{p^n}=1$ и $h_t^{p^n}\ne 1$, если $t=i_j$ $(j=1,\,...,\,r)$. Лемма доказана

Следствие. Пусть группа G разлагается в прямое произведение конечного или счетного числа циклических p-групп с ограниченными в совокупности порядками, а K-счетное поле. Если p^n -наибольший порядок циклических прямых множителей в разложении группы G, то в разложении группы S(G) каждая из подгрупп порядка p^i (i=1,...,n) встречается счетное число раз и каждая из циклических подгрупп в этом разложении имеет порядок p^i , где $i \le n$.

Доказательство. Пусть $G = \Pi \times G_i$, где $G_i = (a_i)$.

В силу леммы 1. 11 $S(G_i)$ -сервантная подгруппа группы S(G). Так как порядки элементов группы $S(G_i)$ ограничены, то $S(G_i)$ выделяется прямым множителем в группе S(G) (см. [2]). Для завершения доказательства теперь остается сослаться на лемму 1. 10.

Лемма 1.12. Пусть *G*-счетная полная группа, а *K*-счетное или конечное поле характеристики p. Тогда группа S = S(G) разлагается в произведение счетного числа групп типа p^{∞} .

Доказательство. В силу леммы 1.2, S(G)-полная группа. Для доказательства леммы достаточно установить, что нижний слой N группы S-бесконечная группа.

Рассмотрим разложение группы G в прямое произведение групп типа p^∞ : $G=\prod \times G_i$.

Пусть (a_1) -нижний слой группы G_1 , а $\overline{N} = \{x, x \in GK, x^p = 0\}$. Ввиду леммы 1. 2, \overline{N} -бесконечномерная подалгебра алгебры GK. Следовательно, элементы

 $a_1 + n \ (n \in N)$ образуют бесконечное подмножество группы N и N-бесконечная группа. Лемма доказана.

Лемма 1. 13. Пусть $G=P\times G_1$, где $P\neq 1$ -полная группа, а G_1 -прямое произведение циклических групп. Пусть K-счетное или конечное поле. Тогда $S=S(G)=S(P)\times S_1$, где S_1 -редуцированная компонента группы S. Если порядки элементов группы G_1 не ограничены, то в прямом разложении группы S_1 каждая из циклических подгрупп порядков p^i (i=1,2,...) встречается бесконечное число раз. Если показатель группы G_1 равен p^α , то группа S_1 разлагается в прямое произведение циклических групп порядков $p,...,p^\alpha$, причем каждая из циклических подгрупп порядка p^i $(1\leq i\leq \alpha)$ встречается в этом разложении с бесконечной кратностью.

Доказательство. Легко проверить, что порядки элементов групп G_1 и S_1 одновременно ограничены или неограничены, причем в последнем случае показатели групп G_1 и S_1 совпадают. Пусть $G_1^{p^i} \neq 1$ $(i \geq 0)$ и пусть $a \in G_1^{p^i}$ и $a \in G_1^{p^{i+1}}$. Положим $\overline{P} = \{x \in PK, \, x^p = 0\}$. Ввиду леммы $1.2, \, \overline{P}$ -бесконечномерная подалгебра алгебры GK. Рассмотрим элементы $(1+a_1x_1)S(P)$ и $(1+a_1x_2)S(P)$ $(x_1, x_2 \in \overline{P})$ группы $\widetilde{S} = S(G)/S(P)$. Очевидно, эти элементы принадлежат нижнему слою \widetilde{N}_i группы \widetilde{S}^{p^i} . Предположим, что они лежат в одном смежном классе группы \widetilde{S}^{p^i} по подгруппе $\widetilde{S}^{p^{i+1}}$. Тогда $(1+ax_1)S(P) = (1+ax_2)yS(P)$, где $y \in G^{p^{i+1}}K$. Значит,

$$(1.12) (1+ax_1) = (1+ax_2)yz (z \in S(P)).$$

Так как $x_i \in G^{p^{i+1}}$ K (i=1,2) и $yz \in G^{p^{i+1}}$ K, то из (1.12) следует, что yz=1 и $ax_1=ax_2$, откуда $x_1d=x_2$. Таким образом, при $x_1 \neq x_2$ $(x_1,x_2 \in \overline{P})$ элементы $(1+ax_1)S(P)$ и $(1+ax_2)S(P)$ принадлежат различным смежным классам группы \widetilde{N}_i по подгруппе \widetilde{N}_{i+1} . Значит, $(\widetilde{N}_i:\widetilde{N}_{i+1})=\infty$, откуда вытекает, что разложение фактор-группы S(G)/S(P) в прямое произведение циклических групп содержит бесконечно много циклических групп порядка p^{i+1} . Лемма доказана.

Теорема 1. 3. Пусть G-счетная абелева p-группа, P-максимальная полная подгруппа группы G, K-счетное или конечное поле характеристики p, S-силовская p-подгруппа мультипликативной группы алгебры GK, а P'-максимальная полная подгруппа группы S.

Обозначим через A_n (A_∞) прямое произведение циклических p-групп порядков p,\ldots,p^n (соответственно порядков p,\ldots,p^n), где каждая из циклических групп порядка p^i ($1 \le i \le n$) (соответственно каждая из циклических групп порядка p^i , где i-n поизвольное натуральное число) встречается счетное число раз. Если $P \ne 1$, то $P' \ne 1_\infty$. При P=1 группа P'=1. Ряды Ульма для редуцированных групп G/P и S/P' имеют один и тот же порядковый тип w. Все факторы ряда Ульма группы S/P', кроме, быть может, последнего фактора S^γ для случая, когда $w=\gamma+1$ -трансфинтное число первого ряда, изоморфны группе A_∞ . Пусть $w=\gamma+1$, а G^γ -последний фактор ряда Ульма группы G/P. Если порядки элементов группы G^γ не ограничены, то $S^\gamma \cong A_\infty$. Предположим, что порядки элементов группы G^γ ограничены, причем p^α -показатель группы G^γ , а p^β -наибольший из порядков тех циклических прямых множителей, которые входят в разложение группы G^γ счетное число раз. Обозначим через H прямое произ-

ведение всех циклических прямых множителей группы G^{γ} , порядки которых не превышают p^{β} . Если поле K-счетное, то $\bar{S}^{\gamma} \cong A_{\alpha}$, а для конечного поля K группа \bar{S}^{γ} представляется в виде прямого произведения $\bar{S}^{\gamma} = A_{\beta} \times \tilde{S}$, где группа \tilde{S}^{γ} изоморфна силовской p-подгруппе $S(G^{\gamma}|H)$ мультипликативной группы групповой алгебры FK конечной группы $F = G^{\gamma}|H$. (Если G^{γ} -конечная группа, то H = 1).

Доказательство. Доказательство теоремы сразу получается путем сопоставления лемм 1. 8,1. 9, 1. 11 следствий из этих лемм и лемм 1. 12 и 1. 13.

Теорема 1. 4. Пусть G и G_1 -счетные абелевы p-группы; S и S_1 -соответственно силовские p-подгруппы групповых алгебр GK и G_1K (K-счетное или конечное поле характеристики p); $P(P_1)$ -максимальная полная подгруппа группы $G(G_1)$; $w(w_1)$ -порядковый тип ряда Ульма группы G/P (G_1/P_1). Если $w=\gamma+1$ ($w_1=\gamma_1+1$)-трансфинитное число первого рода, то обозначим через $G^\gamma(G_1^{\gamma_1})$ последний фактор ряда Ульма группы G/P (G_1/P_1). Группы S и S_1 изоморфны тогда и только тогда, когда одновременно выполяются следующие условия:

1. Если $P \neq 1$, то $P_1 \neq 1$; 2. $w = w_1$ 3. Если $w = w_1 = \gamma + 1$ и K-счетное поле, то группы G^γ и G_1^γ имеют один и тот же показатель p^α или порядки элементов этих групп не ограничены. Если $w = w_1 = \gamma + 1$ и K-конечное поле, то или порядки элементов групп G^γ и G_1^γ одновременно не ограничены, или совпадают показатели групп G^γ и G_1^γ и, при этом, изоморфны конечные группы $G^\gamma H U G_1^\gamma H_1$ (см. обозначения теоремы 1.3).

Доказательство. Теорема 1. 4 непосредственно вытекает из теоремы 1. 3 и теоремы 1. 2.

§ 2. Полупростые групповые алгебры счетных примарных абелевых групп

В этом параграфе находятся необходимые и достаточные условия изоморфизма групповых алгебр GK и G_1K двух счетных абелевых p-групп G и G_1 над полем K, характеристика которого не совпадает с простым p. Устанавливаются также необходимые и достаточные условия изоморфизма комплексных и вещественных групповых алгебр счетных периодических абелевых групп.

На всем протяжении параграфа рассматриваются только групповые алгебры над полем, характеристика которого не делит порядки элементов группы. В дальнейшем всегда будет предполагаться, что char $K \neq p$.

Напомним некоторые факты о полупростых групповых алгебрах конечных абелевых p-групп. Пусть G-конечная абелева p-группа типа $[\alpha_1, ..., \alpha_s]$ $(\alpha_1 \ge ... \ge \alpha_s)$, а ξ -первообразный корень степени p^{α_1} из 1. Образуем поле $K(\xi) = F$. Групповая алгебра GF разлагается в прямую сумму (G:1) = t одномерных (над F) идеалов:

$$GF = I'_1 + \ldots + I'_t$$
.

Каждый идеал I_i' порождается минимальним идемпотентом

$$e'_i = \frac{1}{(G:1)} \sum_{g \in G} \chi_i(g^{-1})g,$$

где $\chi_i(g)$ (i=1,...,t)-характер группы G над полем F.

Множество характеров $\chi_i(g)$ группы G распадается на непересекающиеся подмножества (K-классы).

$$\{\chi_{11}, \dots \chi_{1r_1}\} \dots, \{\chi_{s1}, \dots, \chi_{sr_s}\}$$

K-сопряженных между собой характеров (характеров, переходящих друг в друга под действием автоморфизмов $\xi \to \xi^{\mu}$ поля F над K). Подмножествам (2. 1) соответствуют подмножества K-сопряженных между собой минимальных идемпотентов алгебры GF:

$$\{e'_{11},...,e'_{1r_1}\},...,\{e'_{1},...,e'_{sr_s}\}$$

Минимальные идемпотенты $e_1, ..., e_s$ алгебры GK получаются в результате сложения K-сопряженных минимальных идемпотентов алгебры GF:

$$e_i = e'_{i1} + ... + e'_{ir_i}$$
 $(i = 1, ..., s).$

Обозначим через $K(\chi)$ поле, полученное в результате присоединения к полю K всех значений характера χ группы G. Если характер χ имеет ядро H и (G:H)=m то $K(\chi)=K(\varepsilon)$, где ε -первообразный корень степени m из I.

Ввиду (2. 1) и (2. 1'), минимальный идеал $I_i = GKe_i$ алгебры GK изоморфен полю $K(\chi_{i1}) = \ldots = K(\chi_{ir_i})$. Очевидно, $(K(\chi_{ij}):K) = r_i$ $(i = 1, \ldots, s)$.

Определение 2. 1. Введем обозначение: $w_G(e_i) = r_i$. Число r_i назовем весом минимального идемпотента e_i алгебры GK (i=1,...,s).

Так как G-примарная группа, то вес $w_G(e_i)$ определяет поле I_i (i=1,...,s) с точностью до изоморфизма.

В соответствии с разбиением (2.1), множество элементов группы G распадается на K-классы $T_1, ..., T_s$. По определению элементы $a, b \in G$ принадлежат одному K-классу тогда и только тогда, когда $b = a^\mu$, где μ -такое целое число, что отображение $\xi \to \xi^\mu$ является автоморфизмом поля $F = K(\xi)$ над K.

Порядки K-классов $T_1, ..., T_s$ (после соответствующей их перенумерации) совпадают с числами $r_1, ..., r_s$. Таким образом, имеет место теорема [3]:

Теорема 2. 1. Групповые алгебры GK и G_1K двух конечных абелевых р-групп G и G_1 изоморфны тогда и только тогда, когда группы G и G_1 распадаются на одно и то же число K-классов и порядки соответствующих K-классов этих групп совпадают.

Из приведенных выше фактов о групповых алгебрах конечных абелевых *p*-групп легко вытекают следующие леммы:

Лемма 2.1. Пусть *G*-конечная абелева *p*-группа типа $[\alpha_1, ..., \alpha_s]$ $(\alpha_1 \ge ..., \ge \alpha_s)$, *H* циклическая группа порядка p^{α_1} , а ξ_i -первообразный корень степени p^i из 1 (i=0,1,...). Разложение алгебры *GK* в прямую сумму полей

$$(2.2) GK = I_1 + \dots + I_q$$

содержит те и только те поля, которые встречаются в разложении алгебры HK (без учета краткостей вхождения). Каждый идеал I_i изоморфен полю $K(\xi_j)$, где $0 \le j \le \alpha_1$. Наоборот, произвольное поле $K(\xi_j)$ ($0 \le j \le \alpha_1$) встречается среди полей I_i в разложении (2. 2).

- Лемма 2. 2. Пусть H-подгруппа конечной абелевой группы G. Тогда полная система представителей K-классов характеров группы G получится, если мы выберем такую систему $\{\psi_1, ..., \psi_r\}$ для группы H, продолжим каждый характер ψ_i до характеров $\psi_{i1}, ..., \psi_{in}$ (n = (G: H)) группы G и среди характеров ψ_{ij} для каждого i выделим несопряженные (над K) характеры: $\psi_{ij_1}, ..., \psi_{ijq_i}$.
- **Лемма 2. 3.** Пусть ψ -характер подгруппы H конечной p-группы G, χ_1 , ..., χ_q -все характеры группы G, индуцирующие на H характер ψ , а e-минимальный идемпотент алгебры HK, соответствующий характеру ψ . Если $(K(\chi_1):K)=\dots$... $=(K(\chi_q):K)=m$, то вес $w_G(e_i)$ каждого минимального идемпотента e_i алгебры GK, возникающего в разложении идемпотента e, равен m.
- **Лемма 2. 4.** Пусть конечная абелева p-группа G представляется в виде прямого произведения: $G = G_1 \times G_2$. Пусть e-минимальный идемпотент алгебры G_1K и $w_{G_1}(e) = n$. Пусть $1 = e'_1 + \ldots + e'_q$ -разложение единицы алгебры G_2K , в сумму минимальных идемпотентов этой алгебры, где $w_{G_2}(e_i) = m_i$ ($m_1 \ge \ldots \ge m_q$), и пусть $e = e_1 + \ldots + e_t$ -разложение идемпотента e в сумму минимальных идемпотентов алгебры GK. Если $n \ge m_1$, то $w_G(e_i) = n$ ($i = 1, \ldots, t$). Если $n < m_1$ то множество различных весов идемпотентов e_1, \ldots, e_t алгебры GK совпадает с множеством $\{n, n+1, \ldots, m_1\}$.

Лемма 2. 5. Пусть *K*-произвольное поле (char $K \neq p$), ξ_i -первообразный корень степени p^i из 1 (i=1,2,...) и q=1 (q=2), если $p\neq 2$ (p=2). Либо для всех натуральных $j \geq q$

$$(2.3) K(\xi_q) = K(\xi_j),$$

либо существует такое натуральное число f = f(K), что

$$(2.4) K(\xi_q) = K(\xi_{q+1}) = \dots = K(\xi_f) \subset K(\xi_{f+1}) \subset \dots$$

Лемма 2.5 является известным фактом теории круговых полей (см., например [4]).

Следствие. Пусть для поля K и простого числа p выполняются условия (2. 4). Тогда при $i \ge f$

 $(K(\xi_i):K(\xi_f))=p^{i-f}.$

Доказательство. Пусть $H = (\psi)$ -группа Галуа поля $K(\xi_i)$ над подполем $K(\xi_f)$ и $\psi(\xi_i) = \xi_i^\mu$. Не нарушая общности рассуждений, можно предполагать, что $\xi_f = \xi_i^{p^{i-f}}$. Так как $\psi(\xi_i^{p^{i-f}}) = \xi_i^{\mu p^{i-f}}$, то $\mu p^{i-f} \equiv p^{i-f} (\text{mod } p^i)$, т. е. $\mu \equiv 1 \pmod{p^f}$. При этом, $\mu \not\equiv 1 \pmod{p^{f+1}}$, так как в противном случае автоморфизм ψ оставлял бы на месте элемент ξ_{f+1} . Отсюда, легко получить, что число μ принадлежит показателю p^{i-f} по $\text{mod } p^i$, т. е. порядок группы H равен p^{i-f} . Утверждение доказано.

Лемма 2.5'. Пусть G-циклическая группа порядка p^{α} , а K-произвольное поле (char $K \neq p$), удовлетворяющее условию (2.4). Пусть $\alpha \geq f$ (см. 2.4), а G_1 -подгруппа группы G порядка p^f . Тогда множество минимальных идемпотентов алгебры GK, соответствующих точным*) абсолютно неприводимым

^{*)} Характер χ абелевой группы G называется точным, если ядро представления χ равно I.

характерам группы, совпадает с множеством минимальных идемпотентов алгебры G_1K , соответствующих точным характерам группы G_1 .

Доказательство. Пусть G=(a). Подгруппу G_1 можно записать в виде $G_1=(a^m)$, где $m=p^{\alpha-f}$. Пусть ξ -первообразный корень порядка p^α из единицы, а $\varepsilon=\xi^m$ -первообразный корень из единицы степени p^f . Образуем минимальные идемпотенты e' и u' соответственно алгебр $GK(\xi)$ и $G_1K(\varepsilon)$:

$$e' = \frac{1}{(G:1)} \sum_{j=1}^{(G:1)} \xi^j a^j; \quad u' = \frac{1}{(G_1:1)} \sum_{j=1}^{(G_1:1)} \varepsilon^j a^{mj}.$$

Следствие. Пусть G-циклическая p-группа, а H и G_1 -такие подгруппы G, что $C_1 \supseteq H$ и $(G_1:H) = p^f$ (см. 2. 4). Тогда множество минимальных идемпотентов алгебры GK, соответствующих характерам группы G с ядром H, соответствующих характерам подалгебры G_1K , соответствующих характерам группы G_1 с тем же ядром H.

Определение 2. 2. Поле K (char $K \neq p$), для которого выполняются условия (2. 3) соответственно (2. 4) будем называть полем второго рода (соответственно полем первого рода) относительно простого числа p.

Лемма 2. 6. Каждое конечномерное представление Γ локально конечной группы G над полем K, характеристика которого не делит порядки элементов группы G, вполне приводимо. Представление Γ неприводимо тогда и только тогда, когда для некоторой конечной подгруппы H группы G индуцированное представление $\Gamma \downarrow (H)$ -неприводимо.

Доказательство. Рассмотрим совокупность матриц $\{\Gamma(g)\}\ (g\in G)$. Так как Γ -конечномерное представление группы G, то из множества $\{\Gamma(g)\}$ можно выделить максимальную линейную независимую подсистему $\Gamma(g_1), ..., \Gamma(g_t)$. содержащую только конечное число матриц. Обозначим через H конечную подгруппу G, порожденную элементами $g_1, ..., g_t$. Очевидно, представление Γ неприводимо тогда и только тогда, когда индуцированное представление $\Gamma \downarrow (H)$ -неприводимо. Представление $\Gamma \downarrow (H)$ -вполне приводимо, и поэтому представление Γ также вполне приводимо. (Лемма 2. 6 хорошо известна. Мы привели доказательство леммы для полноты изложения.)

Лемма 2.7. Пусть *G*-счетная абелева *p*-группа без элементов бесконечной высоты, а *K*-поле (char $K \neq p$). Тогда для любого элемента $x \in GK$ найдется такое неприводимое конечномерное представление Γ алгебры GK, что $\Gamma(x) \neq 0$.

Доказательство. Группа G разлагается в прямое произведение циклических p-групп: $G = (a_1) \times ... \times (a_s) \times ...$ Пусть $G_s = (a_1) \times ... \times (a_s)$. Очевидно,

 $x \in G_sK$ для достаточно большого натурального s. Алгебра G_sK обладает неприводимым представлением Γ , для которого $\Gamma(x) \neq 0$, причем это представление естественным образом продолжается до представления алгебры GK.

Лемма 2. 8. Пусть G-счетная абелева p-группа, а P-подгруппа элементов бесконечной высоты в G. Если K-поле первого рода относительно простого p (см. определение 2. 2), то подгруппа P совпадает с пересечением ядер всех конечномерных неприводимых представлений группы G над полем K.

Доказательство. Пусть Γ -неприводимое конечномерное представление группы G над полем K. Ввиду леммы 2. 6, Γ индуцирует неприводимое представление некоторой конечной подгруппы H группы G. Пусть $a \in P$ и $\Gamma(a) \neq E$ (E-единичная матрица). Представление Γ неприводимо на любой подгруппе $Q \supseteq H$. Пусть Γ' -ограничение представления Γ на подгруппу $H' = \{H, a\}$, а χ' -абсолютно неприводимый характер группы H', соответствующий представлению Γ . Тогда $\chi'(a) = \varepsilon \neq 1$ ($\varepsilon^{p^r} = 1$). Пусть g_n -такой элемент группы G, что $g_n^{p^n} = a$, где n-произвольное натуральное число, а $\chi^{(n)}$ -характер группы $\{H, g_n\}$, индуцирующий на H' характер χ' . Тогда χ^n (g_n) = ξ_n , где $\xi_n^{p^n} = \varepsilon$. Так как K-поле первого рода, то $K(\xi_n):K \to \infty$, если $n \to \infty$. С другой стороны, степень m представления Γ совпадает с числом $K(\chi^{(n)}):K \to \infty$ для любого натурального n. Мы получили противоречие, так как $K(\chi^n):K \to \infty$ следовательно, K(z)=E для любого элемента $z\in E$.

Пусть $g \in P$. Так как фактор-группа G/P разлагается в прямое произведение циклических групп, то существует такое неприводимое конечномерное представление Γ группы G/P, что $\Gamma(gP) \neq E$. Представление Γ можно, очевидно, рассматривать как представление группы G над полем K, причем элемент g не содержится в ядре этого представления. Лемма доказана.

Лемма 2.9. Пусть G-периодическая абелева группа, а K-поле характеристика которого не делит порядки элементов группы G.

Если идеал I алгебры GK порождается конечным числом элементов алгебры, то I порождается также идемпотентом e, и, следовательно, через I можно провести прямое разложение алгебры GK:

$$GK = I + I_1$$
 $(I_1 = GK(1-e)).$

Доказательство. Пусть $I=(x_1,...,x_s)$. Существует конечная подгруппа $H\subset G$, такая, что $x_i\in HK$ (i=1,...,s). Идеал $HKx_1+...+HKx_s$ алгебры HK порождается идемпотентом e. Очевидно, I=GKe.

Лемма 2.10. Пусть G-счетная абелева p-группа, P-подгруппа элементов бесконечной высоты в G. K-поле первого рода (относительно p), а V-идеал алгебры GK, порожденный всеми элементами a-1 ($a \in P$). Идеал V совпадает с пересечением V' ядер всех неприводимых конечномерных представлений алгебры GK.

Доказательство. Ввиду леммы 2.7, $(a-1) \in V'$ для любого элемента $a \in P$. На основании леммы І.І, имеет место изоморфизм $GK/V \cong G_1K$, где $G_1 = G/P$. Так как группа G_1 разлагается в прямое произведение циклических групп, то по лемме 2.7 для каждого класса $(x+V) \neq V$ алгебры GK/V найдется

такое неприводимое конечномерное представление Γ этой алгебры, что $\Gamma(x+V) \neq 0$. Γ можно также рассматривать как представление алгебры GK, и элемент x не содержится в ядре Γ . Таким образом, V = V'. Лемма доказана.

Следствие. Пусть $G(G_1)$ -счетная абелева p-группа, $P(P_1)$ -подгруппа элементов бесконечной высоты в $G(G_1)$, H = G/P ($H_1 = G_1/P_1$), K-поле первого рода относительно простого p, а $V(V_1)$ -идеал алгебры GK (G_1K), порожденный всеми элементами a-1 (a_1-1), где $a \in P$ ($a_1 \in P_1$). Если существует изоморфизм $\theta \colon GK \to G_1K$, то 1. $HK \cong H_1K$; 2. Группы G и G_1 одновременно являются полными группами или группами без элементов бесконечной высоты. 3. Если P-конечная группа, то группа P_1 также конечна.

Доказательство. В силу леммы 2. 10 идеал $V(V_1)$ является пересечением ядер всех неприводимых конечномерных представлений алгебры $GK(G_1K)$ и поэтому $\theta(V) = V_1$. Следовательно, $GK/V \cong G_1K/V_1$. На основании леммы 2. 10 и леммы 1. 1, $GK/V \cong HK$, $G_1K/V_1 \cong H_1K$, и, значит, $HK \cong H_1K$. Из леммы 2. 10 далее вытекает, что группа $G(G_1)$ тогда и только тогда является полной группой (группой без элементов бесконечной высоты), когда HK (H_1K)-одномерная алгебра (соответственно, когда V=0, ($V_1=0$). Отсюда следует утверждение 2.

Предположим, что подгруппа P-конечна. Тогда, в силу леммы 2, 9 идеал V порождается идемпотентом e. Если P_1 -бесконечная группа, то идеал V_1 не может порождаться идемпотентом e_1 . В самом деле, идемпотент $e_1 \in V_1$ принадлежит некоторой подалгебре $G_1'K$, где G_1' -конечная подгруппа группы G_1 . Очевидно, существует такой элемент $a_1 \in P_1$, что $a_1 \in G_1'$. Тогда $(a_1-1) \in V_1$ и $(a-1)e_1 \neq (a_1-1)$. Полученное противоречие доказывает, что подгруппа P_1 конечна, откуда следует последнее утверждение леммы.

Лемма 2.11. Пусть G и G_1 -счетные абелевы p-группы без элементов бесконечной высоты, а K-поле (char $K\neq p$). Если K-поле первого рода и $GK\cong G_1K$ то порядки элементов групп G и G_1 одновременно ограничены или неограничены. Предположим, что G и G_1 -группы с ограничеными порядками элементов, $p^{\alpha}(p^{\alpha_1})$ -показатель группы $G(G_1)$, $p^{\beta}(p^{\beta_1})$ -наибольший из порядков тех циклических множителей, которые счетное число раз встречаются в прямом разложении группы $G(G_1)$, $\xi(\xi_1)$ -первообразный корень степени $p^{\alpha}(p^{\alpha_1})$ из единицы, а $\varepsilon(\varepsilon_1)$ -первообразный корень из единицы степени $p^{\beta}(p^{\beta_1})$. Пусть $GK\cong G_1K$. Тогда $K(\xi):K$ = $K(\xi):K$ =

Доказательство. Рассмотрим разложения групп G и G_1 в прямое произведение циклических групп:

$$(2.8) G = (a_1) \times ... \times (a_s) \times ...,$$

$$(2.9) G_1 = (b_1) \times ... \times (b_s) \times$$

Предположим, что порядки элементов группы G ограничены и p^{α} -показатель этой группы. Пусть $F = K(\xi)$, где K-поле первого рода, а ξ -первообразный корень степени p^{α} из единицы. Ввиду лемм 2. 6 и 2. 4, степени неприводимых представлений группы G не превышают числа (F:K). Если бы порядки элементов группы G_1 были не ограничены, то подгруппа $G_1^{(s)} = (b_1) \times ... \times (b_s)$ группы G_1 для достаточно большого s обладала бы неприводимым K-пред-

ставлением Γ , степень которого превышала бы (F:K), причем Γ продолжалось бы до представления группы G_1 . Значит, показатель группы G_1 также конечен.

Рассмотрим векторы (p^{α}, p^{β}) и $(p^{\alpha_1}, p^{\beta_1})$ для групп G и G_1 с ограниченными порядками элементов. Наибольшие степени неприводимых представлений групп G и G_1 над полем K равны соответственно $(K(\xi):K)$ и $(K(\xi_1):K)$. Так как $GK \cong G_1K$, то $(K(\xi):K) = (K(\xi_1):K)$. Предположим, что $(K(\epsilon):K) <$

 $<(K(\varepsilon_1):K)$ (см. обозначения в формулировке леммы).

Представим группу G в виде прямого произведения: $G = G'' \times G'$, где G'-прямое произведение тех циклических прямых множителей в (2.8), порядки которых превышают p^{β} , а G''-группа с показателем p^{β} . Обозначим через I идеал алгебры GK, порожденный элементами a-1, где $a \in G'$. В силу леммы 1.1, $GK/I \cong G''K$. Степени неприводимых представлений алгебры G''K не превышают $(K(\varepsilon):K)$. В силу изоморфизма между алгебрами GK и G_1K алгебра G_1K должна обладать таким идеалом I_1 , что I_1 порождается конечным числом элементов, а степени неприводимых представлений фактор-алгебры G_1K/I_1 не превышают $(K(\varepsilon):K)$.

На основании леммы 2. 9, имеет место прямое разложение: $G_1K = I_1 \dotplus I_2$, где идеал $I_1(I_2)$ порождается идемпотентом $e_1 \in G_1'K(e_2 \in G_1'K)$ G_1' -конечная подгруппа группы G_1). Не нарушая, общности рассуждений, можно считать, что

$$G_1' = (b_1) \times ... \times (b_t).$$

Пусть e_2' -минимальный идемпотент алгебры $G_1'K$ принадлежащий идеалу $G_1'Ke_2$, а ψ -абсолютно неприводимый характер группы G_1' , соответствующий идемпотенту e_2' . В силу условий леммы, существует подгруппа $(b_i) \subset G_1$ (i > t) порядка p^{β_1} . Образуем подгруппу $G_1'' = G_1'' \times (b_i)$. Применяя лемму 2. 4, получим, что в разложении идемпотента e_2' в ортогональную сумму минимальных идемпотентов алгебры $G_1''K$ возникает идемпотент e_3 с весом $m \ge (K(\varepsilon_1):K)$. Тогда неприводимое представление Γ группы G_1'' над полем K соответствующее идемпотенту e_3 , имеет степень m. Продолжим Γ до представления алгебры G_1K . Так как идемпотенты e_3 и e_1 попарно ортогональны, то $\Gamma(e_1) = 0$. Следовательно, для любого элемента $x \in I_1$ $\Gamma(x) = 0$, и Γ можно рассматривать как неприводимое представление фактор-алгебраы G_1K/I_1 . Мы получили противоречие, так как степень неприводимых представлений алгебры G_1K/I_1 не превышают K0 K1, а степень K2 равна K2 K3, итак, K4 K6. Итак, K6 K6. Итак, K8. Лемма доказана.

Лемма 2.12. Пусть G-счетная абелева p-группа, а K-поле первого рода относительно простого p. Алгебра GK тогда и только тогда содержит минимальные идеалы, когда группа G представляется в виде прямого произведения: $G = P \times G_1$, где P-группа p^{∞} , а G_1 -конечная группа.

Доказательство. Пусть алгебра GK содержит минимальный идеал I ($I\neq 0$). Так как $I^2\neq 0$, то идеал I порождается идемпотентом $e\in HK$, где I-конечная подгруппа группы I Собозначим через I Ядро неприводимого представления группы I Над полем I Соответствующего идемпотенту I Пусть I Собозначим группы I Содержащая подгруппу I Сак как I Соменчая подгруппа группы I Содержащая подгруппа, ибо подгруппа I Является ядром абсолютно неприводимого характера I

группы G', соответствующего идемпотенту e, а ψ осуществляет гомоморфизм группы G' на циклическую группу. Таким образом группа G содержит такую конечную подгруппу N, что для любой конечной подгруппы $G' \ge N$ факторгруппа G'/N-циклична. Отсюда сразу следует, что группа G записывается в виде прямого произведения группы p^{∞} на конечную группу. Наоборот, если $G = P \times G_1(P$ -группа p^{∞} , G_1 -конечная группа), то алгебра GK содержит минимальные идеалы. В самом деле, пусть P_f -подгруппа группы P порядка p^f , где f=f(K) (см. 2,4). В силу леммы 2. 5, минимальный идемпотент e алгебры P_f , соответствующий точному характеру группы P_f , остается минимальным для любой цилической подгруппы $\tilde{P} \ge P_f$ ($\tilde{P} < P$). Пусть $x \ne 0$ -произвольный элемент алгебры PK и $xe \ne 0$.Пусть $xe \in \tilde{P}K$, где $\tilde{P} \supseteq P_f$ -конечная подгруппа группы P. Так как $\tilde{P}Ke$ -минимальный идеал алгебры $\tilde{P}K$, то для некоторого элемента $y \in \tilde{P}K$ ухe = e. Следовательно, PKe-минимальный идеал алгебры PK. Отсюда легко получить, что идемпотент $\frac{1}{(G_1:1)}(\sum_{g \in G_1}g)e$ порождает минимальный идеал алгебры GK. Лемма доказана.

Леммы 2. 11, 2. 12 и следствие из леммы 2. 10 дают ряд необходимых условий изоморфизма групповых алгебр счетных примарных абелевых групп. Рассмотрим вспомогательные конструкции, которые будут применены для изучения достаточных условий изоморфизма.

Пусть H-конечная подгруппа p-группы G, e-минимальный идемпотент алгебры HK, χ -представитель множества K-сопряженных характеров группы H, соответствующих идемпотенту e, а I = HKe-минимальный идеал алгебры HK, порожденный идемпотентом e

$$\left(e=\frac{1}{(H\colon 1)}\sum_{g\in H}x(g^{-1})g\right)\!.\quad \text{Если}\quad x\in \bigl(\sum_{g\in H}\alpha_g g\bigr)e\in I\qquad (\alpha_g\in K),$$
 то положим
$$\theta(x)=\sum_{g\in H}\alpha_g\chi(g).$$

Отображение θ определяет изоморфизм поля I на поле $K(\chi)$. Оно зависит от выбора характера χ в K-классе характеров группы H, соответствующем минимальному идемпотенту e алгебры HK.

В силу формулы (2. 10), произвольному элементу $\lambda \in K(\chi)$ соответствует однозначно определенный элемент $xe \in I$, для которого мы введем обозначение λe . Чтобы получить элемент $\lambda e \in I$ достаточно произвольным образом записать элемент $\lambda \in K(\chi)$ в виде $\lambda = \sum\limits_{g \in H} \alpha_g \chi(g) \; (\alpha_g \in K)$. Тогда

(2.10)
$$\lambda e = (\sum_{g \in H} \alpha_g g) e.$$

Пусть идемпотент $e \in GK$ представляется в виде суммы попарно ортогональных идемпотентов $e = e_1 + ... + e_s$, где e_i -минимальный идемпотент подалгебры H_iK ($H_i \subseteq G$ -конечная группа; i = 1, ..., s), а $\chi_1, ..., \chi_s$ -произвольным образом выбранные представители K-классов характеров соответственно

подгрупп $H_1,...,H_s$, соответствующие идемпотентам $e_1,...,e_s$. Если $\lambda=\bigcap_{i=1}^s K(\chi_i)$, то условимся употреблять запись

$$(2.11) \lambda e_1 + \ldots + \lambda e_s = \lambda \circ e.$$

Лемма 2. 13. Пусть е-минимальный идемпотент алгебры HK (H-конечная подгруппа группы G), а χ -соответствующий e абсолютно неприводимый характер. Предположим, что идемпотент e разлагается в сумму попарно ортогональных идемпотентов $e=e_1+\ldots+e_s$, где e_i -минимальный идемпотент алгебры H_iK ($H_i \supseteq H$; $i=1,\ldots,s$).

Пусть абсолютно неприводимые характеры $\chi_1, ..., \chi_s$ конечных групп $H_1, ..., H_s$, соответствующие идемпотентам $e_1, ..., e_s$, выбраны таким образом, что каждый из них индуцирует на подгруппе H характер χ . Если $\lambda \in K(\chi)$, то

$$(2.12) \lambda e = \lambda_1 + \dots + \lambda e_s.$$

(Элементы λe , λe_i определяются в соответствии с формулой (2. 10))

Доказательство. Пусть $\lambda = \sum\limits_{g \in H} \alpha_g \chi(g) \; (\alpha_g \in K)$. Тогда, в силу (2. 10), $\lambda e = (\sum\limits_{g \in H} \alpha_g g) e = (\sum\limits_{g \in H} \alpha_g g) e_1 + \ldots + (\sum\limits_{g \in H} \alpha_g g) e_s =$

$$= \left(\sum_{g \in H} \alpha_g \chi_1(g)\right) e_1 + \ldots + \left(\sum_{g \in H} \chi_s(g)\right) e_s = \lambda e_1 + \ldots + \lambda e_s.$$

Лемма доказана.

Определение 2. 3. Пусть G-счетная абелева р-группа и

$$(3.13) G_1 \subset G_2 \subset \dots$$

такая возрастающая последовательность конечных подгрупп группы G, что $\bigcup_i G_i = G$. Образуем алгебру GK (char $K \neq p$). Назовем деревом идемпотентов алгебры GK, соответствующим последовательности (2. 13), совокупность идемпотентов $\{e^{i_1,\dots,i_m}_{r_1,\dots,r_m}\}$ (m пробегает натуральный ряд) алгебры GK, удовлетворяющую следующим условиям:

- 1. Идемпотент $e_{r_1,\dots,r_m}^{i_1,\dots,i_m}=e_u$ однозначно определяется вектором $u=(i_1,\dots,i_m,r_1,\dots,r_m)$ с натуральными компонентами. При фиксированном m множество векторов $M_m=\{(i_1,\dots,i_m,r_1,\dots,r_m)\}$ -конечно.
 - 2. $\sum_{u \in M_m} e_u = 1$. Если $u, v \in M_m$ и $u \neq v$, то $e_u \cdot e_v = 0$ (m = 1, 2, ...).
- 3. Каждый идемпотент e_u ($u=(i_1,\ldots,i_m,r_1,\ldots,r_m)\in M_m; m=1,2,\ldots$) представляется в виде суммы попарно ортогональных идемпотентов: $e_u=e_u^{(1)}+\ldots+e_u^{(j)}$ (индекс j зависит от вектора $u\in M_m$), где e_u^i -минимальный идемпотент веса r_m некоторой подгруппы $F_u^i\supseteq G_m$ ($i=1,\ldots j$). Если m=1, то $e_u\in G_1K$, а каждая подгруппа $F_u^i(u\in M_1)$ совпадает с подгруппой G_1 .
- 4. Пусть $u=(\bar{i}_1,\ldots,\bar{i}_m,\bar{r}_1,\ldots,\bar{r}_m)\in M_m$ фиксированный вектор, а $M_{m+1}^{(u)}$ подмножество множества M_{m+1} , состоящее из всех векторов $v\in M_{m+1}$ вида

 $v=(\overline{i}_1\,,\,...,\overline{i}_m,i_{m+1}\,,\,\overline{r}_1\,,\,...,\,\overline{r}_m,r_{m+1})$ (векторы $v\in M_{m+1}^{(u)}$ могут отличатся друг то друга только (m+1)-ой и 2(m+1)-ой компонентами). Тогда $e_v=\sum_{n=0}^\infty e_n$

5. Пусть $e^{(1)}, ..., e^{(n)}$ -фиксированная последовательность, элементами которой являются минимальные идемпотенты подалгебр G_iK (j=1, 2, ...), где сначала расположены все минимальные идемпотенты алгебры G_1K , затем все минимальные идемпотенты алгебры $G_2 K$ и т. д. Тогда идемпотент $e^{(i)}$ представляется в виде симмы идемпотентов e_u , где $u \in M_i$ (i=1, 2, ...).

Определение 2.4. Пусть

$$D = \{e_{r_1,\dots,r_m}^{i_1,\dots,i_m}\}$$
 M $D' = \{e_{r_1,\dots,r_m}^{i'_1,\dots,i'_m}\}$ —

деревья идемпотентов соответственно для алгебр GK и HK (деревья строятся по отношению к фиксированным возрастающим последовательностям конечных подгрупп в группах G и H). Будем говорить, что эти деревья изоморфны, если для каждого натурального т совпадают множества векторов

$$M_m = \{(i_1, \ldots, i_m, r_1, \ldots, r_m)\}$$
 и $M'_m = \{(i'_1, \ldots, i'_m, r'_1, \ldots, r'_m)\}.$

Следующая лемма будет играть важную роль для исследования достаточных условий изоморфизма групповых алгебр счетных примарных абелевых групп.

Лемма 2.14. Пусть G' и H'-счетные абелевы p-группы. Если в алгебрах G'K и H'K (char $K \neq p$) можно построить изоморфные деревья идемпотентов, то эти алгебры изоморфны.

Доказательство. Пусть

$$D = \{e_{r_1,\ldots,r_m}^{i_1,\ldots,i_m}\}$$
 и $\widetilde{D} = \{\widetilde{e}_{r_1,\ldots,r_m}^{i_1,\ldots,i_m}\}$ —

изоморфные деревья идемпотентов для алгебр G'K и H'K, соответствующие возрастающим последовательностям подгрупп

$$G_1' \subset \ldots \subset G_s' \subset \ldots, \quad H_1' \subset \ldots \subset H_s' \subset \ldots \quad (\bigcup_i G_i' = G'; \bigcup_i H_i' = H').$$

Для каждого натурального m эти деревья определяют одно и то же множество

 $M_m = \{(i_1, ..., i_m, r_1, ..., r_m)\}.$ Положим G = G', H' и соответственно $G_i = G'_i$, H'_i (i = 1, 2, ...). Выделим из последовательности

$$G_1 \subset ... \subset G_s \subset ...$$

подпоследовательность

$$(2.14) G_{m_1} \subset G_{m_3} \subset ... \subset G_{m_{2s+1}} \subset ...$$

Подпоследовательность (2. 14) строится индуктивно. На первом шаге индукции полагаем $G_{m_1} = G_1$. Если уже построена подгруппа Gm_{2s+1} ($s \ge 0$), то в силу свойств 5 и 4 дерева идемпотентов (см. определение 2.3) существует такой индекс m_{2s+2} , один и тот же при G=G',H', что каждый минимальный идемпотент $e \in Gm_{2s+1}K$ представляется в виде суммы

$$(2.15) e = \sum e_u, \text{ где } u \in Mm_{2s+2}.$$

Из свойства 2 дерева следует, что в правой части (2.15) встретятся все идемпотенты e_u при $u \in M_{m_{2s+2}}$, если элемент e в левой части пробегает все минимальные идемпотенты алгебры $G_{m_{2s+2}}K$. Запишем разложение каждого из идемпотентов e_u ($u \in M_{m_{2s+2}}$) в соответствии со свойством 3 дерева:

$$(2.16) e_{u} = \sum_{i} e_{u}^{i},$$

где e_u^i -минимальный идемпотент группы $F_u^i \supseteq G_{m_{2s+2}}$ (Если $u=(i_1,\ldots,i_{m_{2s+2}},r_1,\ldots,r_{m_{2s+2}})$, то вес минимального идемпотента e_u^i группы F_u^i равен r_m). Теперь выбираем такой индекс m_{2s+3} , что при G=G', H' $G_{m_{2s+3}} \supset F_u^i$, для всех подгрупп F_u^i , соответствующих формуле (2. 16). На следующем шаге индукции

строится подгруппа $G_{m_{2s+3}}$.

Каждому минимальному идемпотенту e_u^i группы F_u^i ($u \in M_{m_{2s}}$; s=1,2,...) соответствует K-класс характеров X_u^i группы F_u^i . Произведем теперь енециальный выбор представителей K-классов характеров групп $G_{m_{2s+1}}$ (s=0,1,...) и K-классов X_u^i ($u \in M_{m_{2s}}$; s=1,2,...). На первом шаге индукции произвольным образом отметим систему представителей всех K-классов характеров группы G_{m_1} . Сделаем индуктивное предположение. Предположим, что уже выбрана система представителей $\psi_1,...,\psi_r$ K-классов характеров группы $G_{m_{2s-1}}$ ($s \ge 1$). Если характер ψ_j соответствует минимальному идемпотенту e алгебры $G_{m_{2s-1}}K$, то, в силу (2. 15) и (2. 26),

(2.17)
$$e = \sum_{u,i} e_u^i \qquad (u \in M_{m_{2s}})$$

Теперь, в каждом из K-классов X_u^i , соответствующих идемпотентам e_u^i в правой части (2. 17), выбираем такие характеры $\chi_1, ..., \chi_l$, которые на подгруппе

 $G_{m_{2s-1}}$ индуцируют характер ψ_i .

Так как $F_u^i \subset G_{m_{2s+1}}$ ($u \in M_{m_{2s}}$), то каждый характер χ_j (j=1,...,l) допускает продолжение до характеров группы $G_{m_{2s+1}}$. Пусть $\psi_{i1},...,\psi_{in_i}$ -все характеры группы $G_{m_{2s+1}}$, продолжающие характер χ_i . Тогда характеры ψ_{ij} и $\psi_{i_1j_1}$ группы $G_{m_{2s+1}}$ при $i \neq i_1$ не могут быть K-сопряжены.

В самом деле, обозначим соответственно через e_{ij} и $e_{i_1j_1}$ минимальные идемпотенты алгебры $G_{m_{2s+1}}K$, соответствующие характерам ψ_{ij} и $\psi_{i_1j_1}$. Если последние K-сопряжены то $e_{ij}=e_{i_1j_1}$. Пусть $e_{u_1}^{t_1}\in F_{u_2}^{t_1}K$ и $e_{u_2}^{t_2}\in F_{u_2}^{t_2}K$ ($u_1,u_2\in M_{m_{2s}}$)-идемпотенты, соответствующие характерам χ_i и χ_{i_1} . Тогда $e_{u_1}^{t_1}e_{ij}=e_{ij};\ e_{u_2}^{t_2}e_{i_1j_1}=e_{i_1j_1}$ и $e_{u_1}^{t_1}e_{u_2}^{t_2}=0$ что противоречит равенству $e_{ij}=e_{i_1j_1}$. Выберем из каждого множества $\psi_{i_1},\ldots,\psi_{in_i}$ максимальную систему характеров $\psi_{iq_1},\ldots,\psi_{iq_f}$, попарно несопряженных над полем K. Тогда характеры $\{\psi_{iq_j}\}$ образуют полную систему представителей K-классов характеров группы $G_{m_{2s+1}}$. Действительно, при сложении минимальных идемпотентов алгебры $G_{m_{2s+1}}$. K, соответствующих характерам $\psi_{iq_1},\ldots,\psi_{iq_f}$, возникает минимальный идемпотент e_u^t , соответствующий характеру χ_i . Кроме того, идемпотенты e_u^t попарно ортогональны и в сумме дают единицу алгебры GK.

Мы показали, как выбрать представителей K-классов характеров X_n^i ($u \in M_{m_{2s}}$) и представителей K-классов характеров группы $G_{m_{2s+1}}$, если известна система представителей K-классов характеров группы $G_{m_{2s-1}}$ ($s=1,2,\ldots$).

Занумеруем представителей K-классов характеров X^i_μ (для всевозможных векторов $u \in M_{m_{2}}$ (s = 1, 2...) и индексов i):

$$(2.18) \chi_1, \ldots, \chi_r, \ldots$$

В процессе индуктивного построения мы получили также для каждой подгруппы $G_{m_{2s+1}}$ систему представителей T_s K-классов характеров этой группы. Расположим характеры из множества $\bigcup T_s$ в последовательность

$$(2.19)$$
 $\psi_1, ..., \psi_r,$

Характеры χ_i и ψ_i удовлетворяют следующему условию: Если χ_i характер подгруппы F_u^j и $u \in M_{m_{2s}}$, то ограничение характера χ_i на любой подгруппе $G_{m_{2k+1}}(2k+1<2s)$ совпадает с одним из характеров ψ_j , а ограничение χ_i -на любой подгруппе F_u^j , где $u \in M_{m_{2k}}$ (k < s) совпадает с одним из характеров χ_j . При этом, каждый характер χ_j группы F_u^l (каждый характер ψ_j группы F_u^l) является ограничением некоторого характера χ_i и некоторого характера ψ_i .

Построим теперь изоморфизм между алгебрами G'К и H'К. Рассмотрим

множество идемпотентов $\{e_u\}$ $\{\tilde{e}_u\}$ алгебры G'K (H'K), где вектор

 $u=(i_1,...,i_{m_{2s}},r_1,...,r_{m_{2s}})$ пробегает множество $M_{m_{2s}}$. Пусть $e_u=e_u^{(1)}+...+e_u^{(j)}$, где $e_u^{(i)}$ -минимальный идемпотент веса $r_{m_{2s}}$ подгруппы F_u^i (см. 2. 16). Обозначим через K_i поле $K(\xi)(\xi$ -корень некотором степени p^l из 1) размерности i над K. Так как для каждого идемпотента $e^l_
u$ зафиксирован содержащийся в последовательности (2.18) абсолютно неприводимый характер χ_i , то ввиду (2.11) можно образовать элемент

(2.20)
$$\lambda \circ e_{\mu} = \lambda e_{\mu}^{(1)} + \ldots + \lambda e_{\mu}^{(j)},$$

где $\lambda \in K_{r_{m_2}}(u=(i_1,...,i_{m_{2s}},r_1,...,r_{m_{2s}})).$

Пусть A_s (\widetilde{A}_s)-подалгебра алгебры G'K (H'K), состоящая из всевозможных линейных комбинаций $\sum_{u \in M_{m_{2}}} \lambda_u \circ e_u (\sum_{u \in M_{m_{2}}} \lambda_u \circ \widetilde{e}_u)$, где для каждого вектора $u=(i_1,\,\ldots,\,i_{m_{2s}},\,r_1,\,\ldots,\,r_{m_{2s}})$ коэффициент λ_u принимает произвольные значения из поля $K_{r_{m_{2s}}}(s=1,\,2,\,\ldots)$.

Соответствие

$$\theta_s: \sum_{u \in M_{m_{2s}}} \lambda_u \circ e_u \to \sum_{u \in M_{m_{2s}}} \lambda_u \circ \tilde{e}_u \qquad (\lambda_u \in K_{r_{m_{2s}}}),$$

очевидно, является изоморфизмом между алгебрами A_s и $\tilde{A_s}$. Покажем, что $A_s \subset A_{s+1}$ ($\tilde{A}_s \subset \tilde{A}_{s+1}$) и изоморфизм θ_{s+1} является продолжением изоморфизма θ_s . В самом деле, пусть

$$\begin{split} u &= (i_1,\, \dots, i_{m_{2s}}, r_1,\, \dots, r_{m_{2s}}) \in M_{m_{2s}} \quad \text{и} \quad e_u = e_{u_1} + \dots \\ &+ e_{u_t}, \quad \text{где} \quad u_j = (\dots, r_{m_{2(s+1)}}^j) \in M_{m_{2(s+1)}} \qquad (j=1,\, \dots, t). \end{split}$$

Тогда, в силу (2. 16), $e_{u_j} = \sum_i e^i_{u_j}$ и $e_u = \sum_{i,\ i} e^i_{u_j}$ где $e^i_{u_j}$ -минимальный идемпотент группы $F_{u_i}^i$.

Так как $K_{r_{m_{2s}}} \subseteq K_{r_{m_{2(s+1)}}}$ $(j=1,\ldots,t)$, то в силу (2.20) для любого элемента $\lambda \in K_{r_{m_{2s}}}$ $(2.21)^s$ $\lambda \circ e_u = \sum\limits_{i,j} \lambda e^i_{u_j} = \lambda \circ e_{u_1} + \ldots + \lambda \circ e_{u_t}.$

Аналогично, $\lambda \circ \tilde{e}_u = \lambda \circ \tilde{e}_{u_1} + \ldots + \lambda \circ \tilde{e}_{u_t}$. Следовательно, $A_s \subset A_{s+1}$ $\tilde{A}_s \subset \tilde{A}_{s+1}$. Из формулы (2. 21) также сразу вытекает, что изоморфизм θ_{s+1} продолжает изоморфизм θ_s . Покажем теперь, что $\bigcup_i A_i = G'K$. В самом деле, пусть *х*-произвольный элемент алгебры G'K. Тогда найдется такая подгруппа $G'_{m_{2s+1}}$, что $x \in G'_{m_{2s+1}}$, K.

Пусть $1 = e_1 + ... + e_t$ -разложение единицы алгебры $G'_{m_{2s}+1}K$ в сумму минимальных идемпотентов этой алгебры и пусть r_i -вес идемпотента e_i .

Тогда $x = \lambda_1 e_1 + ... + \lambda_t e_t$, где $\lambda_i \in K_{r_i}$ (i = 1, ..., t).

По доказанному, каждый элемент $e \in \{e_1, ..., e_t\}$ можно представить в виде суммы

$$e = e_{u_1} + ... + e_{u_n}$$

где $u_j=(i_1^{(j)},\dots,i_{m_{2s+2}}^{(j)},r_1^{(j)},\dots,r_{m_{2s+2}}^{(j)})\in M_{m_{2s+2}}$. Каждый идемпотент e_{u_j} записывается в виде суммы $e_{u_j}=e_{u_j}^{(1)}+\dots+e_{u_j}^{(f)}$, где $e_{u_j}^{(i)}$ -минимальный идемпотент веса $r_{m_{2s+2}}^{(j)}$ некоторой подгруппы $F_{u_j}^i{\supseteq}G_{m_{2s+1}}^i$. Таким образом, $e=\sum\limits_{i,\,j}e_{u_j}^{(i)}$. Пусть идемпотент e имеет вес e. Так как e0 для e1, ..., e3, то для произвольного элемента e4, имеем e4, e5, e6, e6, e6, e7, имеем e6, e8, Таким образом,

$$(2.22) \qquad \qquad \bigcup_{i} A_{i} = G'K; \quad \bigcup_{i} \widetilde{A}_{i} = H'K.$$

Изоморфизм алгебр GK и HK вытекает теперь из (2. 22) и того факта, что изоморфизм θ_{s+1} продолжает изоморфизм θ_s . Лемма доказана.

Лемма 2.15. Пусть G и H-счетные абелевы p-группы, а K-произвольное поле (char $K \neq p$). Предположим, что в G и H удалось выделить такие возрастающие последовательности конечных подгрупп

$$(2.23) 1 \subset G_1 \subset ... \subset G_s \subset ... (\bigcup_i G_i = G),$$

$$(2.24) 1 \subset H_1 \subset ... \subset H_s \subset ... (\bigcup_i H_i = H)$$

что:

1. В алгебрах G_iK (H_iK) $(i=1,2,\ldots)$ определены минимальные идемпотенты первого и второго рода. Либо для $i \ge 1$ все минимальные идемпотенты алгебр $G_iK(H_iK)$ -первого рода, либо для каждого $i \ge 2$ множество минимальных идемпотентов алгебры G_iK (H_iK) распадается на непересекающиеся (непустые) подмножества E_1 и E_2 соответственно идемпотентов первого и второго рода. Идемпотент

(2.25)
$$e = \frac{1}{(F_i:1)} \sum_{g \in F_i} g \qquad (F_i = G_i, H_i)$$

является идемпотентом первого рода алгебры $F_i K$ (i=1,2,...). Если K-поле второго рода относительно простого p, то все минимальные идемпотенты

алгебр F_i K-первого рода (i = 1, 2, ...).

2. Между множествами минимальных идемпотентов первого рода алгебр G_1K и H_1K существует взаимно однозначное соответствие, сохраняющее вес. Множества различных весов минимальных идемпотентов второго рода этих алгебр совпадают.

3. Пусть e-минимальный идемпотент первого рода алгебры $F_i K$ $(F_i = G_i, H_i)$ и

 $(2.26) e = e_1 + \dots + e_t$

-разложение идемпотента e в сумму минимальных идемпотентов алгебры $F_{i+1}K$. Тогда среди идемпотентов e_j в (2. 26) обязательно встречаются идемпотенты первого рода. Множество $W = \{r_1, ..., r_f\}$ различных весов идемпотентов первого рода e_j в (2. 26) зависит только от номера i и веса идемпотента е в алгебре F_iK .

Каждый минимальный идемпотент второго рода алгебры $F_iK(F_i = G_i, H_i)$ разлагается в сумму минимальных идемпотентов второго рода алгебры

 $F_{i+1}K$ (i=1, 2, ...).

Имеет место одно из следующих условий:

3-а. Пусть $r_j \in W$. Если $r_j \neq 1$ или если $r_j = 1$, но поле K содержит первообразный корень степени p из 1, то в (2. 24) встречаются по крайней мере два идемпотента e_j первого рода веса r_j . Если поле K не содержит первообразного корня из 1 степени p, то каждая подалгебра $F_iK(F_i = G_i, H_i)$ содержит точно один минимальный идемпотент первого рода веса 1, который имеет вид (2. 25).

3-б. Пусть e_1 , ..., e_q -все минимальные идемпотенты первого рода алгебры F_1K ($F_1 = G_1$, H_1). Каждая подалгебра F_iK содержит точно q минимальных идемпотентов первого рода e_1' , ..., e_q' , причем $e_i'e_i = e_i'$ (i = 1, ..., q) и вес идем-

потента e'_i (в $F_i K$) совпадает с весом идемпотента e_i (в $F_1 K$).

- 4. Пусть ε_i -первообразный корень степени p^i из единицы (i=1,2,...), а e-идемпотент второго рода алгебры $F_t K$. Произвольный подгруппе F_j $(j \ge t)$ можно сопоставить натуральное m, такое, что если $r_i = (K(\varepsilon_i):K) \ge m$, то найдется такая конечная подгруппа $F \supseteq F_j$, что идемпотент e представляется в виде суммы по крайней мере двух минимальных идемпотентов алгебры FK веса r_i .
 - 5. Для всех подгрупп F_i выполняется точно одно из следующих условий:

5-а. Каждый минимальный идемпотент первого рода алгебры $F_i K$ разлагается в сумму минимальных идемпотентов первого рода алгебры $F_{i+1} K$.

5-б. В разложении каждого минимального идемпотента e первого рода алгебры $F_i K$ в сумму минимальных идемпотентов алгебры $F_{i+1} K$ всегдя встречаются минимальные идемпотенты второго рода ($F_i = G_i$, H_i).

Тогда алгебры GK и HK изоморфны.

Доказательство. Покажем, что для алгебр GK и HK можно построить изоморфные деревья идемпотентов, соответствующие последовательностям подгрупп (2. 23) и (2. 24).

Будем рассматривать три случая:

I. Все минимальные идемпотенты групповых алгебр $G_i K$ и $H_i K$ (i=1,2,...)-первого рода.

II. III. Для каждого натурального $i \ge 2$ подалгебры $-G_i K$ и $H_i K$ содержат минимальные идемпотенты второго рода, но, при этом, для всех $i \ge 2$ в случае II имеет место условие 5-а, а в случае III-условие 5-б.

Положим $F_i = G_i$, H_i (i = 1, 2, ...).

Рассмотрим последовательность идемпотентов

$$(2.27) e^{(1)}, ..., e^{(n)}, ...$$

в которой сначала расположены все минимальные идемпотенты алгебры F_1K , затем все минимальные идемпотенты алгебры $F_2 K$ и т. д.

Пусть $W_1 = \{r_1, ..., r_q\}$ и $W_2 = \{r_{q+1}, ..., r_s\}$ - соответственно множества различных весов минимальных идемпотентов первого и второго рода алгебры F_1K (Множество W_2 может быть пустым), и пусть в алгебре F_1K существует точно n_i минимальных идемпотентов первого рода веса r_i (i=1,...,q). В силу условия 2 леммы, множества W_1 и W_2 и числа $n_1, ..., n_a$ будут одними и теми

же для групп G_1 и H_1 . Пусть $e_{r_i}^{(1)}, ..., e_{r_i}^{(n_i)}$ -все минимальные идемпотенты первого рода веса r_i (i=1,...,q) алгебры F_1K , а $e_{r_j}^{(1)}$ (j=q+1,...,s)-сумма всех минимальных идемпотентов второго рода веса r_j алгебры F_1K . Для построения изоморфных деревьев идемпотентов алгебр GK и HK на первом шаге индукции берем систему идемпотентов $e_{r_1}^{(1)}, \ldots, e_{r_1}^{(n_1)}, \ldots, e_{r_q}^{(1)}, \ldots, e_{r_q}^{(n_q)}, e_{r_q+1}^{(1)}, \ldots, e_{r_s}^{(1)}$ алгебры F_1K . Предположим, что на m-ом шаге индукции уже построена система идем-

потентов

(2.28)
$$E_m = \{e_u = e_{r_1, \dots, r_m}^{i_1, \dots, i_m}\}$$

алгебры $\widetilde{G}K$ ($\widetilde{G}=G,H$), где вектор $u=(i_1,...,i_m,r_1,...,r_m)$ пробегает конечное множество M_m (i_j,r_j -натуральные числа), причем идемпотенты e_u ($u\in M_m$)

удовлетворяют следующим условиям: A) $1=\sum e_u$; $e_u\cdot e_{u_1}=0$, если $u\neq u_1$; $e_u=\sum_i e_u^{(i)}$, где $e_u^{(i)}$ -минимальный идем-

потент веса r_m некоторой подгруппы $F_u^i \supseteq F_m$ ($u = (i_1, ..., i_m, r_1, ..., r_m$)).

Б) Идемпотент $e^{(m)}$ из последовательности (2. 27) представляется в виде суммы некоторых идемпотентов e_u ($u \in M_m$). В множестве $E_m = \{e_u\}$ ($u \in M_m$) существует такое непустое подмножество E_m' , что каждый идемпотент $e_u \in E_m'$ $(u=(i_1,...,i_m,r_1,...,r_m))$ равен сумме минимальных идемпотентов e^i_u первого рода алгебры $F_m K$ одного и того же веса r_m , а сумма $\sum\limits_{e_u \in E'_m} e_u$ совпадает с суммой

всех минимальных идемпотентов первого рода алгебры $F_m K$ (см. A). Если дополнение $E_m'' = E_m \setminus E_m'$ -непусто, то для каждого минимального идемпотента $e_u \in E_m''$ найдется такой минимальный идемпотент e второго рода алгебры $F_m K$, что $ee_{\mu} \neq 0$.

Покажем, как на m+1-шаге индукции построить систему идемпотентов $E_{m+1} = \{e_{r_1, \dots, r_{m+1}}^{i_1, \dots, i_{m+1}}\}$. Для этого произведем дальнейшее разложение идем-

потентов $e_u \in E_m$. Пусть $e_u = \sum_i e_u^{(i)} \in E_m'$ ($e_u^{(i)}$ -минимальный идемпотент веса r_m алгебры $F_m K$). Запишем разложение каждого идемпотента $e_u^{(i)}$ в сумму минимальных идемпотентов алгебры $F_{m+1}K$:

$$(2.29) e_u^{(i)} = e_1' + \dots + e_t'.$$

В силу условий леммы 2. 15 множество $W = \{f_1, ..., f_q\}$ различных весов идемпотентов e'_j первого рода в (2. 29) определяется только индексом m и весом r_m идемпотента e^i_u . В случаях I и II все идемпотенты e'_j в (2. 29)-первого рода. В случае III среди этих идемпотентов обязательно встречаются идемпотенты второго рода.

потенты второго рода. Если $e_u = \sum\limits_{i} e_u^{(i)} \in E_m''$, то в силу индуктивного предположения существует

такой минимальный идемпотент e второго рода алгебры F_mK , что $ee_u\neq 0$. Отсюда и из условия 4 в формулировке леммы 2. 15 легко вытекает, что можно выбрать такой вес r_{m+1} , превосходящий веса всех идемпотентов e'_j в правой части (2. 29) при переменном $e_u^{(i)}$ ($e_u\in E'_m$) и веса всех идемпотентов $e_u^{(i)}$ при $e_u\in E''_m$, что каждый минимальный идемпотент второго рода e'_j алгебры $F_{m+1}K$ в (2. 29) и каждый идемпотент $e_u^{(i)}$ при $e_u\in E''_m$ допускает разложение в сумму по крайней мере двух слагаемых

$$(2.30) \tilde{e}_1 + \tilde{e}_2 + \dots,$$

где \tilde{e}_j -минимальные идемпотенты одного и того же веса r_{m+1} соответственно подгрупп $F^{(j)} \supseteq F_{m+1}$. Совершив разложения типа (2. 30), мы для каждого идемпотента e_u ($u \in M_m$) получим разложение:

$$(2.31) e_u = e_u^{(1)} + \dots + e_u^{(j_u)}.$$

Разложение (2. 31), удовлетворяет следующим свойствам:

Если $e_u \in E_m'$, то в правой части (2. 31) встречаются минимальные идемпотенты первого рода алгебры $F_{m+1}K$. Множество различных весов этих идемпотентов $W = \{f_1, ..., f_q\}$ зависит только от пары (m, r_m) ($u = (i_1, ..., i_m, r_1, ..., r_m)$). Если идемпотент e_u пробегает множество E_m' , то идемпотентами $e_u^{(j)}$ первого рода исчерпываются все минимальные идемпотенты первого рода алгебры $F_{m+1}K$. Остальные идемпотенты $e_u^{(j)}$ в (2. 31) ($u \in M_m$) являются минимальными идемпотентами веса r_{m+1} некоторых подгрупп $F_u^{(j)} \supseteq F_{m+1}$; если $e_u \in E_m''$, то каждый идемпотент в (2. 31) является минимальным идемпотентом веса r_{m+1} некоторой подгруппы $F_u^{(j)} \supseteq F_{m+1}$. Число r_{m+1} -константа, зависящая, в силу выбора, только от индекса m и превосходящая вес любого минимального идемпотента первого рода $e_u^{(j)}$ алгебры $F_{m+1}K$ в (2. 31).

Для каждого идемпотента e_u^j в (2. 31) веса r_{m+1} найдется такой минимальный идемпотент e второго рода алгебры $F_{m+1}K$, что $ee_u^j = e_u^j$.

Если e_u^j -идемпотент веса r_{m+1} , то в разложении (2.31) встречается по

крайней мере еще один идемпотент веса r_{m+1} .

Если e_u^j -минимальный идемпотент первого рода алгебры $F_{m+1}K$ веса n, то в (2. 31) также встречаются по крайней мере два минимальных идемпотента e_u^j первого рода веса n, за исключением случаев, когда выполняется условие 3-б в формулировке леммы или когда имеет место условие 3-а, но, при этом, n=1 и поле K не содержит первообразный корень степени p из единицы.

Отметим еще следующие свойства разложения (2. 31): $e_u^i \cdot e_{u_1}^{i_1} = 0$, если $(u, i) \neq (u_1, i_1)$;

$$\sum_{u \in M_{m}} \sum_{i} e_{u}^{i} = 1.$$

Так как каждый из идемпотентов e_u^j в (2. 31) является минимальным идемпотентом некоторой подгруппы $F_u^j \supseteq F_{m+1}$ то для минимального идемпотента $e^{(m+1)}$

алгебры $F_i K$ ($i \le m+1$) (см. 2. 27) и любого идемпотента e^j_u выполняется точно одно из равенств

(2.33)
$$e_u^j \cdot e^{(m+1)} = e_u^j; \quad e_u^j \cdot e^{(m+1)} = 0.$$

Отсюда, в силу (2. 32), вытекает разложение:

$$(2.34) e^{(m+1)} = e_{u_1}^{i_1} + \dots + e_{u_t}^{i_t},$$

где в правой части участвуют некоторые из идемпотентов e_u^j ($u \in M_m$).

Мы осуществили вспомогательные конструкции для образования m+1-го этажа дерева идемпотентов.

Построение идемпотентов $e_{r_1,\ldots,r_{m+1}}^{i_1,\ldots,i_{m+1}}$ осуществляем следующим образом. Пусть $W'=\{f_1,\ldots,f_{\epsilon}\}$ -множество различных весов идемпотентов e_u^i в (2. 31), где $u=(i_1,\ldots,i_m,r_1,\ldots,r_m)$, а $E^{(f)}=\{\tilde{e}_{j_1},\ldots,\tilde{e}_{j_r}\}$ $(f\in W')$ -множество всех идемпотентов веса f из этого разложения.

Если множество \tilde{E}_f содержит более одного элемента, то полагаем

$$e_{r_1, \dots, r_m, f}^{i_1, \dots, i_m, 1} = \tilde{e}_{j_1}; \quad e_{r_1, \dots, r_m, f}^{i_1, \dots, i_m, 2} = \tilde{e}_{j_2} + \dots + \tilde{e}_{j_r}.$$

Предположим теперь, что множество \tilde{E}_f содержит точно один идемпотент \tilde{e}_{j_1} . Из предыдущих рассмотрений следует, что это возможно только тогда, когда \tilde{e}_{j_1} -идемпотент первого рода алгебры $F_{m+1}K$ и, при этом, либо выполняется условие 3-6, либо имеет место условие 3-а, но поле K не содержит первообразного корня степени p из единицы, а вес идемпотента \tilde{e}_{j_1} равен 1.

В этом случае полагаем $e_{r_1,...,r_m,f}^{i_1,...,i_m,1} = \tilde{e}_{j_1}$.

Таким образом, для каждого идемпотента e_u ($u \in M_m$) мы получили ортогональное разложение:

$$e_{u} = \sum_{i_{m+1}r_{m+1}} e_{r_{1}, \dots, r_{m+1}}^{i_{1}, \dots, i_{m+1}}.$$

Из (2. 34) и (2. 33) вытекает, что идемпотент $e^{(m+1)}$ представляется в виде суммы некоторых идемпотентов $e^{i_1, \dots, i_{m+1}}_{r_1, \dots, r_{m+1}}$, ибо в силу ортогональности идемпотентов $e^{i_1, \dots, i_{m+1}}_{r_1, \dots, r_{m+1}}$ каждый идемпотент $e^{i_j}_{u_j}$ из (2. 33) входит в разложение только одного из этих идемпотентов.

Далее легко проверить, что для идемпотентов $e_{r_1,\ldots,r_{m+1}}^{l_1,\ldots,l_{m+1}}$ выполняются индуктивные свойства A) и B).

Из способа построения множества идемпотентов $D = \{e_{r_1, \dots, r_m}^{i_1, \dots, i_m}\}$ алгебры $\tilde{G}K$ $(m=1, 2, \dots)$ вытекает, что D—дерево идемпотентов (см. определение 2.3).

Расматривая систему идемпотентов D при $\tilde{G} = G$ и $\tilde{G} = H$ мы получим для алгебр GK и HK изоморфные деревья идемпотентов (на m-ом шаге индукции для алгебр G_mK и H_mK возникают один и те же векторы $u = (i_1, ..., i_m, r_1, ..., r_m)$).

Отсюда в силу леммы 2. 14 вытекает изоморфизм алгебр GK и HK. Лемма доказана.

Замечание 1. Пусть p=2, K-поле второго рода относительно простого числа 2 (char $K \neq 2$) и $K \subset K(i)$ (i-первообразный корень 4 степени из единицы). Предположим, что для групповых алгебр GK и HK счетных 2-групп выполняются условия леммы 2. 15, но, при этом, для подалгебр G_iK (H_iK) (см. (2. 23),

- (2. 24)) определены идемпотенты второго рода, так что имеют место условия 1, 2, 3, 5 леммы 2. 15, а условие 4 трансформируется следующим образом: Если e-идемпотент второго рода алгебры $G_tK(H_tK)$, то для любой подгруппы $G_j(H_j)$ ($j \ge t$) найдется такая конечная подгруппа $F \supseteq G_j$ ($F \supseteq H_j$) группы G(H), что идемпотент e разлагается в сумму по крайней мере двух идемпотентов веса 2 алгебры FK (каждый минимальный идемпотент групповой алгебры G'K произвольной конечной 2-группы G' имеет вес 1 или 2.) Тогда сохраняются рассуждения леммы 2. 15 и $GK \cong HK$.
- Замечание 2. Замечание 1 остается справедливым для произвольных периодических групп G и H и поля вещественных чисел K, так как минимальные идемпотенты вещественной групповой алгебры произвольной конечной группы имеют вес 1 или 2.
- **Теорема 2.2.** Пусть К-поле первого рода относительно простого р. Отметим следующие типы счетных абелевых р-групп:
- 1. G-прямое произведение циклических групп с неограниченными в совокупности порядками элементов.
- 2. G-прямое произведение циклических групп с ограничеными в совокупности порядками.

3. G-группа p°°.

4. G-полная группа, прямое разложение которой содержит по крайней мере две группы p^{∞} .

5. G-прямое произведение группы p^{∞} на конечную группу.

- 6. G-прямое произведение полной группы типа 4. на конечную р-группу.
- 7. G-прямое произведение полной группы на бесконечную р-группу без элементов бесконечной высоты с ограниченными в совокупности порядками элементов.
- 8. G-редуцированная р-группа, а подгруппа Р элементов бесконечной высоты в G-конечна и отлична от единицы.
- 9. Подгруппа P элементов бесконечной высоты в G бесконечна, а порядки элементов фактор-группы G/P неограничены в совокупности (каждая счетная p-группа принадлежит κ одному из перечисленных 9 типов).

Если группы G и G_1 принадлежат различным типам, то групповые алгебры GK и G_1K -неизморфны.

Если G и G_1 -группы одного и того же типа n=1, 3, 4, 8, 9, то групповые

алгебры GK и G1K изоморфны.

Пусть G и G_1 -группы типа 2; p^{α} (p^{α_1})-показатель группы G (G_1); p^{β} (p^{β_1})-паибольший из порядков тех циклических прямых множителей группы $G(G_1)$, которые содержатся в прямом разложении группы $G(G_1)$ счетное число раз. Обозначим через ξ и ξ_1 -первообразные корни степеней p^{α} и p^{α_1} из единицы, а через ε и ε_1 -первообразные корни из единицы соответственно степеней p^{β} и p^{β_1} . Групповые алгебры GK и G_1K изоморфны тогда и только тогда, когда $(K(\xi):K) = (K(\xi_1):K)$ и $(K(\varepsilon):K) = (K(\varepsilon_1):K)$.

Пусть G и G_1 -одновременно группы типа 5 или типа $6:G=P\times H; G_1=P_1\times H_1$ (P и P_1 -группы p^{∞} или полные группы типа 4, H и H_1 -конечные группы). Алгебры GK и G_1K изоморфны тогда и только тогда, когда изоморфны

алгебры НК и Н,К.

Пусть, наконец, G и G_1 -группы типа 7.: $G = P \times H$, $G_1 = P_1 \times H_1$ (P и P_1 -полные группы, H и H_1 -счетные p-группы типа 2). Алгебры GK и G_1K изоморфны тогда и только тогда, когда изоморфны алгебры HK и H_1K .

Доказательство. 1. Пусть G-группа типа 1 и $GK \cong G_1K$. Тогда в силу следствия из леммы 2. 10. и леммы 2. 11 группа G_1 имеет также тип 1.

Наоборот, предположим, что группы G и G_1 разлагаются в прямое произведение циклических групп с неограниченными в совокупности порядками элементов. Образуем группу $H = G \times G_1$ и покажем, что $HK \cong GK$ и $HK \cong G_1K$.

Обозначим через \tilde{G} группу G или группу G_1 . Выделим в прямом разложении группы \tilde{G} такую последовательность циклических подгрупп $(c_1), ..., (c_s), ...,$ что порядок (c_i) равен p^{γ_i} и $\gamma_1 < ... < \gamma_s < ...$. Подгруппы (c_i) (i=1, ...) входят в прямые разложения групп \tilde{G} и H. Обозначим через F группу \tilde{G} или H и рассмотрим произвольное разложение группы F в прямое произведение циклических подгрупп, содержащее подгруппы (c_i) :

$$F = (b_1) \times ... \times (b_s) \times$$

Положим $F_1=(c_1)$ и обозначим через F_i $(i\geq 2)$ подгруппу группы F, порожденную подгруппой (c_i) и теми из групп $(b_1),\ldots,(b_i)$, порядки которых не превышают p^{γ_i} $(i=2,3,\ldots)$. Очевидно, подгруппа F_i $(i\geq 1)$ представляется в виде прямого произведения

$$F_i = (c_i) \times (b_{j_1}) \times ... \times (b_{j_r})$$
 $(r \le i),$

причем подгруппа F_i выделяется прямым множителем в F_{i+1} . Далее, $\bigcup_i F_i = F$, так как для каждой подгруппы (b_i) существует такая подгруппа (c_i) , что $p^{\gamma_i} \ge ((b_i):1)$.

К прямому произведению $F_{i+1} = F_i \times ... \times (c_{i+1})$ применима лемма 2. 4, и поэтому для алгебр $\tilde{G}K$ и HK можно построить возрастающие последовательности подгрупп

$$(2.34') G_1' \subset ... \subset G_s' \subset ..., H_1' \subset ... \subset H_s' \subset ...$$

(эти последовательности являются специализациями последовательности $F_1 \subset ... \subset F_s \subset ...$ при F = H и $F = \widetilde{G}$), для которых выполняются условия леммы 2.15 (Здесь все минимальные идемпотенты алгебр $G_i'K$ и $H_i'K$ -первого рода). Значит, $HK \cong GK$ и $HK \cong G_1K$, что и доказывает изоморфизм алгебр GK и G_1K .

2. Пусть G-группа типа 2. Если $GK \cong G_1K$, то, в силу леммы 2. 11 и следствия из леммы 2. 10, G_1 -также группа типа 2 и, при этом, выполняются равенства

$$(2.35) (K(\xi):K) = (K(\xi_1):K); (K(\varepsilon):K) = (K(\varepsilon_1):K)$$

Наоборот, предположим, что для групп G и G_1 типа 2 выполняются условия (2. 35), где K-может быть и полем второго рода.

Обозначим через F группу G или G_1 . Пусть

$$(2.36) F = (a_1) \times ... \times (a_s) \times$$

Пусть p^{γ} -старший из порядков циклических прямых множителей (2. 36), а p^{γ_1} -

старший из порядков тех множителей из (2. 36), которые входят в это разложение счетное число раз. Пусть $(b_1), ..., (b_n), ...$ -все множители из (2.36),порядки которых равны p^{γ_1} , $F' = (c_1) \times ... \times (c_r)$ -прямое произведение тех множителей из (2. 36), порядки которых превышают p^{γ_1} , а $F'' = (d_1) \times ... \times (d_s) \times ...$ произведение прямых множителей (2. 36), порядки которых меньше p^{y_1} (подгруппы F' и F'' могут быть равны 1). Положим $F_1=(b_1);\ F_n=F'\times (b_1)\times \ldots \times (b_n)\times (d_1)\times \ldots \times (d_n)\ (n\ge 2)$ (Если

 $F'' = (d_1) \times ... \times (d_r)$ -конечная подгруппа, то полагаем $d_i = 1$ при i > r).

Пусть последовательность $F_1 \subset ... \subset F_s \subset ...$ соответственно для групп Gи G_1 принимает вид:

$$(2.37) G_{11} \subset ... \subset G_{1n} \subset ...,$$

И

11

$$(2.28) G'_{11} \subset ... \subset G'_{1n} \subset$$

В силу леммы 2. 4, алгебры GK и G_1K по отношению к последовательностям (2. 37), (2. 38) удовлетворяют условиям леммы 2. 15, и, следовательно, $GK \cong G_1K$ (Здесь все минимальные идемпотенты алгебр $G_{1i}K$ и $G_{2i}K$ -первого рода).

3. Пусть группа G представляется в виде прямого произведения $G = P \times H$, где P-группа p^{∞} , а H-конечная группа. Из леммы 2. 12 и следствия из леммы. 2, 10 следует, что $GK\cong G_1K$ тогда и только тогда, когда $G_1=P_1 imes H_1$, где P_1 группа p^{∞} , а H_1 -такая конечная группа, что $H_1K \cong HK$. В вырожденном случае получаем, что из изоморфизма $GK \cong G_1K$, где G-группа p^{∞} следует, что G_1 группа p^{∞} .

4. Пусть G-группа типа 4. Если $GK \cong G_1K$, то из следствия из леммы

10 и леммы
 12 вытекает, что G₁-группа типа 4.

Предположим, что G и G_1 -группы типа 4. Обозначим через F группу Gили G_1 и рассмотрим разложение F в прямое произведение s групп p^{∞} , где $s \ge 2$ -либо конечное число, либо счетная мощность:

$$F = P_1 \times ... \times P_n \times$$

Представим группу P_i в виде объединения возрастающей последовательности циклических групп:

$$(a_{i1})\subset (a_{i2})\subset \ldots,$$

где a_{ij} -элемент порядка p^{j} (j = 1, 2, ...).

Построим в F возрастающую последовательность конечных подгрупп $F_1 \subset F_2 \subset ...$, где $F_j = \{a_{1j}, ..., a_{jj}\}$ если *s*-счетная мощность, и $F_j = \{a_{1j}, ..., a_{sj}\}$ при $j \ge s$ в случае конечного числа s.

Пусть последовательность $F_1 \subset \dots F_r \subset \dots$ для групп G и G_1 соответственно имеет вид:

$$G_{11} \subset ... \subset G_{1t} \subset ...;$$

$$(2.39) G'_{11} \subset ... \subset G'_{1t} \subset$$

Ввиду лемм 2.3 и 2.4, алгебры GK и G_1K удовлетворяют условиям леммы 2. 15 по отношению к последовательностям (2. 39). Следовательно, $GK \cong G_1K$ (Все минимальные идемпотенты алгебр $F_i K$ -первого рода).

5. Пусть группа G представляется в виде прямого произведения $G = P \times H$, где P-полная группа, прямое разложение которой содержит по крайней мере две группы p^{∞} , а H-конечная группа. Если $GK \cong G_1K$, то в силу леммы 2. 10 и следствия из леммы, $G_1 = P_1 \times H_1$, где P_1 -полная группа, а H_1 -конечная группа, причем $HK \cong H_1K$. Так как алгебра GK не содержит минимальных идеалов, то прямое разложение группы P_1 содержит по крайней мере две группы p^{∞} . Значит, по доказанному в предыдущем пункте, $PK \cong P_1K$.

Наоборот, пусть $G = P \times H$ и $G_1 = P_1 \times H_1$, где P и P_1 -полные группы, неизоморфные группе p^{∞} , а H и H_1 -такие конечные p-группы, что $HK \cong H_1K$. Тогда, по предыдущему, $PK \cong P_1K$. Следовательно, алгебры GK и G_1K изоморфны, ибо они являются тензорными произведениями попарно изоморф-

ных алгебр.

6. Пусть группа G представляется в виде прямого произведения $G = P \times H$, где P-полная группа, а H-бесконечная p-группа с ограниченными в совокупности порядками элементов. Если $GK \cong G_1K$, то $G_1 = P_1 \times H_1$, где $HK \cong H_1K$. Это следует из леммы 2. 10 и следствия из этой леммы.

Предположим, что $G=P\times H$, $G_1=P_1\times H_1$ и $HK\cong H_1K$, где H и H_1 -бесконечные p-группы с ограниченными в совокупности порядками элементов, а P и P_1 -полные группы. Покажем, что $GK\cong G_1K$. Поскольку H и H_1 -группы типа 2, то для них можно построить возрастающие последовательности подгрупп типа (2. 37) и (2. 38):

Образуем в группах P и P_1 возрастающие последовательности подгрупп:

$$\begin{split} P_{11} \subset \ldots \subset P_{1s} \subset \ldots & (\bigcup_i P_{1i} = P); \\ P_{21} \subset \ldots \subset P_{2s} \subset \ldots & (\bigcup_i P_{2i} = P_1). \end{split}$$

Положим $\tilde{H}_{1s} = P_{1s} \times H_{1s}$; $\tilde{H}_{2s} = P_{2s} \times H_{2s}$.

Построим последовательности

$$(2.41) \widetilde{H}_{11} \subset ... \subset \widetilde{H}_{1s} \subset ...;$$

$$(2.42) \widetilde{H}_{21} \subset ... \subset \widetilde{H}_{2s} \subset$$

Назовем минимальными идемпотентами первого рода алгебры $\widetilde{H}_{is}K$ (i=1,2) идемпотенты вида $\frac{1}{(P_{is}:1)} \binom{\sum g}{g \in P_{is}} e_t$, где e_t -минимальный идемпотент алгебры H_{is} , а идемпотентами второго рода — остальные минимальные идемпотенты этой алгебры. Ввиду лемм 2. 3, 2. 4, и 2. 5, для алгебр GK и G_1K по отношению к последовательностям (2. 41), (2. 42) выполняются условия леммы 2. 15. Следовательно, $GK \cong G_1K$.

7. Пусть подгруппа P элементов бесконечной высоты в группе G конечна $(P \neq 1)$. Если $GK \cong G_1K$, то в силу следствия из леммы 2. 10 подгруппа P_1 элементов бесконечной высоты в G_1 также конечна, причем $P_1 \neq 1$.

Наоборот, предположим, что G и G_1 -группы типа $\hat{8}$. Покажем, что $GK\cong G_1K$.

Пусть P и P_1 -конечные подгруппы элементов бесконечной высоты соответственно в группах G и G_1 . Фактор-группы H=G/P и $H_1=G_1/P_1$ -группы типа 1. Образуем для групп H и H_1 последовательности типа (2. 34') (см. рассуждения пункта 1):

$$G_{11}/P \subset ... \subset G_{1s}/P \subset ...;$$

 $G_{11}/P_1 \subset ... \subset G'_{1s}/P_1 \subset ...,$

а для групп G и G_1 последовательности

$$(2.43) P = \widetilde{G}_{10} \subset \widetilde{G}_{11} \subset ... \subset \widetilde{G}_{1s} \subset ...; P_1 = \widetilde{G}'_{10} \subset \widetilde{G}'_{11} \subset ... \subset \widetilde{G}'_{1s} \subset ...,$$

где $\widetilde{G}_{1j}(\widetilde{G}_{1j})$ -полный прообраз группы G_{1j}/P (G'_{1j}/P_1) при естественном гомо-

морфизме $G \to G/P$ $(G_1 \to G_1/P_1)$ (j=1,...).

Назовем идемпотентами первого рода алгебры $\tilde{G}_{1j}K$ ($\tilde{G}'_{1j}K$) (j=1,2,...) минимальные идемпотенты этой алгебры, соответствующие таким абсолютно неприводимым характерам группы $\tilde{G}_{1j}(\tilde{G}'_{1j})$, ядро которых содержит подгруппу $\tilde{G}_{10}(\tilde{G}'_{10})$. Остальные минимальные идемпотенты алгебр $\tilde{G}_{1j}K(\tilde{G}'_{1j}K)$ ($j \ge 1$) назовем идемпотентами второго рода. На основании лемм 2. 3, 2. 4 и 2. 5 для алгебр GK и G_1K по отношению к последовательностям (2. 43) выполняются условия леммы 2. 15, и, следовательно, $GK \cong G_1K$.

8. Предположим, что G-группа типа 9 и $GK \cong G_1K$. Тогда, на основании следствия из леммы 2. 10 и леммы 2. 11, G_1 -также группа 9. Пусть G и G_1 -группы типа 9, а $P(P_1)$ -бесконечные подгруппы элементов бесконечной высоты в $G(G_1)$. Выделим в группах P и P_1 возрастающие последовательности подгрупп:

$$P_{11} \subset ... \subset P_{1s} \subset ...$$
 $(\bigcup_{i} P_{1i} = P);$
 $P_{21} \subset ... \subset P_{2s} \subset ...$ $(\bigcup_{i} P_{2i} = P_{1}).$

Группы G/P = H и $G_1/P_1 = H_1$ являются группами типа 1 и поэтому к ним применимы рассуждения пункта 1. Построим для групп H и H_1 последовательности типа (2. 34):

$$G_{11}/P \subset ... \subset G_{1s}/P \subset ...;$$

 $G_{21}/P_1 \subset ... \subset G_{2s}/P_1 \subset$

Обозначим через $Q_{1j}(Q_{2j})$ систему представителей смежных классов группы $G_{1j}(G_{2j})$ по подгруппе $P(P_1)$, и пусть $H_{1j}(H_{2j})$ -подгруппа группы $G(G_1)$, порожденной подгруппой $P_{1j}(P_{2j})$ и подмножеством $Q_{1j}(Q_{2j})$.

Образуем для групп G и G_1 последовательности:

$$(2.44) H_{11} \subset ... \subset H_{1s} \subset ...;$$

Очевидно, $\bigcup_i H_{1i} = G$, $\bigcup_i H'_{1i} = G_1$.

Положим $P\cap H_{1j}=P_{1j};\ P_1\cap H_{1j}'=P_{1j}'.$ Назовем идемпотентами первого рода алгебры $H_{1j}K(H_{1j}'K)$ минимальные идемпотенты этой алгебры,

соответствующие таким абсолютно неприводимым характерам группы $H_{1j}(H'_{1j})$, ядро которых содержит, подгруппу $P_{1j}(P'_{1j})$. Остальные минимальные идемпотенты алгебры $H_{1j}K(H'_{1j}K)$ назовем идемпотентами второго рода. В силу лемм 2. 3 и 2. 5 для последовательностей (2. 44), (2. 45) выполняются условия леммы 2. 15, и поэтому $GK \cong G_1K$.

Теорема доказана.

Рассмотрим теперь задачу об изоморфизме групповых алгебр GK, где G-счетная p-группа, а K-поле второго рода относительно простого p.

Теорема 2. 3. Если $p \neq 2$, а K-поле второго рода (относительно простого p), то групповые алгебры GK и G_1K любых двух счетных абелевых p-групп G и G_1 изоморфны.

Доказательство. Образуем в группах G и G_1 возрастающие последовательности подгрупп

$$G_{11} \subset ... \subset G_{1s} \subset ...$$
 $(\bigcup_i G_{1i} = G);$
 $G'_{11} \subset ... \subset G'_{1s} \subset ...$ $(\bigcup_i G'_{1i} = G_1).$

Так как поле K-второго рода, то каждый минимальный идемпотент любых из алгебр $G_{1i}K$, $G'_{1i}K$ (i=1,2,...) имеет вес 1 и разлагается в сумму по крайней мере двух минимальных идемпотентов алгебры $G_{1i+1}K$ (соответственно $G'_{1i+1}K$). Отсюда, в силу леммы 2.15, вытекает утверждение теоремы.

Теорема 2. 4. Пусть p=2, а K-поле второго рода относительно простого числа 2. Если K=K(i) ($i^4=1$) то $GK\cong HK$ для любых счетных 2-групп G и H. Если $K\subset K(i)$, то групповая алгебра GK произвольной счетной 2-группы G изоморфна групповой алгебре 2-группы одного из следующих типов:

- 1. G_1 -*rpynna muna* (2, ..., 2, ...);
- 2. G_2 -группа типа (4, 2, ..., 2, ...);
- 3. G_3 -epynna muna (4, 4, ..., 4, ...);
- 4. G₄-группа типа 2°.
- 5. $G_5^{(s)} = P \times H_s$, где P-группа 2^{∞} , а H_s -прямое произведение s циклических групп порядка 2 (s=1,2,...).

Групповые алгебры групп типов 1—5 попарно неизоморфны.

- 1. $GK \cong G_1K$ тогда и только тогда, когда $G \cong G_1$.
- 2. $GK \cong G_2K$ тогда и только тогда, когда G не содержит элементов бесконечной высоты и разложение группы G в прямое произведение циклических групп входит только конечное число множителей c порядками, превосходящими c.
- 3. Пусть P-подгруппа элементов бесконечной высоты в G. $GK \cong G_3K$ тогда и только тогда, когда в разложении группы G/P в прямое произведение циклических групп встречается бесконечно много множителей с порядком, большим 2.
 - 4. $GK \cong G_4K$ тогда и только тогда, когда G-полная 2-группа.
- 5. $GK \cong G_s^{(s)}K$, когда $G = P \times F$, где P-полная группа, а F-конечная группа, разлагающаяся в прямое произведение s циклических групп.

Доказательство. Первое утверждение теоремы доказывается так же, как теорема 2. 3. Пусть $K \subset K(i)$. Из леммы 2. 11 вытекает, что групповые алгебры G_1K , G_2K , G_3K попарно неизоморфны. Группа G_4 обладает только тривиаль-

ным одномерным представлением над полем K, а группа $G_5^{(s)}$ имеет точно 2^s одномерных представлений. Отсюда вытекает, что алгебры $G_5^{(s)}K$ при различных s между собой неизоморфны. Кроме того, алгебра $G_5^{(s)}K$ не может быть изоморфна ни одной из алгебр G_iK (i=1,2,3), так как число одномерных K-представлений каждой из групп G_1 , G_2 , G_3 -бесконечно.

Пусть G-счетная 2-группа, а P-подгруппа элементов бесконечной высоты в G. Предположим, что выполняются следующие условия: 1. Фактор-группа G/P-бесконечна. 2. Если P=1, то в разложении группы G в прямое произведение циклических групп встречается бесконечно много множителей, порядки

которых превышают 2. Покажем, что $GK \cong G_3K$.

Пусть $G/P = (b_1P) \times ... \times (b_sP) \times ...$ -разложение группы G/P в прямое

произведение циклических групп.

В случае, когда группа P бесконечна, представим P в виде объединения возрастающей последовательности конечных подгрупп: $P_1 \subset ... \subset P_s \subset ...$ ($\bigcup_i P_i = P$). При P = 1 положим $P_1 = ... = P_s = ... = 1$, а в случае конечной группы P положим $P = P_1 = ... = P_s = ...$ Далее, в группе F = G/P выделим последовательность конечных подгрупп

$$F_1/P \subset ... \subset F_i/P \subset ... \quad (F_1/P = (c); c^{2^r} = 1; r \ge 2),$$

где при $P\!=\!1$ подгруппы F_i задаются произвольно, а при $P\!\neq\!1$ показатель каждой из подгрупп F_i больше 2 и

$$F_{i+1}/P = F_i/P \times F_i'/P$$
.

Пусть R_i -система представителей смежных классов . руппы F_i по подгруппе P, а \widetilde{G}_i -подгруппа группы G, порожденная множеством R_i и подгруппой P_i . Образуем последовательность.

$$(2.46) \widetilde{G}_1 \subset ... \subset \widetilde{G}_s \subset ... (\bigcup_i \widetilde{G}_i = G).$$

Рассмотрим разложение группы G_3 в прямое произведение циклических групп порядка 4:

$$G_3 = (b_1) \times ... \times (b_s) \times ...$$

и образуем последовательность подгрупп

$$(2.47) G_3^{(1)} \subset ... \subset G_3^{(s)} \subset ...,$$

где $G_3^{(s)} = (b_1) \times ... \times (b_s)$ (s=1,2,...). Тогда каждая из алгебр $\tilde{G}_i K(G_3^{(i)}K)$ содержит идемпотенты веса 1 и 2, причем в разложении минимального идемпотента веса 1 алгебры $\tilde{G}_i K(G_3^{(i)}K)$ в сумму минимальных идемпотентов алгебры $\tilde{G}_{i+1}K(G_3^{(i+1)}K)$ встречаются по крайней мере два идемпотента веса 1 и по крайней мере два идемпотента веса 2, а каждый минимальный идемпотент $e \in G_i K(G_3^{(i)}K)$ веса 2 разлагается в сумму по крайней мере двух минимальных идемпотентов веса 2 алгебры $G_{i+1}K(G_3^{(i+1)}K)$. Отсюда, в силу леммы 2. 15 и замечания 1 к лемме вытекает, что $GK \cong G_3 K$.

Предположим, что группа G разлагается в прямое произведение счетного числа циклических групп, среди которых встречается только конечное число групп порядков 2^{2+i} ($i \ge 0$). Тогда, в силу пункта 2 в доказательстве теоремы

2. 2, $GK \cong G_1K$, если $G\cong G_1$ и $GK\cong G_2K$, если в прямом разложении группы G встречается хотя бы одна циклическая группа порядка 2^{2+i} ($i \ge 0$). Предыдущие рассмотрения охватывают все случаи, когда группа G имеет бесконечно много одномерных представлений над полем K. Пусть группа G имеет только конечное число одномерных представлений над полем K. Тогда G представляется в виде прямого произведения $G = P \times H$, где P-полная группа, а $H = (b_1) \times \dots \times (b_s)$ -конечная 2-группа. Покажем, что $GK\cong G_5^{(s)}K$, а в вырожденном случае (при S=0) $GK\cong G_4K$ (G_4 -группа типа S=0). Пусть разложение группы S=0 в прямое произведение S=00 гимеет вид: S=01 густь разложение группы S=02 имеет вид: S=03 густь разложение группы S=04 густь прямое произведение S=04 густь вид: S=05 густь разложение группы S=06 густь густь вид: S=06 густь гу

Представим группу P_i в виде объединения возрастающей последовательности циклических подгрупп:

$$(c_{i1}) \subset ... \subset (c_{ii}) \subset ... \qquad (c_{i1}^2 = 1).$$

Положим $H_i = H \times (c_{1i}) \times ... \times (c_{ii})$ (i = 1, 2, ...) если n-счетная мощность, а в случае конечного числа n будем считать, что $H_j = H \times (c_{1j}) \times ... \times (c_{nj})$ при $j \ge n$. Положим $G_i = H \times H_i$ (i = 1, 2, ...) и образуем возрастающую последовательность подгрупп группы G

$$(2.48) G_1 \subset ... \subset G_t \subset ... (\bigcup G_i = G).$$

Алгебра HK содержит точно 2^s минимальных идемпотентов $e_1, ..., e_r$ веса 1 $(r=2^s)$. Назовем минимальными идемпотентами первого рода для алгебры G_iK (i=1,2,...) идемпотенты вида e_ie , где e_i пробегает все минимальные

идемпотенты веса 1 алгебры HK, а $e = \frac{1}{(H_i:1)} \sum_{g \in H_i} g$ -идемпотент алгебры H_iK , соответствующий единичному характеру группы. Остальные минимальные

соответствующий единичному характеру группы. Остальные минимальные идемпотенты алгебр G_iK $(i=1,2,\ldots)$ назовем идемпотентами второго рода.

Для каждого минимального идемпотента $e \in G_i K$ второго рода и произвольной подгруппы G_j в (2. 48) найдется такая подгруппа $G_r \supset G_j$, что идемпотент e разлагается в сумму по крайней мере двух минимальных идемпотентов веса 2 алгебры $G_r K$. В разложении каждого идемпотента первого рода алгебры $G_i K$ в сумму минимальных идемпотентов алгебры $G_{i+1} K$ возникает точно один идемпотент первого рода и идемпотенты второго рода. Таким образом, для двух групп G и G_1 обладающих точно 2^s одномерными представлениями над полем K, можно построить последовательности подгрупп (2. 48), для которых выполняются условия замечания 1, к лемме 2. 15. Следовательно, $GK \cong G_1 K$. В вырожденном случае получим, что групповая алгебра GK любой счетной полной 2-группы G изоморфна алгебре $G_4 K$. Теорема доказана.

Теорема 2.5. Пусть G и G_1 -счетные периодические абелевы группы, а K-алгебраически замкнутое поле, характеристика которого не делит порядки элементов групп G и G_1 . Тогда групповые алгебры GK и G_1K изоморфны.

Доказательство. Утверждение теоремы доказывается так же, как и теорема 2. 3. Если для групп G и G_1 построить восрастающие последовательности подгрупп

$$G_{11} \subset ... \subset G_{1s} \subset ...$$

И

$$G_{21} \subset ... \subset G_{2s} \subset ...,$$

то все минимальные идемпотенты алгебр $G_{ij}K$ (i=1,2;j=1,2,...) имеют вес 1 и каждый минимальный идемпотент алгебры $G_{ij}K$ разлагается в сумму по крайней мере двух минимальных идемпотентов алгебры $G_{ij+1}K$. Поэтому, в силу леммы 2.15, $GK \cong G_1K$.

Теорема 2. 6. Групповая алгебра GD произвольной счетной периодической абелевой группы G над полем действительных чисел D изоморфна вещественной групповой алгебре одной из 2-групп, перечисленных в формулировке теореммы 2. 4.

Представим группу G в виде прямого произведения $G=N\times P\times R$, где N-группа с элементами нечетного порядка, P-полная 2-группа, а R-редуцированная 2-группа.

Eсли подгруппа N imes P-бесконечна, а группа R конечна, то $GD \cong G_5^{(s)}D$, где

s-число циклических прямых множителей в разложении группы R.

 $GD\cong G_3D$ тогда и только тогда, когда подгруппа R бесконечна и, при этом, выполняется, по крайней мере, одно из следующих условий: 1. Подгруппа $(N\times P)$ -бесконечна. 2. Подгруппа R содержит элементы бесконечной высоты. 3. $(N\times P)$ -конечная группа, а группа R разлагается в прямое произведение циклических групп, среди которых имеется бесконечно много групп порядков 2^{2+i} $(i \ge 0)$.

 $GD \cong G_2D$ тогда и только тогда, когда группа R разлагается в прямое произведение счетного числа циклических групп, а R^2 и $(N \times P)$ -конечные группы, и, при этом, группа R не изоморфна группе G_1 , если $(N \times P) = 1$.

 $GD\cong G_1D$ тогда и только тогда, когда $G\cong G_1$.

Доказательство. Пусть G-счетная периодическая группа, все элементы которой имеют нечетный порядок, Покажем, что $GD \cong G_4D$, где G_4 -группа типа 2^{∞} . Представим группу G_4 в виде объединения возрастающей последовательности циклических подгрупп.

$$(2.49) H_1 \subset ... \subset H_s \subset ... (\bigcup_i H_i = G_4)$$

и построим возрастающую последовательность конечных подгрупп в G:

$$(2.50) G_1 \subset \ldots \subset G \subset \ldots \subset (\bigcup_i G_i = G)$$

Назовем минимальным идемпотентом первого рода для группы $F_i = G_i$, H_i идемпотент $e = \frac{1}{(F_i:1)} \sum_{g \in F_i} g$, а остальные минимальные идемпотенты группы F_i -идемпотентами второго рода. Тогда для последовательностей (2. 49) и (2. 50) выполняются условия замечание 2 к лемме 2,15 и, следовательно, $GD \cong G_sD$. Далее, если N-группа с элементами нечетного порядка, и $G = N \times P$ (P-чолная 2-группа), то $GD \cong G'D$, где $G' = N \times N_1$ (N_1 -произвольная счетная группа с нечетными порядками элементов). Следовательно, $G'D \cong G_4D$ (G_4 -группа 2^∞). Таким образом, если счетная 2-группа G представляется в виде прямого произведения $N \times P$, то $GD \cong G_4D$. Отсюда вытекает, что групповая алгебра GD, где $G = P \times N \times R$ в случае бесконечной группы $P \times N$ изоморфна групповой алгебре GD, где $G = G_4 \times R$ -счетная 2-группа.

Предположим теперь, что $G = N \times R$, где $N(N \ne 1)$ -конечная группа нечетного порядка, а R-редуцированная (бесконечная) 2-группа. Рассмотрим два

случая: a) R^2 -конечная группа; б) Группа R^2 -бесконечна.

В случае а) группу R можно представить в виде прямого произведения $R = R_1 \times G_1$, где $G_1 = (a_1) \times ... \times (a_s) \times ...$ -прямое произведение циклических групп второго порядка, а R_1 -конечная 2-группа, разлагающаяся в прямое произведение t циклических групп порядков 2^{2+i} ($i \ge 0$). Построим для группы G возрастающую последовательность подгрупп:

$$(2.50) H_1 = (N \times R_1) \subset ... \subset H_s = \{N, R_1, a_1, ..., a_s\} \subset$$

Рассмотрим теперь группу $G_2=(a_1)\times ... \times (a_s)\times ...$, где (a_1) -циклическая группа 4-го порядка, а каждая из подгрупп (a_j) при $j\ge 2$ имеет порядок 2. Образуем для группы G_2 последовательность подгрупп

$$(2.51) \quad G_1' = (a_1) \times ... \times (a_t) \subset ... \subset G_s' = G_1' \times (a_{t+1}) \times ... \times (a_{t+s+1}) \subset$$

Каждый минимальный идемпотент веса 1 алгебры H_iD ($G_i'D$) разлагается в сумму точно двух минимальных идемпотентов веса 1 алгебры $H_{i+1}D(G_{i+1}'D)$. Алгебры GD и G_2D по отношению к последовательностям (2. 50) и (2. 51) удовлетворяют условиям замечания 2 к лемме 2. 15. Следовательно, $GD\cong G_2D$. В случае б) для группы G и группы $G_3=(4,...,4...)$ можно построить такие возрастающие последовательности подгрупп

$$G_{11} \subset ... \subset G_{1s} \subset ... \qquad (\bigcup_i G_{1i} = G);$$

И

$$G'_{11} \subset ... \subset G'_{1s} \subset ... \qquad (\bigcup_i G'_{1i} = G_3),$$

что разложение каждого минимального идемпотента веса 1 алгебры $G_{1i}D$ ($G'_{1i}D$) в сумму минимальных идемпотентов алгебры $G_{1i+1}D(G'_{1i+1}D)$ содержит по крайней мере два идемпотента веса 1 и по крайней мере два идемпотента веса 2. Отсюда в силу замечания 2 к лемме 2. 15 вытекает изоморфизм $GD\cong G_3D$.

Итак, мы показали, что для любой периодической счетной группы G имеет место изоморфизм $GD\cong HD$, где H-2-группа. Утверждение доказываемой теоремы легко получается теперь путем привлечения теоремы 2. 4. Теорема доказана.

2. Изучим теперь неразложимые представления произвольной периодической абелевой группы G (не обязательно счетной) над произвольным полем K характеристики нуль.

Пусть G-произвольная группа, а K-любое поле. Назовем групповой полуалгеброй $\Gamma(GK)$ совокупность всевозможных формальных сумм вида $\sum_{g \in G} \lambda_g g$ ($\lambda_g \in K$), для которых естественным образом определены операции сложения и правого и левого умножения на элементы групповой алгебры GK (по определению $\sum \lambda_g g = \sum \gamma_g g$, тогда и только тогда, когда $\lambda_g = \gamma_g$ для всех $g \in G$).

нию $\sum_g \lambda_g g = \sum_g \gamma_g g$, тогда и только тогда, когда $\lambda_g = \gamma_g$ для всех $g \in G$). Если $x = \sum_{g \in G} \lambda_g g \in \Gamma(GK)$, а H-подгруппа группы G, то через $d_H(x)$ условимся обозначать сумму $\sum_{g \in G} \alpha_g g$.

Лемма 2.16. Пусть G-конечная абелева группа. H-подгруппа группы G, K-поле, характеристика которого не делит порядок G, e-минимальный идемпо-

тент алгебры GK, а e_1 -такой минимальный идемпотент алгебры HK, что $e_1e=e$. Тогда $d_H(e)=\lambda e_1$ где $\lambda\in K$.

Доказательство. Пусть χ -абсолютно неприводимый характер группы G, соответствующий идемпотенту e. Пусть поле $F(F_1)$ получается в результате присоединения к полю K всех значений характера χ на группе G(H). Идемпотент $e(e_1)$ получается в результате сложения всех идемпотентов, K-сопряженных с идемпотентом

$$e' = \frac{1}{(G:1)} \sum_{g \in G} \chi(g^{-1})g \quad \left[e'_1 = \frac{1}{(H:1)} \sum_{g \in H} \chi(g^{-1})g\right].$$

Отсюда легко получить, что $d_H(e) = \frac{(F:F_1)}{(G:H)} e_1$. Лемма доказана.

Теорема 2.7. Пусть G-периодическая абелева группа, а K-поле характеристики нуль. Каждый неразложимый G-K-модуль неприводим. Неприводимые представления Γ группы G над полем K находятся во взаимно однозначном соответствии с такими множествами E идемпотентов алгебры GK, что

1. Элементами E являются минимальные идемпотенты е групповых алгебр HK всевозможных конечных подгрупп H группы G. Для каждой конечной подгруппы $H \subseteq G$ множество E содержит точно один минимальный идемпотент e алгебры HK.

2. Любые два идемпотента из множества Е неортогональны.

Неприводимые представления F и F_1 группы G над полем K эквивалентны тогда и только тогда, когда соответствующие им множества идемпотентов E и E_1 совпадают.

Доказательство. Пусть M-произвольный неразложимый G-K-модуль, H-произвольная конечная подгруппа группы G, а e_1 , ..., e_t -все минимальные идемпотенты алгебры HK. Так как $1=e_1+...+e_t$, то $M=e_1M+...+e_tM$, и, в силу неразложимости модуля M, все слагаемые в правой части, кроме одного, обращаются в нуль. Таким образом, для каждой конечной подгруппы $H \subseteq G$ существует точно один минимальный идемпотент $e_H \in HK$, такой, что

$$(2.52) e_H M = M.$$

Пусть x-произвольный ненулевой элемент модуля M. Образуем подмодуль $N=GKx\subseteq M$. Покажем, что модуль N неприводим. В самом деле, пусть N_1 -любой ненулевой G-K-подмодуль модуля N и $0\neq ax\in N$, где $a\in GK$. Тогда существует такая конечная подгруппа $H\subseteq G$, что $a\in HK$. Ввиду (2.52), $x=e_Hx_1$, где e_H -минимальный идемпотент алгебры HK, а x_1 -ненулевой элемент модуля M. Тогда для некоторого элемента $a'\in HK$ имеем $a'ae_H=e_H$ и, следовательно, $a'ae_Hx_1=e_Hx_1=x$, т. е., $x\in N_1$ и $N_1=N$. Таким образом, каждый ненулевой элемент $x\in M$ содержится в неприводимом G-K-подмодуле модуля M. Следовательно, модуль M-вполне приводим, а так как M-неразложимый модуль, то M-неприводим. Итак, каждый неразложимый G-K-модуль M неприводим.

Пусть H пробегает все конечные подгруппы группы G, а $E = E(M) = \{e_H\}$ множество всех минимальных идемпотентов e_H , для которых имеет место

(2.52). Очевидно, множество E удовлетворяет условиям 1. и 2., перечисленным в формулировке теоремы.

Покажем, что неизоморфным неприводимым модулям M_1 и M_2 соответст-

вуют различные множества $E(M_1)$ и $E(M_2)$.

В самом деле, предположим, что $E = E(M_1) = E(M_2)$.

Пусть $0 \neq x \in M_1$; $0 \neq y \in M_2$. Тогда для любого минимального идемпотента $e_H \in E$ выполняются равенства

$$x = e_H x_H$$
; $y = e_H y_H (0 \neq x_H \in M_1; 0 \neq y_H \in M_2)$.

Очевидно, $M_1 = GKx$, $M_2 = GKy$. Произвольный элемент $\tilde{x} \in M_1$ записывается в виде $\tilde{x} = ax$, где $a \in GK$. Если $a_1x = a_2x$, где a_1 , $a_2 \in HK$ (*H*-конечная подгруппа группы G), то

$$(2.53) a_1 e_H x_H = a_2 e_H x_H.$$

Пусть $I = HKe_H$ -минимальный идеал алгебры HK. Тогда имеет место H-K-изоморфизм $\theta: I \to HKe_Hx_H$, где $\theta(ae_H) = ae_Hx_H$ ($a \in HK$). Значит, из (2. 53) вытекает равенство $a_1e_H = a_2e_H$, а из этого равенства следует, что $a_1e_Hy_H = a_2e_Hy_H$ или $a_1y = a_2y$. Таким образом, формула $ax \to ay$ определяет операторный изоморфизм модуля M_1 на M_2 , что ведет к противоречию.

Итак, неизоморфным неприводимым модулям M_1 и M_2 соответствуют различные множества $E(M_1)$ и $E(M_2)$. Рассмотрим теперь произвольное множество $E' = \{e_H\}$ идемпотентов алгебры GK, удовлетворяющее условиям 1. и 2. теоремы 2. 7. Покажем, что существует такой неприводимый G-K-

модуль M, что E(M) = E'.

Обозначим через N_H ядро неприводимого представления группы H над полем K, соответствующего идемпотенту $e_H \in E'$. Пусть N-подгруппа группы G, порожденная всеми подгруппами N_H (H пробегает все конечные подгруппы группы G). Покажем, что $N \cap H = N_H$. В самом деле, предположим, что $N' = (N \cap H) \supset N_H$. Пусть $N' \subseteq N_{H_1} ... N_{H_t}$, где $H_1, ..., H_t$ -некоторые конечные подгруппы группы G. Из неравенств $e_{N_{H_t}} e_{H_t} \neq 0$ легко вытекает, что $e_{N_{H_t}} = 0$

$$=\frac{1}{(N_{H_i}:1)}\sum_{g\in N_{H_i}}g\ (i=1,...,t)$$
. Далее используя неравенства $e_{N'}e_{N_{H_i}}\neq 0\ (i=1,...,t)$

получим, что $e_{N'} = \frac{1}{(N':1)} \sum_{g \in N'} g$, т. е. идемпотент $e_{N'} \in E'$ соответствует единичному представлению группы N' над полем K. Так как по предположению $N' \supset N_H$, то $e_{N'}e_H = 0$. что противоречит свойству 2. множества E'. Итак,

$$(2.54) N \cap H = N_H.$$

Так как фактор-группы H/N_H -циклична, то из (2. 54) сразу вытекает, что каждая конечная подгруппа группы G/N-циклична. Следовательно, G/N-счетная группа, изоморфная подгруппе группы всех комплексных корней из единицы.

Построим в группе G/N возрастающую последовательность конечных групп

$$(2.55) G_1/N \subset ... \subset G_s/N \subset ... (\bigcup_i G_i = G).$$

Выберем в каждой из подгрупп G_i систему L_i представителей смежных классов

по подгруппе N таким образом, что $L_i \subset L_{i+1}$ (i=1,2,...). Пусть $L = \bigcup_i L_i$. Обозначим через G_i' подгруппу группу G, порожденную множеством L_i . Тогда $G_1' \subset ... \subset G_s' \subset ...$. Рассмотрим совокупность идемпотентов $\{e_{G_i'}\}$. Так как $G_i' \subset G_{i+1}'$ и $e_{G_i'}e_{G_{i+1}'} \neq 0$, то $e_{G_i'}e_{G_{i+1}'} = e_{G_{i+1}'}$. Тогда, в силу леммы 2. 16, $d_{G_i'}(e_{G_{i+1}'}) = \lambda e_{G_i'}$ $(\lambda \in K)$. Следовательно, существует такая последовательность $\lambda_1 = 1, \lambda_2, ..., \lambda_n, ...$ элементов поля K, что

$$d_{G'_i}(\lambda_{i+1}e_{G'_{i+1}}) = \lambda_i e_{G'_i}$$
 $(i = 1, 2...).$

Из формул (2. 55) следует, что существует такой элемент $x \in \Gamma(GK)$ ($\Gamma(GK)$ -групповая полуалгебра группы G над полем K), что $d_{G_i}(x) = \lambda_i \ e_{G_i}(i=1,2,\ldots)$. Пусть

 $x = \sum_{g \in G} \alpha_g g = \sum_{g \in L} \alpha_g g + \sum_{g \notin L} \alpha_g g.$

Положим

$$(2.56) x_1 = \sum_{g \in L} \alpha_g g.$$

Пусть $y = (\sum_{g \in N} g) x_1$ ($y \in \Gamma(G, K)$). Положим M = GKy и покажем, что M-неприводимый G-K-модуль и E(M) = E'.

Пусть І-идеал алгебры GK, порожденный всевозможными элементами h-1, где $h \in N$ и Q=G/N. В силу леммы 1.1, существует гомоморфизм $\theta: GK \to QK$ с ядром І. Произвольный элемент $a \in GK$ записывается в виде

$$a = \sum_{h \in N} \sum_{b \in L} \alpha_{h,b} hb \qquad (\alpha_{h,b} \in K).$$

Тогда

(2.57)
$$\theta(a) = \sum_{b \in L} \sum_{h} \alpha_{h,b}(bN) = \bar{a}.$$

Так как модуль M аннулируется идеалом I, то M можно рассматривать как

модуль над фактор-алгеброй $QK \cong GK/I$.

Пусть H-произвольная конечная подгруппа группы G и $L \cap H = L_H$. Положим H' = HN/N. Вивду (2. 54), минимальный идемпотент $e_H \in E'$ можно записать в виде

$$(2.58) e_H = \frac{1}{(N_H:1)} \left(\sum_{g \in N_H} g \right) \sum_{b \in L_H} \gamma_b b \qquad (\gamma_b \in K),$$

где $\sum_b \gamma_b(bN)$ -минимальный идемпотент алгебры H'K. Вследствие (2. 57) отсюда вытекает, что $\theta(e_H) = \bar{e}_H = \sum_{b \in L_H} \gamma_b(bN)$, где $\theta(e_H) \neq 0$ -минимальный идемпотент групповой алгебры подгруппы HN/N группы Q.

Отсюда вытекает, что для произвольного идемпотента $e \in GK$ $(e \neq 0)$ идемпотент $\bar{e} \neq 0$ (e-записывается в виде суммы минимальных идемпотентов некоторой алгебры HK, где H конечная подгруппа группы G). В ситу (2.56), $\bar{e}_{G_i} = \gamma \sum_{g \in L_i} \alpha_g(gN)$ $(\gamma \in K)$. Тогда при $j \geq i$ имеем:

$$(\overline{e_{G'_i}}_{g \in L_j} \alpha_g g) = \overline{e}_{G'_i} \sum_{g \in L_j} \alpha_g(gN) = \overline{e}_{G'_j} \cdot \gamma \overline{e}'_{G_j} = \gamma \overline{e}'_{G_j}.$$

Следовательно, $e_{G_i} \sum_{g \in I} \alpha_g g = \sum_{g \in I} \alpha_g g + c$ где $c \in I$. Теперь при $j \ge i$:

$$\begin{split} d_{G_j}(e_{G_i'}y) &= e_{G_i}(\sum_{g \in N} g) \cdot \sum_{g \in L_j} \alpha_g g = (\sum_{g \in N} g) \cdot (\sum_{g \in L_j} \alpha_g g + c) = \\ &= (\sum_{g \in N} g) \sum_{g \in L_j} \alpha_g g = d_{G_j}(y). \end{split}$$

Так как $\bigcup_{i} G_{i} = G$, то отсюда вытекает, что

$$e_{G_i} y = y$$
 $(i = 1, 2, ...).$

Пусть $0 \neq ay \in M$, где $a \in GK$. Тогда $a \in G_jK$ и $ay = \bar{a}\bar{e}_{G_j}y$. Так как \bar{e}_{G_j} -минимальный идемпотент алгебры $(G_j/N)K$, то существует такой элемент $\overline{b} \in (G_j/N)K$ что $\overline{b}\overline{a}\overline{e}_{G_j} = \overline{e}_{G_j}$. Значит M-неприводимый модуль над QK, а, следовательно,

Пусть H-произвольная конечная подгруппа группы G. Тогда для некоторого j

$$HN \subset G_j$$
, $HN/N \subset G_j/N$.

Так как $e_H e'_{G'_j} \neq 0$, то $\bar{e}_H \bar{e}_{G'_j} \neq 0$. Значит, $\bar{e}_H \bar{e}'_{G'_j} = \bar{e}_{G'_j}$. Таким образом, $e_H M = \bar{e}_H \bar{e}_{G'_j} M = \bar{e}_{G'_j} M = e_{G'_j} M = M$. Следовательство, E(M) = E' и теорема доказана.

Литература

- [1] W. E. DESKINS, Finite abelian groups with isomorphic group algebras Duke Math. J. 23 (1956), 35-40.
- [2] А. Г. Курош, Теория групп., Москва, 1953.
- [3] С. Д. Берман, Характеры линейных представлений конечных групп над произвольным
- полем, Матем. сборник 44, (1958), 409—456. [4] S. Perlis—G. L. Walker, Abelian group algebras of finite orders. *Trans. Amer. Math. Soc.* 68 (1950), 420-426.
- [5] С. Д. Берман, Об изоморфизме групповых алгебр счетных абелевых групп. Док.т. и сообщ. УжсГУ, физ. матем. сер. 3, (1960), 56-57.
- [6] С. Д. Берман, Об изоморфизме групповых алгебр прямых произведений примарных циклических групп. Докл. и сообщ. УжгГУ физ. матем. сер., 3, (1961), 56-57.
- [7] С. Д. Берман. Групповые алгебры счётных абелевых р-групп. Доклоды АНСССР, 175. (1967), N3 514-516.

(Поступило 20. XII. 1966.)