Boundaries of domains of attraction

By P. BHATTACHARY YA (London)

Introduction
If f(z) is an entire or rational function, the iterates f,(z) (n=1, 2, ...) are defined
inductively by
£1@)=f(z) and f,.,(2)=/(£(2)

and are entire or rational respectively according as f(z) is.

A first order fixpoint of f(z) is a zero of f(z)—z = 0. The multiplier of the fix-
point  is /(). A fixpoint « is said to be artractive or non-attractive according as
| f/(@)|=1 or | f’(x)|=1 respectively.

The main object of study in the global iteration theory is (see e.g. [2]) the sub-
set § of the plane where the sequence {f,(z)} is not normal. This definition implies
that the complement C§ of is open and hence § is closed. If /is non-bilinear then &
is perfect and non-empty.

In [2] is proved,

Result A. If the set § has an interior point, then it is identical with the ex-
tended plane.

From the definition of attractive fixpoints follows
Result B. The set of attractive fixpoints belongs to C§.

Thus with an attractive fixpoint « there is an associated domain of normality
of {f,(z)} in which it can be easily shown that lim f,(z) —«. For such a domain

n—sco

we introduce the following definition.

Definition 1. The immediate domain of attraction D, of a first order attrac-
tive fixpoint « is the maximal domain of normality of {f,(z)} which contains o.
In D, we have lim f,(z)=a.

FaTtou [2] proved that if f(z) is a rational function and « a first order attractive
fixpoint of f(z), then there always exists a first order fixpoint on the boundary 9D,
of D,. Since 0D, is in § this fixpoint is non-attractive. Further it is shown that this
non-attractive fixpoint is an accessible boundary point of D,. A simple example
is provided by f(z)=z? which has the attractive fixpoint =0 for which D, is {|z| <1},
& is |z]=1 and 1 is a non-attractive fixpoint.



96 P. Bhattacharyya

When f(z) is entire transcendental Fatou’s result is no longer generally true.
In fact an entire transcendental function may not have any non-attractive fixpoint
of first order at all, provided the rate of growth of the function is not too small.
Indeed WHITTINGTON [3] has proved the following theorem [3, p. 534].

Theorem C. For every t=0 there exists an entire function of order % and
type t for which there is no non-attractive fixpoint of first order and infinity of first order
attractive fixpoints.

In this papsr we prove

Theorem D. Ler f(z) be entire transcendental and o be a first order attractive
fixpoint of f(z) such that D, is bounded. Then there exists a first order fixpoint on the
boundary 0D, of D,, which is accessible from the interior of D,.

While for a rational function it is clear that the immediate domain of attrac-
tion of an attractive fixpoint is bounded, an entire function may have unbounded
domains of attraction. Theorem D shows that if all the first order fixpoints of an
entire transcendental function are attractive the the immediate domains of attrac-
tion of each of these fixpoints must be unbounded. This is the case e.g. for Whitting-
ton’s examples.

There are indeed examples of entire transcendental functions having an attrac-
tive fixpoint o for which D, is bounded. BAKER [1] has constructed an entire function
g(z) for which g(0)=0, g’(0)=0, so that 0 is an attractive fixpoint and in its immediate
domain of attraction g,(z) -0. However, there are annuli R=|z|<R’ in which
g2,(2) -»==, and so D, lies completely inside |z|<R.

Proof of theorem D

We have f(2)=x, | f(2)|<1, A(D,)=D,, D, bounded.

Take the brach or branches of f_,(z) such that f_,(x)=« Under analytic
continuation within D,, these branches always yield values w=/_,(z) lying in
D,. since § and C§ are completely invariant in the sense that z€ § implies f(z) € ¥
and z€ CF implies f(z) € CF, also f(z)€F whenever z€§ and f(z) € CF whenever
z€CY, cf. [2].

Throughout this proof let /_, (z) be the inverse of the restriction of f(z) to D

Under the continuation of a branch of f_,(z) along a path y in D, we never
encounter any transcendental singularity, for this would imply that the values of
| f-1(2)| === as z traverses a part of y < D,; thisin turn would imply that D,(2/_, (7))
is unbounded. ;

An algebraic singularity f of a branch of /_,(z) in D, corresponds to a zero
by of f'(z):f'(b,) =0, f(b,)=p and f_,(p)=~, for the appropriate branch of
jJ_‘. Since pe D, we see that b, € D,. Now D, is bounded and so contains only
finitely many zeros b,, b,, ..., b,, of f(z) in D,. Thus f_,(z) is a function with a
finite number # of branches in D,. Moreover f,,(b;) -« as m —~ <=, for each j.

Thus the set S of singularities of all f_,(2) (= inverse of the restriction of
fu(z) to D,)is precisely the set of all £,,(h;) (m=1,2,...; j=1,2, ..., n) and this
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is a countable subset of D with just one limit point at . The set S is thus closed and
bounded and hence it is compact.

_ Thus there exists a {€D,, ¢#a, ¢4S. Then if we pick any branch p(z) of
f-1(&)=¢&,,wehave £, 4 S, &, #a. We can join £ to &, in D,— S, say by a polygonal
arc / which will have positive distance from the compact set S. We can therefore
enclose / in a domain (< D,) which does not meet S (e.g. the domain § may be all
points distant less than & from /, for all small £=0).

Now continue p(z) along / to &,. p maps / onto /,, joining &, to &,, say. Also
p extends to a single valued branch of f_, in  (by the Monodromy Theorem) and
maps 6 one to one onto J,., another simply connected which contains /; within it
and which does not meet S. Similarly by further continuation we get a chain of
points &, &,, &,, ..., and curves /, /;, /,. ..., contained in simply connected domains
0.0,,0,, ..., and such that /, joins ¢, to &,,,, p(z) continues analytically along
[+1; +---, and is regular in each é,, since no J, meets S.

Let p, denote the nth continuation of p by the above process. Then p, maps d, one
to one onto d,, ;. This is equivalent to saying that f(z) maps é,,, one to one onto J,.
The compound map ¢, = p,*p,—,...p,+p is a branch of f/_,,,,(z), regular in &
mapping é onto 9, , < D,.

Consider the branches g,. These are regular and bounded in é and hence normal
in 6. We shall show that the limit function /(z) of any convergent subsequence
qn, is @ constant on the boundary dD, of D,. For g, (6)cD,. Hence y(z)€D,.
However for any compact 4 — D,, f,(A) - as n —< and hence for large n, f,(4)
(1é = 0, since & has positive distance from «. Thus for large n, ¢, (5) does not
meet 4. Hence /(z) must be on the boundary of D,(=0D,). But dD, contains no
open set since dD,C§ and §F contains no open set unless & is identically equal
to the extended plane (c.f. result A4.) which is not the case under the assumption of
our theorem. Hence y/(z) must be a constant. Suppose now lim g, (z) -4, z€9, i.e.

k—~co

‘!im q,,k(é):’!im Onp i1 = Ao
Then 9, . ,—~4 since 8, ., .,#0, and diam J, ,,~0. But
f(d,, +2)=0,, .1, and hence when k—+<
fOy=7
Thus A€ § is a first order fixpoint of f(z) which must lie on the boundary dD, of D,.

It remains now to show that 4 is an accessible boundary point of D,. FATOU
[2] only outlined the proof, but we shall give a detailed proof here.

We define L=Ilim sup J, as the set of those points 7 for which there exists a
sequence of integers N, and points z,€dy, such that N, »oo, z, —1 (see e.g. [4],
p. 10).

Then L dD,, because each ¢ is a limit function of a sequence of {g, } and we
have already shown that this limit must liec on dD,. Furthermore any 7€ L is afirst
order fixpoint of f(z) by the arguments in the proof of the first part of the theorem.
It follows from the definition that L is closed. Further L is bounded, since LD,
and D, is bounded. Hence L is compact. We now show that L is connected.

Suppose L is not connected. Then there exist closed nonempty sets L, and
L, such that L « L, UL,, L,NL, =0 and the distance between L, and L, is

o(L,, Ly)=4n (say) where n=0,
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Now for some N, d, lies in an y-neighbourhood of L for all n=N,. Otherwise
there exist n,, n,, ... tending to infinity and &, €9,,, &,,€90,,, ¢(&,,. L)=n, and &,
will have a point of accumulation (since they are inside the compact set D,) ¢ and
t4 L. This is against the definition of L.

Take /, €L, and [, € L,. Then there exists a d,,, ;= N, which meets an n-neigh-
bourhood of /; and similarly there exists a 0,,, ny=n; which meets an n-neigh-
bourhood of ;.

Consider the chain

Cw=d, U, iU .. Ud,;

where J, meets an n-neighbourhood of I, and 6,, meets an y-neighbourhood of 5

Now C must be connected since J,(19,.,; # 0. Also C lies in an n-neighbour-
hood of L ie. of L, and L,. Given pu,€d, CLj=n-neighbourhood of L, and
p; €9,, < Ly=n-neighbourhood of L, there exists a polygon of sides less than
with vertices at u, =pu}, ui, ..., ui=pu, all lying in C. Let u} be the last u, in L.
Then r:#n since p,=pu} lies n L. Also it € L;. Now o(ity, iii*")<n

ie. o(Ly, Ly) < o(Ly, 1)+ oy, ki) +e(uit?, 1y) < 3n

which is a contradiction. We have now proved that L is connected and compact.
Hence it is a continuum.

We now show that L is in fact a single point. If L is not a single point then we
shall have a continuum of first order fixpoints of f(z) lying on the finite part of the
plane i.e. f(z)—z = 0 shall have infinity of solutions in a bounded area. This is
impossible unless f(z)=z. Thus L must reduce to a single point. This means that
the whole sequence ¢,(z,) for z, € 6 must tend uniformly to the single frontier point
A i.e. the chain C = 6, Ud, U ..., which is connected tends uniformly to the frontier
point 4. Hence A is an accessible frontier (boundary) point of D,, accessible from
the interior of D,, along the curve /+/,+/, +....

The proof of the theorem is now complete.

The result of this paper was included in the author’s Ph. D. thesis submitted
to the University of London, under the supervision of Dr. I. N. BAKER. The author
wishes to acknowledge his deep gratitude to Dr. Baker for his help and guidance
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