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L attice  m in im a and un its in  real quadratic num ber fields

By DANIEL C. MAYER (Graz)

Respectfully dedicated to Pro

A b str a c t . Using the number geometric concept of lattice minima, it is possible 
to give a new proof for the fact that one of the generators of ambiguous principal ideals 
can always be found in the middle of the first primitive period of minimal points in 
the geometric Minkowski image of the maximal order in a real quadratic number field 
with normpositive fundamental unit. In particular, the treatment of odd radicands 
D  =  3(m od4), where the ramification of 2 causes troubles, and D  =  l(m o d 4 ), where 
complications arise from the existence of “half-integers” , is considerably easier by this 
method than by means of continued fractions. Nevertheless, the relations between min
imal points in a very general type of lattices and convergents for continued fraction 
expansions are also examined in detail. Further the distribution of normpositive funda
mental units, and of the unit group indices for radicands D  == 5(m od8), is investigated  
for squarefree positive D  < IO5 with the aid of a computer.

§0. In tro d u ctio n  and n ota tio n

After some preparatory sections on orders and ramification in § 1, and 
on lattice minima and chains at the begin of § 2, Theorem 2.3 displays the 
scale of norms of lattice minima in the various orders of real quadratic 
fields. In § 3, Theorem 3.2, we state the central result about the con
nection between minimal points in a rather general type of 2-dimensional 
lattices and convergents for continued fraction expansions, which is applied 
to real quadratic number fields in several Corollaries. § 4 deak with the 
peculiar phenomena, which arise in a comparison of two different orders 
with respect to their units and lattice minima. Here, Theorem 4.2 estab
lishes the basis for a first version of the unit algorithm, resting upon the 
determ ination of minima in a suborder, which are multiples of units in the
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maximal order. This version permits a uniform initialization of the unit 
algorithm for all real quadratic fields, except for one special field, D — 5.
§ 5 starts  with preliminaries on generators of ambiguous principal ideals 
and their norms, and is devoted to the proof of the main results in The
orems 5.11 and 5.12, tha t one of these generators always appears in the 
middle of the first primitive period of lattice minima in the maximal or
der, provided the field has a normpositive fundamental unit, and for certain 
radicands also in suborders. This fact allows a second version of the unit 
algorithm, executing very rapidly: the construction of minima, which are 
radicals of multiples of units, in various orders of a real quadratic field. 
Thus, as a side result of our investigations into the geometric number 
theory of real quadratic fields, we obtained special cases of two general 
m ethods for the indirect computation of units in arbitrary number fields. 
Details of these methods, together with similar developments for pure cu
bic fields, can be found in [21]. As a conclusion, several tables concerning 
the frequencies and statistics of radicand types, principal factor types, and 
unit group indices are recorded in § 6 and discussed, in particular pointing 
out some long period phenomena with influences on the unit calculation.

We use the foUowing notation. If S  is a semigroup with unit element, 
we let U(S)  be the group of units (invertible elements) in 5, and for an 
integral domain i2, R x =  R  \  {0} is the multiplication semigroup. Further 
we denote by P  the set of rational primes. For an algebraic number field 
AT, P ^  is the set of non-zero prime ideals, Хк  (resp. ХІк)  the group of 
fractional ideals (resp. principal ideals), T ^  (resp. T~L°K ) the semigroup of 
integral ideals (resp. principal ideals), Е к  the unit group, and W x  the 
group of roots of unity in K . Similarly for an order O in iv, E o  — U ( O x ) 
is the unit group in Ö, and if K  is real, E@ =  {e E E o  | £ > 0} is 
the subgroup of positive units in O . ( v v ) ve PK wHl be the family of V -  
adic valuations of Tк  yielding the isomorphism ( I # ,  x ) ~  (Z^P/<r\ + ) .  If 
L  I k is a relative extension of number fields, then Njj \ k : L ^  k is the 
relative norm of numbers, N i  | k : X i  ^  Xk the relative norm of ideals, 
E i  I k =  { E  E E h I N i  I k(E)  =  1} the group of relative units, and for any 
prime ideal V  E P *, e ^ |* (P )  will denote the greatest common divisor of 
all ramification exponents of prime ideals in L  lying over V.  Finally Cn is 
the cyclic group of order n, and F q is the finite field with q elements.

§1. O rders, d iscrim in ants and prim e d eco m p o sitio n

In the first theorem, which is well known, we recall some basic prop
erties of quadratic number fields, emphasizing those aspects, concepts and 
notations, which are vital for the development of the theories in this paper. 
The classification of real and complex quadratic number fields, according 
to their maximal orders, discriminants, and the decomposition behaviour 
of the particular rational prime 2 , can be reduced to the characterization 
by the residue class of the radicand D  moduk> 4 or modulo 8 , and hence
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leads to the declaration of radicand types or Dedekind types (D -types) of 
quadratic number fields. Compare also §6 , Tables 1,2 for the frequencies 
and statistics of these types.

T heorem  1.1. (R. DEDEKIND, 1894; D. HlLBERT, 1897.) Let D  G 
Z, D  ^  1 be a squarefree radicand, that is Vp G P  Vp(D)  <  1. Further
let 6 = y/D  be the generating radical, and O x  the maximal order o f the 
quadratic number field K  — Q(<S), which is a cychc extension with 0 2 -  
group Gal (K  |Q ) =  (r), r ( 6 ) = —6. Finally denote by O the suborder 
Z ® ZS o f the maximal order О к , and by R x  \ q  =  П {г ^ P  I e K  | Q(r ) =  
2} the ramification quantity o f K  | Q (the product o f all rational prime 
numbers ramifying in K ).

1 . The discriminant o f the suborder O is discr (O) =  22 • D — 4D.
2 . There are the following Dedekind types or radicand types (D -types) of 

real and complex quadratic number fields, according to their maximal 
orders, disriminants, and the decomposition behaviour o f the partic
ular rational prime number 2 :
(!) K  is of  D-type 1, iff one of  the following equivalent conditions is

satisfied:

( 1) D ф l(m od4).
(2) 2 is ramified in K , 2O x  = R? with R  G P ^ ,  A fx  | g ( ^ )  — 2.
(3) 2 I R x  |Q,  that is, 2 is an essential discriminant divisor.
(4) (O x  • O) = 1, that is, O x  = O with unitary integral basis

( i , 6 ).
(5) discr(K  I Q) =  discr (Ox)  =  discr(O)  =  4D  =  0(mod4).

Subclassification for the fields K  o f D -typ e  I  :

(A ) K  is o f D-type IA, iff one o f the following equivalent cond-
tions is satsified:

(1) D  =  2(m od4), that is, 2 | D.
(2) 2O x  = R 2, where R  =  Z2 0  ZS G P K
(3) R x  IQ =  D and 2 | D.

(B ) K  is o f D-type IB, iff one o f the following equivalent condi
tions is satisfied:

(1) D = 3(m od4), and hence 2 \ D .
(2) 2O x  = R?,  where R  =  Z2 0  Z(1 +  6) G P * .
(3)72jf|Q  =  2D.

(II )  K  is o f D-type II, iff one o f the following equivalent conditions is
satisfied:
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( 1) D  =  l(m od4), and hence 2 \D .
(2) 2 is unramißed in K .
(3) Rj{ |Q =  D and 2 \D .
(4) (О к  • O) =  2, and, more detailed, C?*: =  Z 0  Z | ( 1  +  i)  

witi2 unitary integral basis ( l ,  |( 1  +  i) )  . The conductor o f 
the suborder O in the maximal order О к  is
T  =  cond(0) = gcd{ A  E l°K I A  C O } =  20 K =
Z2 0  Z(1 0  i )  G Ö.

(5) discr(K  |Q ) =  d iscr{O x ) =  d i s c r ( 0 ) / ( 0 K  • C*)2 =  4T>/4 
=  D  =  l(m od4).
Subclassißcation for the ßelds K  o f D -typ e  I I  :

(A ) K  is o f D-type IIA, iff one o f the following equivalent condi
tions is satisßed:
(1) D  =  l(m o d 8), and hence ( y )  =  1.
(2) 2 splits in K , 2 0 к  = £  * r (£ ), where C — Z2 0  Z |(1  +

* ) e P * ,  ^ |Q (£ ) =  2 .
(B ) K  is o f D -typ e  I I B ,  iff one of  the following equivalent con

ditions is satisßed:
(1) D = 5(mod8), and hence ( y )  ф 1.
(2) 2 remains inert in K , 2О к  £ Р к ,  ^ 0c | Q( 2O tf) — 22 

=  4.
For prime numbers p E P , p ф 2 the following law o f decomposition 
in K  is valid:

a) p is ramißed in K , iff p | D.
Then р О к  =  P 2, where V  =  Zp © Z i E P ^  (respectively V  —
Z p 0  Z |( p  +  i) ,  i f f D  =  l(m od4)), -V ^ |Q(P ) =  p.

b) p spiits in Ji, iff p|T>, ^” ^ =  1.
Then pöjff =  P  • т(Ѵ), where V  =  Zp © Z(a +  S) E P*: fre- 
spectively V  =  Zp 0  Z |( a  +  i) ,  iff J) =  l (m o d 4 ) /  а E Z, T> =  
a 2(m odp) (a =  l(m od2), i fD  =  l(m od4)), A /f |Q (P )  =  p.

c) p remains inert in K , iff p \ D ,  ^ y ^  Ф 1.
Then pC>*r G P tf ,  A ^ |g ( p O ^ )  =  p2.

, Any order in K,  that is, any integral domain in О к  with quotient 
ßeld K , is T-invariant and o f one o f the following forms

a) O f =  Z 0  Z / i  with some /  E N , unitary Z -basis ( 1 , / i ) ,  con
ductor cond(Of)  =  / 0 ,  index (O : O f) = f  and discriminant 
di scr (Of ) = (O : O f )2 • d isc r(0 ) =  / 2 -4 Ű  -  A f 2D in the 
case o f a D -typ e  I  ßeld, D = 2 ,3(m od4), with maximaJ order 
O =  Z 0  Z i =  O 1,
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b) O x j  =  Z © Z£(1 + 6 ) w i t h s o m e f  G N , unitaryZ -basis  ( l , | ( l  +
6)), conductor c o n d (O x j) =  / O x ? index ( O x t- O x j )  =  /  a^d 
discriminant d i s c r ( O x j ) =  ((9tf • O x j )2 -di scr(Ox)  =  / 2 *^  112 
the case o f a D -typ e  I I  ßeld, D  =  l(m od4), with maximal order 
O x  — Z 0  Z ^(1 +  Í) =  O x ,i* ih particular, for even conductors 
2/  with f  G N  we have formally O x ,2f  =  Z ® Z ^ ( 1  +  £) =  
Z ® Z ( /  +  /Ä) =  Z © Z /£  =  O f with another unitary Z-basis 
( I J S )  and d iscr(O x,2f )  = (2/ ) 2 - D =  A f 2D  =  di scr (Oj ).

PROOF. See R. DEDEKIND [8], Supplement XI, §§ 186-187, 634-657, 
D. HlLBERT [15], §§ 59-61, 280-284 and § 88, pag. 322, or H. HASSE [12], 
§ 26, 478-483. □

§2. L a ttices , m in im al p o in ts  and chains

1. Let ( ^ ) ,  (|*) G R 2 be linearly independent over R , then

A-z(S)®z(b)
is a complete lattice in R 2, tha t is, a free Z-m odule of rank 2. Л is sym
metric with respect to the origin. Hence it is no loss of information to 
consider only the right half plane, X1 >  0, of R 2.

For a  =  (“*) G R 2 we define the rectangle of a,

R ( a) =  {x G R 2 10 <  X1 < ICL1 I , I X2 | <  | a2 | }, 

the 1 -strip of a  (the dilatation region of the rectangle R ( a) in 1-direction),

S i(a ) = {x € R 2 I X 1 >I I , I I < I | },

and the 2-strip of a  (the dilatation region of the rectangle i 2(a) in 2-  
direction),

S2(a) =  {x G R 2 I 0 <  Xi <  I CL1 I , I X2 I >  I a2 | }.

For two points a ,b  G R 2 let their common rectangle be*

R ( a, b) =  {x G R 2 I 0 <  X1 I max( | O1 | , | ^1 | ), | X2 | <  max( | a2 | , | b2 | )}.

A lattice point m  G A is called a lattice minimum  or minimal point 
of A or also a best approximation of the Cartesian coordinate axes by the
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lattice A, ifF m t(i2 (m ))nA  =  {0}. It shotdd be emphasized tha t, according 
to this declaration, a point on the coordinate axes, in particular the origin 
0 itself, is not a lattice minimum, but with each minimum m in the right 
hah  plane there is another minimum —m in the left half plane. We denote 
by M m (A ) the system of all lattice minima of A and by M m + (A) those 
in the right half plane. Then simply

M m (A ) — {dtm I m G M in + (A)}.

If m  G M in(A ) is a lattice minimum, then it does not Ue on the 
1-axis, m 2 ф 0, and the 1-strip S i(m ) is not empty. Hence, according 
to Minkowski’s theorem, we find a first lattice point n  G S i(m ) П A by 
dilatation of the rectangle i 2(m ) in 1-direction before the value of the first 
coordinate exceeds | гд£2 ~  %£i | /  I m 2 | ? where the determ inant | r]1i 2 ~  
r|2C1 I ls fhe a^ea of the fundamental lattice mesh. Similar considerations 
can be made for the 2-direction. Thus it makes sense to define:
If m  G M m (A ) is a lattice minimum, then a lattice point n  G S i(m ) П A 
(respectively n  G *52(m ) П A) is called 1 -neighbour (resp. 2-neighbour) of 
m  or 1 -adjacent (resp, 2-adjacent) to m , ifF in t(R (m ,n ))  П A =  {0}. We 
write ^ i(m ) =  n (resp. ^2(m ) =  n). For general lattices A, neighbours 
need not be minima themselves, because they can Ue on an axis.

2 . p  G A is called a primary lattice point, ifF V£ G R  (0 <  t <  1 =^
t • p  ^  A), th a t is, ifF the uopen” line segment from the origin to  p  does
not contain any lattice points. Notice tha t the origin is not primary.

Remark. A lattice minimum m  G M m (A ) is primary.
PROOF. We use contraposition. If m  G A is not primaxy, then either 

m  — 0 ^  M m (A ), or m  ф 0 but t • m  G A for some t G R , 0 < t <  1. In 
the last case either m  lies on a coordinate axis or m t(i2(m )) П A contains 
at least two points, 0 and sgn(rrii) • t • m , whence m  £  M m (A). □

3. We shall not be concerned with general two dimensional lattices A 
in R 2 but mainly with those, which arise as geometric Minkowski images 
of orders O  in real quadratic number fields K  — Q(V^3)-

Assume tha t an arbitrary aIgebraic number field K  has the degree
[K : Q] =  n, n G N , and the signature ( r i , r 2), n =  r i  +  2r2. We denote
the Q-Iineax Minkowski embedding by

ф : K  ̂ R 2, a  ^ (  ^ i ( a ) , . . .  ,^ ( a ) ,R e (^ n + i(a ) ) ,Im (V 'r ,+ i(o ; ) ) , . . .  , 

Re(V>ri+r,("))>Im(VVj+r*(a)) ),

where we suppose that ф і , . . .  ,фгх, Ф п + и Ф Г і + \ > • • •  > ^ n + r , , ^ n + r j  3 X 6  
the Q-monomorphisms from K  into C , i.e., the injective field homomor- 
phisms fixing Q. We always assume tha t a number field K  is an intermedi
ate field of the extension C j Q and tha t ф\ is the inclusion K  ^  C , a  ~> a ,
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for the sake of simpHcity.
If N  is the normal field of K  | Q and Gal (N  | Q) =  U"=1^i o Gal (N  | K ) is 
the disjoint left coset decomposition of its group (with ф\ =  г^дг), then we 
can assume tha t фі = фи,і 0  Фі\к for all 1 <  i < n.

In the special case of a real quadratic field K  = N  =  Q ( V D ) ( D  >  0) 
with C2-g r0up Gal (K  I Q) =  (r), we have n =  rq — 2, ф2 ~  r , ф2 — ф\от 
and ф : K  ^  R 2, a ^  ( “,), where we denote the non-trivial conjugate 
by ót — ф2(а)  =  т(а).

4. The geometric Minkowski image of any free Z-m odule A4 = Zr\ ® 
Z£ in K  — Q ( VD)  with Z-basis (r] ,£), i.e., the discretization of A4,  is a 
complete lattice in R 2,

i>(M)  =  z ( ^ ) ® z ( f / ) '

Algebraic numbers a E A4, whose geometric images ф(а)  are lattice min
ima of ф(А4),  will be called minima in AA shortly and we shall write 
Min(AA)  = ф~г(Міп(ф(АА)))  for the system of all (respectively 
M m + (AA) for all positive) minima in AA.

The area of the rectangle И(ф(а))  of the geometric image ф(а)  of 
an algebraic number a E K  is exactly two times the absolute value of 
its norm I a  j • 2  | a ' | =  2  | N x  | Q(a ) I • Therefore Я(ф(а))  is also called 
the norm rectangle of a.  Hence algebraic numbers a E AA with minimal 
norms in AA are always minima in AA. In particular, in the case of an order 
O =  Z © Z£ in K,  with unitary Z-basis (1,£) and geometric Minkowski 
image w®) = z([)*z(|,),
numbers with minimal norms are just the units, with norm ± 1. Hence 
E o  C Min(O) ,  and in particular, 1 G M i n + ( 0 ) .

5. For the special lattices of type ф(О)  in R 2, arising as geomet
ric Minkowski images of orders, neighbours of minima axe uniquely de
term ined and minima again, whence we obtain neighbour mappings v^ : 
Міп~*~(ф(0)) ^  Мі п* ( ф( 0) ) ,  respectively v^ : Min^r(O) ^  Mi n +( 0) ,  
writing for simpHcity Uk(a) =  ф~1(ѵь(ф(а))) for any a  E M i n ( O ) ,
fc =  l , 2 .

By the repetitive construction of neighbours in both  coordinate di
rections, starting with an arbitrary positive minimum a  E M i n ^ ( O ) ,  all 
positive minima in Ö can be found and arranged in two sequences of suc
cessive neighbours of a . For symmetry reasons, the minimum 1 is taken 
as the starting point in general, in which case these sequences are called
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the 1-chain and the 2-chain  of minima in O ,(^ ( l) ) j> o  and (v2(l))j>o.
Here V3k denotes the j - t h  iterate of the map v^ for j  G No and k — 1,2. 
Therefore

M in +(O) =  {^ i(I) I j  >  0} U {V32(I)  I j  >  0}.

6 . The group E p  of positive units in O acts on the system of positive 
minima M in +(O) by multiplication, the neighbour mappings are inverse 
^^-isom orphism s, v2 = v ^ 1, and there are only finitely many E@-orbits 
in M in +(O) under this action. If, for some p G N ,

P - 1

M in +(O) = U  E + V31( I )
j=0

is the disjoint orbit decomposition, then P L(O ) =  p is called the primitive 
period length of M in (O )  and the (p +  l)- tu p le  (z^(l))o<j<p is caUed the 
first primitive period of M in(O )  in 1-direction.

The positive units in O form a distinguished principal orbit,

E o  =  E oiyI0(1) =  {Wp(1) I j^ ° } u {Wp(1) I ^  ° )  =  {£o I i  e  z} ,

where the u n i t6o =  v%(l) £ E@ 1S caIled the fundam ental unit of the order
O. Of course, £0 > 1*

For proofs of these various properties, most of which remain true with 
minor modifications for orders in any number field of unit rank 1, see 
J. BUCHMANN [5], [6], [7]. For other viewpoints consult A. J. BRENTJES
[4], H. MlNKOWSKI [22], R. STEINER [31], G. F. VORONOI [33] and H. C. 
WlLLIAMS [39].

Remark. (Symmetry property of the norms of lattice minima with 
respect to the primitive period.)

Let 1, ^ i( l) , ^ i( l) ,  •. • ? ^ f( l)  =  £0 be the first primitive period o f  lat
tice minima in the 1-chain of an order O with period length p G N , then

V O  <  J < Pi V * | Q ( W ( l ) )  =  ( W j ' ( 1 ) ) -
PROOF. This symmetry is due to the influence of the non-trivial au

tomorphism T G G al(K  I Q) onto the fettice minima in an order O , which is 
r-invarian t by Theorem 1.1, 4. The invariance implies V32 ( I )  = | r (v l( l ) )  | 
for all j  > 0. Hence v \~ 3( l)  — v ^ 3(v \( l ) )  — v{(e^) =  £0 * ^2( l)  ~  
£o * I T( v{(  1) )  I and thus the norms coincide. □



Lattice minima and units in real quadratic number fields 27

7. Finally we note tha t an algebraic integer a  in an order O is called 
primitive in O 1 ifF no rational prime number p G P  divides a  in O , tha t is, 
a L̂ pO  for every p G P .

Remark. If the geometric image of an algebraic integer a  G O  is a 
prim ary lattice point ф(а) G ф (0 )1 then a  is primitive in O.

PROOF. By contraposition: a  imprimitive in O => 3p G P  OL G pO ,
i.e., a /p  G O => either a = 0 or ф (а)/р  = ф (а/р) G ф (0)  with 0 <  l / p  <
1, and hence ф(а) is not a primary lattice point of ф(О). □

The following two Lemmata will be used repeatedly in the proofs 
of central results about various types of lattice minima in Theorem 2.3 
( “small” norms), Theorem 4.2 (norm ±4), and Lemma 5.10 (minimal dis- 
crim inantal principal factor norms).

Lem m a 2 .1 . (An estim ate for the solutions of a system of two binary 
linear inequalities.)

Let 7  G C be real or purely imaginary and r ,y  G Q. I f  there are 
bounds M 1 N  G R + such that

I x  +  У7 I <  M  and 
I x -  y7 I < N 1

then the coefficients X 1 y  can be estimated by | x | , | y7 | < |  (M  +  N ).

PROOF. The m atrix

A  =  ^  j _ ^  ^  G M 2 ( Q )  is  in v e r t ib le  a n d  A

L e t  a , a '  G Q [7 ]  b e  d e f in e d  b y  

^A _  (  1 1 ^ (  X \  rpu™ (  x \  _  1 (  1 1 "\ (  *
1 - 1 J  W * y 7

T h e n  =  i  i  \  • . a n d  h e n c e
2 V 1 - 1 J W

I x I =  I  I a + a'  I <  | (  I a  |  +  |  a'  |  )  <  | ( M  +  A T ) ,
I У7 I  =  I  I « -  a ' I < | (  I a  I +  I -  1 I • I a ' | ) < \ { M  +  N ). □

R e m a r k .  (An estim ate for the coefficients of an algebraic number with 
bounded conjugates in an arbitrary quadratic number field.)

In particular, for a (real or complex) quadratic field K  ~  Q (v^D), 
Lemma 2.1 with the specialization 7 =  yfD  allows an estim ate for the
coefficients X1 y G Q of an algebraic number a = x +  yV D  G K , if bounds
for the absolute values of the conjugates a ,o '  are known.
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Lem m a 2 .2 . (Euklid’s lemma for algebraic integers.)
Let K  be an algebraic number ßeld and O an order in K . Further 

suppose that n, m  G N , and а  G O is an algebraic integer in the order O.
Jf n divides m a  in O (that is, m a  G n O ), but either a  is prim itive in 

O or gcd(a, n) =  1, then n m ust divide already m , n | m.

PROOF, ma  G nO implies that ma = nß for some ß G O. Let M  = ra/gcd(ra, n) and N  = n/gcd(m, n), then gcd(M, N ) = 1 and hence 3x,y  G Z x M  + y N = 1. Now M a  = Nß  and therefore a = x Ma  + y Na  = 
N(xß + ya) , where xß  + ya G O and thus a G NO,  i.e., N  divides a in
O. But, as either a is primitive in Ö or N O x  D a O x  + nOx  = О к > w  ̂must have N  = 1, that is, gcd(m, n) = n, whence n | m. □

On the basis of these two lemmata we are in the position to prove the 
following geometric theorem for the Minkowski image of arbitrary  orders 
in real quadratic number fields, displaying the scale of norms of algebraic 
integers and, in particular, showing tha t primitive algebraic integers with 
uStdficiently small” norms are lattice minima.

T heorem  2.3. (Some bounds for norms of lattice minima in the var
ious orders of real quadratic number fields.)

Let K  = Q (V D ) be a real quadratic fíeld with squarefree radicand 
D  G N , D > 2 and f  G N.

1 . Suppose K  is o f arbitrary D -typ e  and а  G O f = Z 0  Z fyJ~D is an
alegbraic integer.
a ) Jf а is prim itive in O f and |J V /f |q (a ) | <  fV D ,  then а  G 

M in (O f) .
b) Conversely, i f  а  G M in (O f), then а  is prim itive in O f and 

|JV # |Q (a ) | <  yJ I discr(O f ) I =  2 f y / D  (Minkowski bound for 
norms o fla ttice  minima in Of) .

c ) I N K I Q (a) I  =  1, i f  and only i f  а  G E 0 f .
2 . Li the case o f a ßeld K  o f D -type I I ,  D  =  l(m od4), and а  G O x j  =

Z © Z ^(1  +  y/D ), we have additionally:
a) Jf а is prim itive in O x j  and |JV#qQ| < ^ f y / D ,  then а  G

M i n ( O x j )•
b ) Conversely, i f  а  G M in ( O x j ), then а  is prim itive in O x j  and 

I N x  I Q(^0 I < yJ I d is c r (O x j)  I =  f y f D  (Minkowski bound for 
norms o f lattice minima in O x j ) -

c ) I N x  I Q(of) I =  1, If  and only i f  а  G E o K f •

PROOF. First compare with Theorem 1.1,4, to see th a t the above
enumeration of orders in K  is exhaustive.

l . a )  Assimie а  G O f, а  primitive in O f (hence а ф 0) and 
|N # |g ( a )  I < f6 . If а  ¢  Mi n( Of ) ,  then 3$ G O f  0 <  |#  | <  \а  | ,
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I d'  I < I a'  I . For the number £ = | d | • | a'  | , which belongs to O f  (be
cause, for a = u +  v f 6  G O f  with Uj V G Z, also a ' =  u — v f 6  G 0 / ) ,  the 
conjugates are bounded

0 < e =  \ N K \Q( a )\-H l  /  I I <  | t f * , q ( a ) | ,

| i ' |  =  | t f * , q ( a ) |  • I &I /  I | <  | t f * ,< j ( a ) | .
According to Lemma 2.1, the coefficients x Jy G Z of £ =  x +  y /£  can be 
estim ated by | x | , | y f 6  | <  | N x  | q ( a )  | . Therefore immediately | y | < 
I N K \Q I/ f 6  < 1 and, as y G Z ,y  =  0 . Further x = £ = 11O | • | iV # |q (a )  | /
I a  I or x • I a  I =  I iV ^ |q (a )  | • | d | with | d | G O f j i.e., 
x - 1 a  I G I N K I q (a )  | O f . From Lemma 2.2 we get | N x  | q ( 0') | | x , because 
a  is primitive in Of .  But as x — £ <  | N x  | q (o )  | , this implies x = 0. Hence 
î? =  0, in contradiction to 0 <  | d | . Thus we have shown, tha t a  must be 
a lattice minimum in Of.

b) This is a special case of a general result for lattice minima a  in 
orders O of algebraic number fields K  with r 2 pairs of conjugate complex 
embeddings into C : | iV # |q (a )  | < (2/тг)Г2 • y/1  discr(O ) | . See J. BUCH- 
MANN [6], 181-182. Here r 2 =  0 and d iscr(O f) =  4/ 2D j according to 
Theorem 1.1, 4.

c) If I Nf t  I q (a )  I =  ± a a 7 =  1, then a “ 1 =  ± a ' and a 1 is an algebraic 
integer in O f  (compare l .a ) .  Hence a  G Eoj -  Conversely for a  G E o f ,  
first A # |q ( a ) iV ^ |q ( a ^ 1) =  iV ^ |q (a  • a ” 1) =  iV ^ |q ( l)  =  1 , and second 
N K ] Q ( o i ) , N K i Q ( a ^ ) e Z , w h e n c e  | iV ^ |Q( a ) | = 1 .

2 .a) Let a  G O x j , &  primitive in O x j  (hence a ф 0) and 
2 |A / f |q ( a ) |  < f8.  Assume a  $?' M m (O ^ j) ,  then 3d G O x j  0 <
I d I < I OL j , I d' I <  I a 11. The number £ = | d | • | a ' | is contained in
O x j ,  because if a = z + w ^ ( l  +  <5) G O x j  with Zj W G Z, then a  
has yet another representation (which is not necessarily reduced) a  =  
| ( u  +  v f 6 )  with u =  2z +  J w j V =  Wj u =  v f  = —v f  (mod 2), and 
hence also a ' =  | ( u  — v f 6)  G O x j -  The conjugates of £ are bounded 
by |A T # |q (a ) |,  completely similar as in l .a .  By Lemma 2.1, the coef- 
ficients x /2 , y / 2 of £ =  |( x  +  y f 8 ) , where x , y  G Z, x = y f  (mod 2), 
can be estim ated by | x / 2  | , | y f 8 / 2 | <  | N x  \ Q(&) | • Therefore imme
diately \ y \  < 2 |A T ^ |q ( a ) | / / i  < 1 and, as y G Z, y =  0. Further 
x / 2  =  £ =  I d I • I N x  I Q (a) I /  I OLI G Q П O x j  = Z, hence 2 | x and
I a  I - x / 2  = |iV tf |q (a ) | • \ d\  with |t f | G O x j ,  i*e., \ a \  - x / 2  G
I N x  I Q(°0 I @Kj-  From Lemma 2.2 we get | N x  | Q(<*) | | (x /2), because 
oc is primitive in O x j -  But as x / 2  — £ < | N x  \ Q(°0  15 this implies x =  0 . 
Hence d =  0, in contradiction to 0 < | d | . Now we have shown, that a  
must be a lattice minimum in O x j -
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b) Specialize r 2 = .0  and, by Theorem 1. 1, 4, d i s c r ( O x j )  — p D  in 
the general inequelity from l .b .

c) If I N x  I q (o )  I =  ±cm ' =  1, then a -1 =  ± a ' and a 9 is an algebraic 
integer in O x j  (compare 2 .a). Hence a  G E o K f -

Conversely for a  G E o K j we have iV ^ |Q (a ) iV ^ |q (a -1 ) =  1 and 
^KlQ(oi ) ,  N K\Q( a -1 ) € Z, whence | JVA' | Q( a ) | =  1. □

§3. M inim a and continued fractions

For the purpose of the analysis, which properties of a rather gen
eral type of lattices give rise to certain influences on the representation 
of minimal points, we devote this paragraph to the intim ate relationship 
between lattice minima and convergents for ordinary (integer part) con
tinued fraction expansions. Unfortunately these resrdts do not appear in 
the literature. Only A. J. BRENTJES [4], chap. 1, 12-15, discusses shortly 
and without proofs the projective geometric interpretation of continued 
fraction expansions given by F. Klein, but the viewpoint is slightly differ
ent from the setting of lattice minima used in this paper, because Brentjes 
fixes the standard lattice Z 2 and varies the slopes of the coordinate axes, 
whereas we choose the Cartesian standard axes and vary the lattices.

However, it should be pointed out again that the results concerning 
generators of ambiguous principal ideals in § 5 will be based on purely 
number geometric methods and do not depend on the machinery of con
tinued fractions.

Lem m a 3.1. (A representation of the total quotients in continued 
fraction expansions.)

Let £ G R  \  Q be an arbitrary irrational real number, £ =  [a0, a i , . . .  ] 
its continued fraction expansion with total (or complete) quotients £j 
(j > 0), partial quotients aj (j  > 0) and with numerators and denom
inators Pj, Qj (j  > —2) of the convergents for this expansion. That 
is, P—2 =  o, Q - 2 =  1, P - 1 =  1, Q - 1 =  o, £o =  £ and £i+1 =
i  /  ( £ ;  —  [ < £ j J  ) >  aj — L £ j J  ?  Pj = ajPj - 1  ~b Pj - 2 ?  Qj — ajQj — 1  +  Qj - 2
for all j  > 0. The total quotients have representations in the form

P j- 2 -  Q j - 2Í 
Pj - 1  —  Q j - 1 £

PROOF. By induction with respect to j  > 0. First, for j  = 0 we 
have ( P - 2 -  Q - 2£)/(JP-i -  Q -i£ )  =  (o -  1 • £)/(1  -  0 « £) =  - £  =  - £ 0. 
Now let j  > 0 and assume £j =  —(P ; _ 2 — Q j - 2i ) | ( P j - 1 — Q j- 1£). Then
( P j - Q j i ) / ( P ) - i - Q j - i i )  =  ((ajPj- 1 +Pj- 2 ) - (cLjQj^+Qj- 2 ) i ) | (Pj - 1 -  
Qj- iO  —  (aj(Pj - 1 “  Qj - 1 0  +  (Pj - 2 —  Qj - 2 C))/(Pj - 1  — Q j - 1 £ )  =  aj  +  
(P3- 2  -  Q j - 2 O/(Pj - 1  -  Qj - 1 0  -  aJ -  6  -  L ^ J  -  6 -  =  — 1 / O + 1 -  □
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T heorem  3.2. (The relations between lattice minima in a special type 
of two dimensional lattices and convergents for continued fraction expan
sions.)

Let £ i,£ 2 £ Li \  Q be two irrational real numbers with the property 
that either £1 >  1, £2 < 0 or £2 > 0 , £2 < —1. Further denote by A = 
Z ( |)  0  Z (^ )  a special type o f complete two dimensional lattices in R 2.

1 . ( J )  is lattice m inimum in A.
2 . If P j , Qj  G  N 0 ( j  >  —2) are the numerators and denominators o f the 

convergents for the continued fraction expansion o f —£2 (>  0), then 
for all j  >  0

and hence for all j  >0 the successive

v1
j ( i \  _f P j - i  +

1 /  V j - I  +  Q j - l & 2

3. I f  Rj ,  Sj  E No (j > —2) are the numerators and denominators of the 
convergents for the continued fraction expansion o f £1 (>  0), then for 
all j  >  0

( - l ) J ( p J_1 ç^-1 <1̂  ^\ K j - 1 — o j —i Ç2/

< - '* ' ( S : i i ; ) - 4 - '> ' ( i ; : : : f c 3 )
and hence for all j  >  0 the successive minima o f the 2-chain in A are

^ 0 = < - 1 ^ ( ¾ : : = ¾ : : ! ) -

Remark. In particular, Theorem 3.2,2,3 characterizes the cases, where 
©  e  M m + ( A )  :

& )"*(G )) 0 l & l < ' < i b a n d ( | ) = , 2 ( ( ;

< * 6  < 1 < 161-
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Further, a repeated application of Lemma 3.1 yields a representation 
of the l - s t  coordinate of the minima in the 2-chain by means of total 
quotients of £1,

(-iy(Rj-r -5,_x6) = ( n U ( 6 ) * r 1 U 0),

and of the 2-s t coordinate of the minima in the 1-chain by means of total 
quotients of —£2>

Pj-г + Q j - 1 ( 2  =  ( - i y ( n j U ( - 6 ) * r 1  0 ) .

PROOF. We set 1 =  (*) and E =  (|*) for abbreviation. For the proof
of 1 . and 2 ., i.e., the construction of the 1-chain of minima in Л, we use 
induction with respect to j  >  0 .

For the induction start let j  = 0 . Then P j- i  = P - 1 =  1 and Qj~\  — 
Q - i  =  Q .W esh o w th a tP _ 1X + Q -1S =  1 G M m + (A), because i n t (R( l ) )H  
Л =  {0} : for a lattice point x  =  a l  +  bE G A with a, b G Z we have the 
following disjoint distinction of cases

a) in case b =  0 : x\  — X2 =  a and hence 0 <  x\  <  1, | X2 | <  1 44>

0 < 0 <  1 44> a G {0 ,1}, corresponding to 0 , 1 G P ( I )  П A,
b) in case | b | >  I 5 sgn(a)  =  sgn(b) (and hence a ф 0) : ] x\  | =

1 a +  b£ 1 j =  j sgn(a) * ( j a | +  j b | £1 ) | =  | a | +  | b | £1 > 1 +  | b | £1 > 1
and therefore x $  P ( 1 ),

c) in case | b | >  1, sgn(a)  =  -sg n (b )  (and hence a ф 0) : | X2 | =  | a +
* 6  I  =  I sgn(a )-{j  a | —  |  b | £ 2 )  |  =  M  +  | * H 6 I  >  1 + 1 * 1 * 1 6 1  >  1
and therefore x  ф P ( 1 ),

d) in case | b j >  1, a = 0 : for the variant £1 > 1, £2 < 0 : | x \ | =
I b£i I =  jb | 6  >  Ci > 1, and for the variant C1 > 0 , {2 <  —1 :
I  x 2  I =  I K 2  I  =  i  b I •  I £2  I >  I £2  !  >  I 5  a n d  t h u s  x  ф R(I)  f o r  b o t h  

v a r i a n t s .
Together we infer x  G P ( I )  44> x G { 0 ,1}.

It remains to show P0I  +  QoH =  zq(P_i 1 +  Q - \ E )  — ^ i( I )  for the 
induction start j  =  0. For this purpose we prove P0I  +  QoH G S i( I )  and 
m < (P (l, P0I  +  QoH)) H A =  {0 }.

First note tha t the lattice points of A in the 1-s trip  S i( I )  (but not the 
whole 1-s trip , iff j £2 I < £1) are totally contained in the sector of convex,
i.e., non-negative, R -Iinear combinations a l  +  bE with a, & G R 0̂ of the 
initial lattice basis (X,E) =  ( P - i l  +  Q - iH ,P _ 21 +  Q - 2H) : for a lattice 
point x  =  'a l +  bE G A with a, b G Z in the exterior of this sector, tha t is, 
with at least one negative coefficient, we have

a) in case a >  1 ,  b <  0 : | X2 | — | a +  b(2 \ =  ! a -~ | b | £2 I =  « +  | b | • 
J  £2  I  >  0 . >  1  and th e r e fo r e  x  ¢  Si (I) ,

b) in case a < 1, b <  0 : Xi =  a +  6£i — a — | b j ¢1 < a <  1 and he11ce 
x  0  S i( l ) ,
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c) in case a <  —1, b > 0 : | X2 | =  | a +  b£2 I — | — | a | — b | £2 | | =
I a  I +  b I £2  I >  1  +  b I £2  I >  1  and thus x  ¢  S1(I) .

The case a < —1, b <  0 is ah*eady contained in case b) and together we
see that

S i( I )  n  Л C N 0I  +  NH C R ^ l  +  R +H.

Next a non-negative R-Hnear combination x  =  a l  +  bE w ith a G R j ,  b G 
R + of this initial lattice basis is contained in S i( I )  П A, ifF

X 1 =  a +  6 £ i  >  1 ,

\ x 2 I =  I a +  b£2 I <  1, 
and a G N 0, b G N.

T h e  s e c o n d  c o n d i t i o n  i s  e q u i v a l e n t  w i t h  |  a — è ( — £ 2 )  |  <  1  r e s p e c t i v e l y  
I a — H o  I <  1 >  w h e r e  £0  =  —£2  i s  t h e  O - t h  t o t a l  q u o t i e n t  i n  t h e  c o n t i n u e d  

f r a c t i o n  e x p a n s i o n  o f  — £ 2 .  ( W e  u s e  t h e  n o t a t i o n  o f  L e m m a  3 . 1 . )  A s  b £ o  G  
R \ Q  a n d  b £ o  >  0 ,  t h e r e  a r e  e x a c t l y  t w o  n o n - n e g a t i v e  i n t e g e r s  a G N 0  w i t h  
t h e  p r o p e r t y  |  a — b£ 0  |  <  1 ,  n a m e l y  a = L H o J  a n d  a = [ 6 £ 0 J + 1 .  B u t  f o r  t h e  
l - s t  c o o r d i n a t e  w e  h a v e  o n  t h e  o n e  h a n d  L H o J  +  b£\ <  L H o J  +  1  +  H i  a n d  

o n  t h e  o t h e r  h a n d  f o r  b >  2  [ £ 0 J  <  £ 0 ,  H f o J  <  H o ,  L f o J  <  2 [ £ o J  <  H f o J  <  
L H o J  a n d  t h e r e f o r e  L f o J  +  f i  <  L H o J  +  H 1 * H e n c e  f o r  t h e  c h o i c e  o f  t h e  

c o e f f i c i e n t s  a ,  b o f  t h e  1 - n e i g h b o u r  x  =  al  + bE G A  o f  t h e  l a t t i c e  m i n i m u m  
1  =  P-i  1  +  Q - i H  G M m ( A )  t h e r e  o n l y  r e m a i n s  t h e  u n i q u e  p o s s i b i H t y  b =  
1 ,  a = L H o J  =  L f o J  =  a o *  F o r  t h i s  c h o i c e  t h e  l a s t  i n e q u a l i t i e s  f o r  t h e  l - s t  
c o o r d i n a t e  s h o w  ( і ? ( 1 , х ) \ Д ( 1 ) ) П Л  =  { x } ,  w h e n c e  m t ( i 2 ( l , x ) ) n A  =  { 0 }  
a n d

*q(l) — x =  a0l  +  i  =  üQ^P—i 1 +  Q-i^L) +  (P _21 4  Q - 2^ )

=  ( a o  P - i  +  P - 2 ) 1  +  (ao Q - i  +  Q - 2 ) —  —  P o i  4-  Q o -

The first condition is satisfied too, because for the variant £x > 1, £2 < 0 : 
X1 =  a +  b£i = ao + £ 1 >  £ 1 >  1, and for the variant £1 >  0, £2 < —1 : 
«0 =  LfoJ (=  L—f2 J  ) >  1 and hence X1 =  a +  b£i = a0 4- £1 > a0 > 1.

N ow  w e a ssu m e  th e  in d u c tio n  h y p o th e s is  j  > 1, P j - 2 1 +  Q j - 2E G 
M zn+ (A), P j- i  1 +  Q j - i E  =  ^ i (Pj - 21 +  Q j - 2S) and v{{ l )  =  P j - i l  4  
Q j - i H .

For the induction step we show P j - i 1 +  Q j - \ E  G Afzrz+ (A), 
P j l  +  QjE — v1( P j - 1) 1 +  Q j - \ H) and z/̂ +1( l )  =  PjT  4  QjE.  From the 
hypothesis Pj—i 1 4  Qj—i £» = *q(Pj—21 4  Q j - 2- )  we Se  ̂ Pj—11 4  Q j - i ^  G 
S i ( P j - 21 +  Q j - 2H) and if it(P ( P j—! 1 4- Q j_ !H ,P j_ 2l  4- Q j - 2E)) П A =  
{0 }, The second condition implies in t(R (P j- i  1 4 - Q j - i H)) П A =  {0 }
i.e., P j- \  1 +  Q j - i H G M zn+ (A), as desired. The first condition com
prises the following relations: P j- i  +  Qj - \ £ i  > P j - i  4* Q j- 2 6  (>  0),
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I Pj-I  +  Q j - 1 6 2 |  <  \Pj-2  +  Q j - 2 & 2 І -  F u r t h e r ,  a s  Pj-i  +  Q j - 1^2  =  
Pj-i  — Q j - 1 ( - ^ 2 )  a n d  P j - h Q j - i  a r e  t h e  n u m e r a t o r  a n d  d e n o m i n a t o r  o f  
a  c o n v e r g e n t  f o r  t h e  c o n t i n u e d  f r a c t i o n  e x p a n s i o n  o f  — £ 2 > t h e  s i g n  s a t i s f i e s  
t h e  r t d e  sgn(Pj - 1 +  Qj- i&)  =  ( ~ l ) J \  a c c o r d i n g  t o  0 .  PERRON [ 2 5 ] ,  §  6 ,  
f o r m u l a  1 ,  p a g .  1 4 .  W e  m u s t  l o o k  f o r  t h e  1 - n e i g h b o u r  o f  P j - i l  +  Qj - i S  
i n  S 1 (Pj - 1 l  +  Q j - i S ) ,  t a k i n g  i n t o  c o n s i d e r a t i o n  t h a t  t h e  w h o l e  1 - s t r i p  
o f  Pj - i l  +  Qj - i E  ( n o t  o n l y  t h e  l a t t i c e  p o i n t s  i n  i t ,  a s  f o r  t h e  i n d u c t i o n  
s t a r t )  i s  t o t a U y  c o n t a i n e d  w i t h i n  t h e  i n t e r i o r  o f  t h e  s e c t o r  o f  c o n v e x  R -  
l i n e a r  c o m b i n a t i o n s  a{Pj-1 1  +  Qj-iE)  +  6 ( P j _ 2 l  + Q j - 2 ^)  w i t h  a ,  b E R +  
o f  t h e  l a t t i c e  b a s i s  (Pj - i l  +  Q ; _ i £ , P j _ 2 l  + Q j - 2 ^ ) ,  w h i c h  a r i s e s  f r o m  
t h e  i n i t i a l  b a s i s  ( l , H )  =  ( P - i l  +  Q _ i £ , P _ 2 l  +  Q - 2 ^ )  b y  a n  a p p l i c a t i o n  
o f  t h e  u n i m o d u l a r  t r a n s f o r m a t i o n

( p ' i ;  t ù  № ( z )

with determ inant P j - i Q j - 2 - P j - 2Q j - i  =  (—l ) J (see [25], § 13, pag. 36):
for an arbitrary point x  =  a ( P j - i l  +  2 ) +  b{ 1 +  H) with
a, b G R  in the exterior of this sector, tha t is, with at least one negative 
coefficient, we have

a) in case a > 1, b <0 : sgn(Pj - i  + +
\x2 \ = \a(Pj^ i+Qj^i^ 2 )+b(Pj - 2  + Q j - 2 ^2 )\  I a(Pj- i+ Qj- i&)
— \b\(Pj-2 + Qj-2Í2)\ = a \ P j - l + Q i - \ Í  >
a I Pj - I  + Q j - 1( 2I >  I Pj - I  +  Qj- £2 I and therefore x  ¢  +
Qj-i “ ) >

b) in case a < 1, b <0 : Pj-\  + Qj-i£i  > 0 , +  £1 >  0, X1 =
a{Pj- 1 + Q j - 1 i 1 )+b{Pj - 2  + Q j - 2 i 1 )
Qj -2 6 ) <  a(Pj- 1 +Qj - 1  6 ) <  P j -  6 and hence x  0  S1(P j_ 1l

+ Q j_ in ) ,
c) in case a <0, b > 1 : sgn(Pj - i  + +

|P j - 1 + Q j - 1& ! < \Pj - 2  + Q j - 2&|, |^ 2 | =  |o (P j_ 1 + Q j - 1^2) +  
b (^ -2 + Q ji-2 ^ 2 ) | = |  — \ a \ { P j - \ + Q  =
I aI ■ I Pj-I  +  Q j - l i 2 I +  b I Pj-2  +  I >  b I +  I >

\ Pj - 2 +Qj - 2 &\ >I P j- i  + Q j - \ Í 2 I > whence x  ^  5 i ( P j_ i l  +  Q j- i5 ) ,
d) in case a< 0, b <  1 : P j- \  + Q6  > +  £1 > 0, X1 =

a(Pj-i  +  Qj-i 6 )  +  KPj - 2  + Q £ 1 )  =  - | a | ( ^ j - i  +  Q j - 1 ( 1 ) +
b(Pj- 2  +  Q j - 2 i l )  < b{Pj - 2  +  Qj <  +  <  PJ- 1 +
Q j- 1(1 and thus x  ^  5 i(P ; _ i l  +  2 ).

Togetherw einfer S i(P j_ i l+ Q j_ iE )  C R + (PJ_ i l + Q j_ 1E )+ R + (P j_ 2l  +  
Qj-2E). Next a positive R -Iinear combination x  =  +  Q j_ iE ) +
b(Pj- 2  1 +  Q j - 2 )̂ w ith a,b G R + of this lattice basis is contained in
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5 i ( P j _ i l  +  Qj-i  — )  П  Л ,  i f f

x i  =a(Pj-i  + Qj-iÇi) + b(Pj-2 +
I =2 I =  I a(Pj-i  +  Q j ' - i & )  +  b(Pj-2 +  I <  I  I  »

a n d  a, b€  N ,

where the first condition is implied by the last one : > 1 =>■ X1 =
a( P j - i + Q j - i £ i ) + K P j - 2 + Q j - 2 t i  ) >  ) >  6 )
because P j- i  +  Qj - i £ i  >0 , P j-2  + > 0. The second condition 
is crucial and eqinvalent with — | P j- i  +  | <  +  +
b{Pj-2 +  Q j- 2i 2) <I P j- \  +  Q j- 1i 2I respectively

— ‘ f e r f e l < 1

i n d e p e n d e n t l y  o f  t h e  s i g n  sgn{Pj-i  +  N o w ,  a c c o r d i n g  t o  L e m m a
3 . 1 ,

T j-2  +  Q]-2& _T j-2  —  ¢ 1- 2( - ^ 2) _  _ ,
P j —i +  Q j - i h  ~  P j - i  Q j - i ( - b )  "  ? i ’

where £j is the j - th  total quotient in the continued fraction expansion of 
—£2 • There are exactly two positive integers a G N  with the property —1 < 
a ~  b£j <  1 respectively | a — b£j | < 1, because b£j G R  \  Q and b(j > 1. 
These integers are a = [b£;-J and a =  [6£jJ + 1. But for the l - s t  coordinate 
we have on the one hand [b£j\(Pj-i  +  Q j - i£ i) +  b(Pj- 2 +  Q j- 2C1) <
( 1  +  [ b ^ * J ) ( T j - i  +  Q j - i £ i )  +  KPj - 2 +  Qj - 2 ( 1 ) a n c I  o n  t h e  o t h e r  h a n d  f o r
b >  2  lh \  <  £ j >  b K j J  <  Kji  L £ j J  <  2 K j J  ^  b U j J  <  L U j J  a n d  t h e r e f o r e
L ^jJ(^j-i + Q j - 1( 1) + ( P j - 2  + Q j - 2%i) < L U jJ ( ij- i  +
Qj-2ti).  H e n c e  f o r  t h e  c h o i c e  o f  t h e  c o e f f i c i e n t s  a , b  o f  t h e  1 - n e i g h b o u r  
X  =  a{Pj - i l  +  Qj - I rE) + b(Pj-2 l  +  Qj - 2 E)  G  Л  o f  t h e  l a t t i c e  m i n i m u m  
Pj - i l  +  Qj - i H  G M m + ( A )  t h e r e  o n l y  r e m a i n s  t h e  u n i q u e  p o s s i b i H t y  
b =  1 ,  a =  [b(j\  =  [£j\ = a,j. F o r  t h i s  c h o i c e  t h e  l a s t  i n e q u a l i t i e s  f o r  t h e  
l - s t  c o o r d i n a t e  s h o w  (R(Pj-x  1  +  Q j _ j E , x )  \  R(Pj- i  1  +  Qj-xE))  П  Л  =  
{ x } ,  int(R(Pj - i l  +  Q j - i E , x ) )  П  Л  =  { 0 }  a n d  h e n c e

v1 (P j - 1 1 +  Q j- 1^ ) — X — cij(Pj- i l  +  Q j- 1^ ) +  ( P j - 2l  +  Q j - 2—)

=  ( aj P j —1 +  P j - 2 ) 1  +  (a jQ j - l  +  Q j - 2 ) —  =  T j l  +  Qj^-

Finally иІ+1(1 ) = ui (u{( l ) )  =  u1( P j - 1l +  =  F j l  +  Qj H, complet-
ing the induction.
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The proof of 3., i.e., the construction of the 2-chain of minima in Л, 
is rather simple now, because we must only apply the results in 2. for an 
auxiliary lattice

A,- zG M 3 )
satisfying the same conditions as the lattice A. For the variant £x > 1, 
£2  <  0  :  —£2  >  0 ,  —£1 <  —1 and for the variant £1 >  0 ,  £ 2  <  —1 • “ £2  >  
1, —£1 < 0 . According to 2 ., we know the 1-chain in the lattice A':

( ¾ : ; : ¾ : ; ! ; )  =  ( ¾ : ; : ¾ : ; ! ¾ ) e  » * ( » г

* i < f c ; 3 : $ )  =  - ( ( ¾ : ; : ¾ : ; ! : ! ; ! )  =  ( ¾ : ¾ ! : ! ; ! )  -  ( ¾ : ¾ : >  “ d  

* i ' w  =  ( ¾ : ; : ¾ : ; ! : ¾ )  =  ( ¾ : ; : ¾ : ; ! ; )  * *  ^  > г  ° -

Now A' =  Z (j)  ® Z (~ ^ )  =  Z (j) 0  (|*) can also be viewed as the lattice A
with twisted coordinates, and hence, twisting the coordinates and taking 
into consideration tha t the signs must be chosen so tha t neighbours are in 
the right half plane, we obtain the 2-chain in the lattice A:

< - і ) ' $ : : : £ ; « 1 ) ^ » + (л ),

■ *  ( ( - 1 > ' ( ¾ : ; : ¾ : : ¾ ) )  =  ( - 1 > ' + 1 ( % : ¾ ; )  ^ d  
^(1) = ( - 1)'(¾ ;::¾ ;:!;) foraUj >o.  a

C orollary  3 .3 . (The representation of minimal points in symmetric 
lattices.)

Under the hypotheses o f Theorem 3.2, and with the additional as
sumption that £1 +  £2 =  /  for some integer f  E Z, the lattice A coincides 
with the twisted lattice A' =  Z (j)  © Z(|*), that is, A is sym metric with
respect to the line X2 =  x \ ,  and the minimal points o f A have yet another 
representation :

4 l ) = ( f - ' ~ sr t lV v  V b - 1 “  * b j- iu /

< 0 = V ^ : ; + % : i V ^ 0 -

As an additional result the denominators and numerators o f the conver
gents are connected by the relations Sj  = Qj, Rj  = Pj  + /  • Q3 for all 
j > 0 .
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PROOF. If /  E Z, then the unimodular transform ation

6  GL2(Z)

has the determ inant —1 (and is therefore orientation reversing). We obtain 
another lattice basis ^(J), ( j I ^ ) )  0  ̂Л, applying this m atrix to the basis

((} ), ( g ) )  . Now we can derive Л =  Z(J) ® Z (£ )  =  Z ( |)  0  Z ( J lg )  =  

Z (j)  ® Z(|*) =  A' from £1 +  £2 +  Л  tha t is, both lattices coincide. Thus, 
as Л' =  Z (j)  ® Z (~ ^ ) , we have for all j  > 0,

^ G ) - ^ G ) - ( * - + M t O - ( ^ " ^ f )V 1 /  V 1 /  Ѵ ъ - і  +  * j - i ( - f i J /  V v - I  “  ^ j - i u /
and on the other hand, by an application of the twisting trick in the proof 
of Theorem 3.2,3

Ĉ)=̂ (0=(¾:!+¾:;̂ )-wb№ce
< ) - < - * ( £ : : $ : £ ) •

Using the Q-Hnear independence of ( l ,£ i)  a comparison of the two repre
sentations yields Pj - i  + Q j - i ( i  =  R j - 1 -  S j - 1£2 =  R j - 1 -  S j - i ( f  — £1) 
and hence P j - i  = R j - 1 — f  • S j - 1, Qj - 1 = S j - 1 for all j  > 0. □

Of course, our main goal is the application of Theorem 3.2 and Corol
lary 3.3 to the Minkowski image of orders in real quadratic number fields, 
but nevertheless it was illuminating to  see the general background of this 
application in a fairly broad class of lattices.

C orollary 3.4. (The connection between the lattice minima in arbi
trary  orders of real quadratic number fields and the convergents for con
tinued fraction expansions of certain quadratic irrationalities.)

Let D  E N , D > 2 be a squarefree radicand and K  the real quadratic 
number ßeld  Q (VD) .

1. In the case o f a D -typ e  I  Beld7 D  =  2,3(mod*4), O = Z ® Z \fD  is 
the m axim al order in K . For every f  E N  let O /  =  Z ® Z f V D  be 
the suborder with conductor cond(O f ) =  fO  in the maximal order 
O =  Ö 1. Further assume that P j 7Qj  E No (with j  >  —2) are the
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numerators and denominators o f the convergents for the continued 
fraction expansion o f £ =  \ J f 2D . Then

M i n ( O f ) = { ± 4 ( 1 )  I j  e  N 0} u  { ± 4 ( 1 )  I j  E N 0},

where for all j  > 0

W(i) = Pj-I + Q j - x f ^ D  = (—1Y ^|Q(W(1)) • П  ^>
Jt=I

4 ( i )  = (-i)>(Pj-i -  Q j - j V D )  = ( П  6
VJfc=I

2 . In the case o f a D -typ e  II  field, D = l(m od4), the maximal order in 
K  is О к  =  Z ® Z |(1  +  VD) .  For every f  E N  denote by О к J  =  Z © 
Z ^(1  +  V 5 )  the suborder with conductor c o nd (O x j )  — f O x  in the 
m aximal order О к  =  О к,i- Further suppose that P j ,Q j  € No £with 
j  > —2) are the numerators and denominators o f the convergents 
for the continued fraction expansion o f —£2 =  \(~~f  +  Av/ f 2D) —

—r  ^ | ( / +  V f 2D)^) , and R j , S j  E No (with j  >  —2) are those 0/  
6  =  | ( / + ^ F 0 ) . T h e n

M i n ( O K j )  = {±W (1 ) I je N 0} U {±W (1) I e  N 0},

where for all j  >0 the denominators
by S j - i  = Qj-i, i 2j_ i =  P j_ i +  /  • Q j_ i and

W(i) = Pj -I + Q j - 1 k 1 +  VD)  ( - 1  y  ^iQ(W(i)) • П (-^ )*
Jfc=I

=  R j -г  +  S ,_ , { ( - I  +  V D )  =  ( - 1)> ■ WK |Q( ^ ( 1)) ■ П (£ ,)* ,
Jfc=I

WM = ( -1 ) '(¾ - .  -  s - j - i | ( i  + vS ))  = ( n « i V

=  ( - 1  y ( P j - !  -  Q i - , | ( - 1  +  V D) )  =  ( n < - f e ) *
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PROOF. Every order O in a (real or complex) quadratic field K  is 
of one of the aforementioned types with the conductors / О к , /  £ N , by 
Theorem 1.1,4. But for the consideration of lattice minima only the case 
of a real quadratic field is of interest.

1. First M i n ( O f ) =  ф-1 (Min(rp(Of )and ¢ ( 0 / )  =  Z({) ф  Z (g )
with quadratic irrationaIities satisfying the necessary conditions, tha t is
6 = v7 rD = fVD  > 1 • V2 > 1, ,6 = -v7 - 1  •
— 1 <  0. Hence, according to Theorem 3.2 and as ^1 =  —£2 and therefore
R i - ,  =  Pi - , ,  S i - ,  =  Q i -,: W(I) =  * - 1M (D ) = ¢ - 1( ¾ ; : ¾ ; : ¾  =
Pi- ,  + Qi - , ( ,  = Pi- ,  + Q , - , f j D ,  4(1)  =  ¢ - 1 ½ ( ! ) )  =
¢ - 1 ( ( - 1 ) ' ( ¾ : ; : ¾ : ; ! ; ) )  =  ( - 1  ) '№ - .  -  =  ( - 1  ) ' № - . -
Q j - i f V D )  for all j  >  0 .

2 . Agam M i n ( O x j )  = ̂P̂(Min(̂(Oxwith =  Z (j) ®
Z(|*) and with quadratic irrationalities satisfying the necessary condi

tions £i =  | ( /  +  V P D )  = f‘ K 1 +  v^ )  ^  1 ‘ K 1 +  v^ )  > 2 (1 +
2 )  >  1,  6  =  f ( /  -  VPD) =  /  • | ( 1  -  K 1 -  V 5 )  <

/  • |( 1  — 2) =  —|  <  —|  <  0. Hence, according to Theorem 3.2: v( ( l )

¢' '(4(1))  = ̂ -1(¾!'+¾!)^) = pj-i + Qi-1{(1 +
VD) ,  4 ( 1 )  = ¢ - 4 4 ( 1 ) )  =  ̂ -1 ( ( - ! ) ^ ¾ : ; : ¾ : : ¾ )  =  ( - i № - i  -
S j - i £ i )  — (—l) J( i? j- i  — S j - i ^ ( l  +  V^D)) for all j  > 0 . Now these la t
tices have the additional property that £1 +  £2 — /  with /  G N , and 
therefore Corollary 3.3 yields R j - i  = P j - \ + /  • Q j - i , S j - i  = Q j- i  and
yet another representation of the lattice minima: ^ i( I )  =  ^ -1 (^ (} ) )

=  ^ 1( ¾ : : : ¾ : : ' ; )  =  R i~> -  ^>->& =  R>-■ -  v d o  -  v s >  =

л , - , + s , . , i ( - i + v B ) ,  4 ( i )  =  * - 1W (D )  =  * - 1( ( - ! ) 1( ¾ : : :¾ : ;¾ ) )
= ( - i y ( P , - ,  + Q , - , h )  = ( - i y ( P , - , + Q , - , { ( l - V D ) )  =
Q j - i  ^ ( — 1 +  ^ D ) )  f°r all j  >  0 . All the representations by means of total 
quotients (of —£2 resp. £i) can now be obtained from the Remark after 
Theorem 3.2 and by the utilization of the norms of quadratic irrationalities 
(which were not yet available in the general context of Theorem 3.2). □

Remark. In Corollary 3.4,1 the statem ent concerning the system of 
minimal points and the successive neighbours of 1 remains true for D = 1 
(mod 4), if O f is replaced by О к,2/  (=  O f formally).

W ith the aid of Scheffler’s formula (see O . PERRON [25], § 21, formula 
18, pag. 71) the norms can be expressed by A f# |q (^ j( l) )  =  ((Pj - i No  — 
Q j - ! M o ) * - D Q * _ J / N $ = ( - i y N j / N o , v h e K ( t ! ) j  = (Mj  + y f i W ) / N j
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is the unique representation of the total quotients with integers M j 1Nj  E
Z ( i >  0).

FinaUy combining Theorem 2.3 with Corollary 3.4 and changing the 
frame from algebraic to elementary number theory, we obtain the following 
Corollary, the first part of which is well known, but not so the second part 
ki this detailed formulation.

C orollary 3.5. (Binary quadratic norm form inequalities character
izing convergents for continued fraction expansions of certain quadratic 
irrationalities.)

Suppose that D  E N , D > 2 is squarefree, f  E N , and let X1 y E Z.
1 . U P j 1Qj  E N 0 ( i  >  —2) are the numerators and denominators o f the

convergents for the continued fraction expansion o f ^ f 2D 1 then

I X2 -  D f 2y 2I <  fV gc d (x , =  1 =Ф-

=> 3; > 0 I XI =  , I I =

2 . U D = l(m od4), and P j1 Qj E N 0 ( j > —2) are the numerators and 
denominators o f the convergents for the continued fraction expansion

o f \ ( - f  +  y f p D )  =  - r  ( i ( /  +  , G N 0 ( j  - 2)

are those o f | ( /  4* ^ J f 2D) 1 then
a) |x 2 + / x y - ^ f i / 2y2 j < |/v ^ D , gcd(x,y) =  1,

=> 3 j >  0 I XI =  P j- i  ,I y I =
b) I x 2+ f x y - 2 f ± p y 2I <  %fVD gcd(x,y) =  1, (x)

=$>3j>0| x |  =Rj-i, |y |

PROOF. 1. Let an algebraic integer in K  = Q(S)  be defined by а = 
x +  y f S  € Z © Z f S  =  O f  with the given integers X1 y E Z.
(For D = 1 (mod 4), а  is in the order O x , 2f-) By the assumption 
gcd(r,y ) =  1, а  is primitive in O f  and the binary quadratic form x 2 — 
D f 2y2 — (x +  y f S ) ( x  — y f S)  =  а  • r ( a )  =  N ^  | Q(o) is just the norm of a  
with respect to the field extension K  |Q . According to Theorem 2.3,l.a, 
|N ^ |Q ( a ) j  <  f S  together with the primitivity of а  in O f  implies а  E 
M i n ( O f ). Now by Corollary 3.4,1,

M i n ( O f )  =  { ± ( P j - i  +  I 0 } U
{ ± ( - i y ( P j - 1 - Q j - 1f 6 )j }

and hence 3j  >  0 oc =  x + y f S  — dz(Pj-1 dzQj - i fS) .  Finally the Q-Iinear 
independence of ( 1, f 6 )  yields x  =  ± P j - I 1 y — ± Q > -1*

2 . Let D  =  1 (mod 4) and define an algebraic integer in K  = Q(S)  by 
а  = x + y ^ ( l  + S) E Z Q Z ^ ( l  + 6) =  O h 'j  with the given integers r ,y  E Z.
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The assumption gcd(z,y) =  1 is equivalent with the prim itivity of a  in 
O x j -  (In the other representation a  =  ^ ( z + wf 6 ) ,  where 2 =  2x + / y ,  w — 
y are rational integers satisfying z =  f w  (mod 2), the prim itivity of a  in 
Ö K J  Is equivalent with either gcd(2 ,u>) =  1 or gcd( z ,w)  = 2 ,z |2  ф f w / 2  
(mod 2).) Further the binary quadratic form x 2 +  f x y  — ^ p ~ f 2y2 = 
(x +  y | ( l  +  S)) • (x +  y | ( l  -  £)) =  a  • r ( a )  =  iV # |q (a )  is just the norm 
of OL w ith respect to the extension K  | Q. According to  Theorem 2 .3 ,2 .a, 
|^ A '|q ( a ) |  < § /^  together with the prim itivity of a  in O K j  implies 
oc G M i n { 0 K j ) - Now by Corollary 3.4,2,

M in (O l i j ) =  { i ( P ,_ ,  +  +  i ) )  I 0}U

{ i ( - i y ( B , - , - 5 > - , | ( l + < ) )  I 0}

and hence 3j  > 0 a = x  +  V^Q- +  ^) =  1H ^ i - 1 +  Q j - i ^ ( I  +  ^)) or 
a — 3z(Rj - 1 — S j - i  ^(1  +  6)). Finally the Q -Iinear independence of
(1, | ( 1  +  6) ) yields
a) if sgn(x)  =  syro(y), then \ x \  = P j - 1, |y j  = Q j - 1,
b ) if s y n (r )= ^ sy n (y ) ,th e n  jx j =  Я ,_ ь  |y |  = S j - 1 = Q j - 1. □

§4. U nits in fields w ith rad icand  D = l(m od4)

In this section the following problems for real quadratic number fields 
of D -type II wiU be considered.

I. The possibiHties for the index (Е к  - E o )  of the unit group E o  of the 
suborder O = Z 0  Ъу/ D  in the unit group Е к  of the maximal order 
О к  — Z 0  Z | ( 1  +  VD).
In Proposition 4.1 we shall see tha t these possible values depend on the 

prime residue class group U( О к / Р )  of the conductor T  = cond(O) of the 
suborder O in the maximal order О к , an^ tha t for D -type IIA fields there 
is only the possibility (Е к  ’ E o )  =  1, because и{О к/^Р )  — C \ , whereas 
for D -type IIB fields there are two possible values (Е к  • E o )  G {1,3}, 
because U ( 0 K | F )  — C3.

II. The indirect computation of the fundamental unit So > 1 of K  by 
looking for a multiple of the unit in the suborder O .
The continued fraction algorithm finds exactly all the lattice minima 

among the algebraic integers in an order, as we have seen in Corollary 
3.4. Hence the question arises, which conditions must be satisfied by the 
radicand J9, in order that a multiple of the fundamental unit appears as 
a lattice minimum in the suborder O.  According to Proposition 4.1, only
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in fields of D -type IIB with unit group index (E x  • E o )  =  3 a multiple 
of a unit can be a lattice minimum in the suborder O y because otherwise 
Е к  =  E o  C Mi n( O)  and a multiple of a minimum is imprimitive and 
hence cannot be a minimum too. Further, as Jr = cond(0) =  2О к , the 
multiple can only be the twofold. O ther multiples would not be primitive, 
because 2О к  П O =  2О к  ф 2 0 , but р О к  П ö  =  p ö  for all p G P ,p  Ф 2. 
The central result, Theorem 4.2 will show tha t, fortunately, аИ radicands 
D = 5 (mod 8), with the single exception D  =  5, have the property that, 
in the case (Е к  '- E o )  =  3, the twofold of the fundamental unit, and in 
fact of any “genuine un it” in О к , £ € Е к  \  E o  =  £oE o  U e l E o ,  is a 
minimum in the suborder O  : 2e G Min(O) .
III. Arithm etical criteria for the occurrence of unit group index 

( Е к  • E o )  — 1 in D -type IIB fields.
Unit group index ( Е к  * E o )  =  1 must be considered as an exceptional 

event for D -type IIB fields, because in general its occurrence depends on 
the existence of a certain cubic “auxiliary field” (in D. H ilbert’s terminol
ogy [15], § 90, pag. 324). This is due to the translation of the problem 
into the equivalent question, when the 3-ring class field moduk> 2 of K  is a
cubic extension of the Hilbert 3-class field of K , [ F ^ ( K )  : F ^ ( K ) ]  =  3. 
Hence, according to H. Hasse’s class field theoretic treatm ent of non-Galois 
cubic absolute extensions [13], in the special case tha t K  has a class num-

/o4
ber h>K coprime to 3, tha t is, F 1 (K)  =  AT, another equivalent problem 
is, when there exists a totally real cubic extension L  | Q with discriminant
discr(L  I Q) =  22 • discr(K  | Q) =  ADy because then F ^ ( K )  =  L  • K  is a 
cycHc cubic extension of K . This is not the case too often, because cubic 
discriminants axe sown rather thin. See Tables A, B for the smallest radi
cands of these exceptional fields and also compare the results in § 6 , Tables 
5, 6 for statistics and frequencies of unit group index ( Е к  • E o )  =  3.

P roposition  4.1. (Unit group indices and “hah -un its” in real quad
ratic fields of D -type II.)

Let K  =  Q (V ^ )  be a quadratic ßeld with radicand D = l(m od4), 
maximaJ order О к  =  Z ® Z | ( 1  +  v^D), and suborder O =  Z 0  Z \ fD  with 
conductor T  — cond(0) =  2O x-

1 . The prime residue class group o f the conductor T  — 2 0 к  o f the 
suborder O is U(ÖK/ F )  -  Cu i f D  =  1 (mod 8), and U ( 0 K / F )  ^  C3, 
i f  D = 5 (mod 8).

2 . For an algebraic integer а  G О к  with gcd(a, 2) =  1
a) already а  G O , i f  D  =  l(m o d 8),
b ) either а  G O or at most the third power a 3 G Ö, i f  D = 5(mod 8). 

In particular, this result is valid for generators o f ambiguous principal 
ideals in K y а  G О к  with iV ^ |q (a )  |i2 ^ |Q  (see § 5), and for units 
e G Е к . More detailed:
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3. I f  a  G О к  \O has the reduced r  =  | ( x  +
x,yG Z, X = y =  1 (mod 2), th =  | ( ( x 2 +  ö y 2) +  G
0 K \ 0 , a n d

a 3 =  I ( ( x 3 +  3 0 x y 2) +  (3x2y +
O

. [ 0 K \ 0  i f  D = 1 (mod 8),
^ y O i f  D =  5 (mod 8).

(iVote that g c d (a ,2) =  1 is equivalent with а  G О к  \  20re, i f  D = 5 
(mod 8), but even with а  G O \  2Ore, i f  D  =  1 (mod 8).)

For the rest o f the Proposition assume that K  is real quadratic and let
Co > 1 be the fundamental unit o f Ore and r/o > 1 the fundamental unit
o f O .

4. uHalf-Unitsv can exist, only i f  K  is o f D -typ e  IIB, and i f  they exist, 
then Tjo = ô> ^ a t  IS>

Ej{ ф E o  => D  =  5(mod8), (Ere • E o )  =  3.

5. Next we have a closer look at algebraic integers o f norm  ±4.
a) The twofold o f any unit in Ore Hes in the suborder O and has 

norm  ±4, that is

€ G Erc zẑ  2s G O , I Nre \ Q(2^) | =  4.

b) Conversely, i f  some algebraic integer in the suborder, ß  G Ö, has 
norm  ±4, then 2 divides ß in Ore (that is, ß  cannot be primitive 
in Öre), and ß is the twofold o f a unit:

№ |д 0 5 ) |  =  4 =Ф ß  G 2 0 K , ß / 2  e E K .

(Furthermore, either 2 divides ß even in O , ß  G 2 0 , or ß is
prim itive in the suborder O. In any case ß /2  is prim itive in Ore-)

c) For ß  G O the following equivalences hold:

\ N K \Q(ß)  I = 4, ß  G 2 0  &  ß / 2  e E o ,  and

I N K I q(ß )  I =  4, ß primitive in O <& ß /2  G E K \  E 0 ,

and thus the following mappings are bijective and order preserv
ing:
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{ ß e O \  \ N Kl Q( ß ) \ = 4 , ß / 2 e O } ^ E o ,
{ßeOI | ^ | q ( ^ ) |  = 4 ,  ß/2e

6 . There exist “ha lf-un its”, exactly i f  the diophantine quadratic Pellian 
norm -4-equation has a primitive solution, that is

(E x  : E 0 ) =  3 4Ф 3£ G O N x  \ Q(£) =  4, £ prim itive in O 

4=> 3x ,y  G Z X2 -  D y2 =  4, gcd(x, y) =  1.

In particular, i f  there exists a lattice m inim um  ú G Mi n ( O)  with the 
property I iVjf I д(г9) | =  4, then (Е к  : ^¾ ) =  3. (The converse state
m ent is false, i f  D — 5. See Theorem 4.2 and the Rem ark afterwards.)

For the next two statements, involving principal factor types o f real quad
ratic fields, compare § 5.

7e I f  K  is o f P F -type  II, then there exist “half-units”, exactly i f  the 
period length o f the continued fraction expansion o f V D  is congruent 
to the period length o f the continued fraction expansion o f | ( 1  +  V D ) 
modulo 4, that is

N x  | д Ы  =  - 1  =* ((E K : E 0  =  3 4Ф PL(O)  = P L ( O x )(m od4)).

8 . I f  K  is o f  P F -type  I, then the period length o f the continued frac
tion expansion o f V D  is always congruent to the period length o f the 
continued fraction expansion o f |( 1  +  V D ) modulo 4, that is,

N x  I Q(e0) =  +1 =» ' PL(O)  = P L ( O x )(mod 4).

bi this case the prim itive period lengths do not provide a condition 
for the existence o f “half-units”.

PROOF. 1. For K  =  Q ( VD )  with D  =  1 (mod 4) the conductor of 
the suborder in the maximal order is T  = cond(0) = 2O x , according to 
Theorem 1.1, 2.
Further, in the case D  =  1 (mod 8):
2 splits in K , 2O x  = Ci • C2 with distinct prime ideals C \ , C 2 £ P # ,  
Afx  I Q (^i ) =  N x  I Q ^ 2) =  2. The generalized Chinese remainder theorem 
yields U(Ox I T )  ~  U(Ox I C 1) X U ( O x IC2) ~  U(F2) x U ( F 2) ~  C1X C 1 ~  
C1.
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And in the case D  =  5 (mod 8):
2 remains inert in K ,2 Ox € P  x, *̂ V|Q(2 =  22 =  4, whence
U ( O x / E )  =* ZZ(F4) =s C3.

2. Now for a  G Сд" : gcd(a,2) =  1 ¢4> g cd (aC # ,Z 7) =  a O ^  +  ^r =
0 K » «  +  ^ e ^ ( W
Hence in the case £) =  1 (mod 8) :
gcd (a ,2 ) =  1 => a  +  T  G U ( O x / E )  — Ci =Ф- a  +  Z - =  1 +  =$■ G
1 +  T  =  1 +  cond(0) C Ö.
And in the case D  =  5 (mod 8) :
g c d (a ,2) =  1 =>• a  +  ^ 7 G U ( O x / E )  — C3 =>• 3u G {1,3} 0 " +  =  1 + J r
and therefore a v G 1 +  T  =  1 +  cond(O) C C. 
For the specialization to  generators of ambiguous principal ideals compare 
Theorem 5.11 and for units see 4.

3. An algebraic integer a G O  has the representation
l(x  +  y6)with x , y G Z and x = y 0 (mod 2). Hence x 2 +
X2 +  y2 =  2 =  2xy (mod 4), respectively | ( x 2 +  1 =  (mod 2)
and therefore a 2 — l ( ( x 2 +  C y2) +  2 xy G Fm ther x3 + 3  =
x +  3 D x  =  (3 D  +  l)x  (mod 8), 3 x +  +  3
(mod 8), where ZD + 1 =  4 =  D + 3 (mod 8), if D  1 (mod 8), and
ZD +  1 =  0 =  D  +  3 (mod 8), if D  =  5 (mod8). Thus in case =  1
(mod 8) : l ( x 3 +  3 D x y 2) =  \ (ZD + l ) x  = 1 =
(mod 2), and in case D = 5 (mod 8) : | ( x 3 +  3 P x y 2) =  l(3Z> +  l)x  =  0 =  
- ( D  + Z)y = 1(3 x 2y + D y 3)(mod 2), always taking into consideration that
x =  y =  1 (m od2). H encea3 =  | ( ( x 3+3£>xy2)+ (3 x 2y+Æ y3)6) G
if D  =  1 (mod 8), and a 3G O ,if D = 5 (mod 8).

4. For a unit e G Ex we have e and hence gcd(e,2) =  1.
Thus, according to 2. and using tha t П =  (see 5.c),
W o  = {—1,1}, £0 >  1 and 770 > 1 : if =  1 (mod 8), then G
in particular, £0 G O and therefore if = 5 (mod 8), then 
£ G O  o r £ 3 G O ,and in particular, £p G i.e., 3u G N  £$ =
r]Q. But for D  =  5 (mod 8) on the other hand G i.e., 3u G 
N  r]o = ô-Together £ц =  £ц*\ i.e., =  3, and hence either
l ,u  =  3 or u =  3, V =  1. Now, if then =  1 is impossi
ble and (Ex : E 0 ) = (< - l ,£ 0> : <-l,*to>) =  :
((eo) : ( % ) )  =  u =  3.

5. Throughout the proof of this Proposition we always assume D = 1 
(mod 4).

a) £ G E x  =^ N KI q(e)  =  ±1 =» cj(2fi) =  4 Q(e) =  ±4. 
Further 2£ G O ,because 2 O x = cond(O)C

b) Let ß G O, ß  =  x +  y8 with x ,y  G Z. If i 4 ,  then
X2 — y2 -VI x2 — D y 2 = ± 4  =  0 (mod 4) and thus x =  y (mod 2), i.e., 
ß / 2  = l ( x  +  y8) G Ox, resp., ß G 2 But is even a unit in
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because N ^  | q (^ /2 )  =  \ ^ K \ Q ( ß )  =  i l -  Further, for a rational prime 
p  G P  we have : if ß G P&K, i-e., ß  for some 7  G then
N K \d(ß)  = P2N K \Q(7 ), N tf |Q (7 ) G Z, i.e., by contrapo-
sition, if I N x \ Q ( ß )  I =  4 =  22, then only the prime 2 can divide ß  in O x  
and in O. Therefore either ß  is primitive in O or 2 divides ß  in Ö. But in 
any case ß / 2 , as a unit, is primitive in O x •

c) These are immediate consequences of a) and b). It only remains 
to show tha t E x  П O =  E o • The inclusion E o  C Е к  П O is clear and on 
the other hand e E Е к  П O implies е~г = ± e 9 E 0 ,  tha t is, e E Eo-  (In 
fact, we have proved this for arbitrary orders in Theorem 2.3, l.c  and 2.c 
already.)

6. From the last bijection in 5.c we derive: (E x  * E o )  = 3 4Ф 3£ E 
O £/2 E E K \  E 0  4Ф 3£ E O \ N K \Q( t ) \ = 4 , t / 2 e 0 x \ 0 & 3 t e  
O N x  I Q (0  — 4, £ primitive in Ö.  The last step was justified, because in 
the case £o £ E x  \  E o , N x  \ Q(^o) =  _ 1 w^ have e\  E E x  \  E o , by 3., and 
N x  |Q(2^o) — +4. W ith the aid of the reduced representation £ =  x +  yS 
with r ,  y E Z, we finally obtain 3£ E O N x  |Q(£) =  4 £/2 E O x  \  O 4Ф 
3 r ,y  E Z r 2 — D y 2 =  4, r  =  y ^  0 (mod 2) 4Ф 3x,y  E Z r 2 — T>y2 =  
4, gcd(x,y) =  1.
The specia^Iization for a lattice minimum d E Mi n( O)  makes use of the 
prim itivity of fl in Ö, discussed in § 2, sections 2, 7, Remarks.

7. For this proof we refer to P. KAPLAN and K. S. WlLLIAMS [16].
8 . See § 5, Theorem 5.12. □
By an application of the geometric Theorem 2.3 and a discussion of 

some exceptional cases, we shall see now tha t the twofolds of “genuine 
units” in the maximal order of D -type IIB fields can always be discovered 
as lattice minima in the geometric Minkowski image of the suborder, except 
for a single case.

T heorem  4.2. (Twofolds of units among the lattice minima in the 
suborder O  =  Z 0  TiyJD of a real quadratic number field of D - type II.)

Let K  =  Q(V^D) be a real quadratic ßeld with radicand D = 1 
(mod 4), D Ĵ  5. (For D  =  1 (mod 8) the statements are also true but 
“em pty”.)

1. Primitive algebraic integers ß  E O with norm  ±4  are m inim a in O :

I N x  I Q(ß)  I =  4, ß prim itive in O =½ ß  E Min(O) .

2 . Now we have a new criterion for the existence o f Uha lf-un its” :

( E x : E o )  = 3 ^  3$ E Mi n( O)  № | Q ( t f ) | = 4 .

3. The mapping

{tf G M i n ( O )I | i V * | Q( t f ) | = 4 } ^ £ * \ £ 0 , 0 ^ 0 / 2
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is bijective and order preserving.

PROOF. 1. Asstune ß  G O =  Z ® Ъ8У ß  primitive in O (hence in par
ticular ß ф 0 and ß £  2 0 )  and | iV^ | Q(y3) | =  4, whence ß  G 2Ок,  
by Proposition 4.1,5.b. If ß £  M i n ( O ) y then 3$ G O  0 < |г9| < 
I ß  I , I è'  I <  I ß ' I . For the number £ =  | d | • | ß 11 G O the conjugates are 
bounded

0 < £  =  № | q ( 0 ) | -  \ 0 \ / \ ß \  < 4 ,
k ' l  =  \ NK \Q(ß)\  •  К І / І Л  < 4 .

Applying Lemma 2.1, the coefficients x , y  G Z of £ =  x +  y6 can be 
estim ated by | x | ,  | y£ |  <  4, and ß / 2  G О к  implies ß ' / 2  = (ß/2) '  G 
Ок і  £/2 =  I î? I • I ß 11 /2  G O x ,  and thus x =  y (mod 2).

If D  >  17, then 8 > уДб = 4, | y \ < 4/8  < 1 and, as y G Z ,y  =  0, 
Now x =  C =  I tf I * I N x  I cj(j0) I /  I ß  I or x • I ß  I =  4 I d I with | ïï | G O y 
i.e., x • I ß  I G 4 0 . But ß  is primitive in O and from Lemma 2.2 we get 
4 | x .  Together with x =  C <  4, this implies x — 0. Hence d =  0, in 
contradiction to 0 < | z? | . Thus we have shown, tha t ß  must be a lattice 
minimum in O. (Of course, for D  > 16, S > 4 =  \ Nx \ Q( ß )  | we could 
have applied Theorem 2.3, l .a  directly, but we need the preparation above 
for the following supplementary case.)

If D  =  13, then 8 =  лДЗ > 3 and | y | < 4/8 < 4 /3 , tha t is, y G 
{ — 1,0,1}. y =  0 is impossible for the same reason as in the case D > 
17. |y |  =  1 implies x G {—3, —1 ,1 ,3}, because |x |  <  4, x = y(mod2). 
Hence there are 2 • 4 =  8 possibilities for the integer couple (x, y). But
0 <  C =  * +  y8 =* (x, y) £  { (-3 , -1 ) ,  ( - 1 ,  -1 ) ,  (1, - 1 ) ,  (3, -1 )} ,
£ =  x +  y6 <4 =¢- (x,  y )0  {(3,1), (1 ,1)}, and
IC'I =  |^ — y81 < 4 => (z,y)  ¢  { ( -3 ,1 ) ,( -1 ,1 )} . We see tha t all
possible couples are discouraged by the restrictions for £, and thus ß G 
Mi n( O)  also in this supplementary case.

2. By Proposition 4.1,6 we have ( E x  • Eo )  = 3, if and only if 
there exists ß  G O y such that Nx\c^(ß)  — 4 and ß  is primitive in O. But 
then ß  G M i n ( O ) y according to 1. The other impHcation has been proved 
already in Proposition 4.1, 6.

3. This is an immediate consequence of Proposition 4.1, 5.c and 1.
□

Remark. D = 5 really must be excluded, because in this case (using 
the same notation as in the proof of Theorem 4.2, 1) : 8 = yJb > 2 and
1 y I < 4/8  < 4 /2  =  2, that is, y G { — 1,0,1}. Similarly as in the case 
D = 13 again y =  0 is impossible and | y | =  1 implies x G {—3, —1,1,3}. 
Now 0 < £ =  x  +  y6 =̂( ¢ , ^ ¢ { ( - 3 , - 1 ) , ( - 1 , - 1 ) , ( 1 , - 1 ) } ,
£ =  z +  y 6 < 4  =$■ ( x , y ) 7^ ( 3 , l ) , a n d
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| £ ' |  =  | x  — y£|  < 4  =>• ( x ,y ) £ { ( 3 ,—l ) , ( —3 ,l)} ,b u tth e tw o c o u p le s
(x, y) 6 {(1,1), (—1 ,1)} remain possible. The corresponding lattice points
in the norm rectangle of ßaxe ű =  ±£ =  i R ü ,  ±^) ' with
norms N KI Q(tf) =  ± N KI Q(±1, +S) • , =  • (±4) =
i.e., units. Indeed the fundamental unit of K  =  Q(V5) is the normnegative 
£0 =  |(1  +  6) and ß  =  2so =  1 +  8 is not a minimum in O 1 because its 
norm rectangle contains the unit d — | ( - 1  +  8) • (1 +  8) = j (D  — 1) =  1.

C orollary 4,3. (A first modification of the unit algorithm : the in
direct com putation of the fundamental unit in fields of D -type IIB with 
unit group index 3.)

For every real quadratic number fíeld K  =  Q ( VD )  with radicand 
D = 5 (mod 8), D  ф 5, i.e., D  > 13, and with unit group index (Е к  : 
E o )  =  3, the fundamental unit 6o > 1 o f K  is the ha lf o f the smallest lattice 
m inim um do with norm N x  |q ($ )  =  ±4  in the 1-chain o f the suborder
O  =  Z  ®  Z v  D 1

eo =  y €  \

where do =  v{( l )  G Mi n( O)  with j  =  min {i > 1 | | N x  | q v \ ( 1 ) | =  4} , 
and hence £0 can be determined indirectly by the investigation o f t he  fírst
half o f the first prim itive period 1 < ^ i(I)  <  ^ i ( I )  <  . . .  <  v ^ L^ ° \ l )  =  el 
in Min(O) .

PROOF. As the fundamental unit c0 of K 1 i.e., the first 1-neighbour
of 1 with norm ± l  in О к  \  O 1 £o =  v ^ L(<° K\ l )  G М і п ( О к ), can be 
characterized metrically by £0 =  min{e G E x  \  E o  |e  > 1}, we obtain at 
first 2eo — do =  min{$ G M i n ( O  | d > 2, | А # | д ( $ ) |  =  4}, applying the 
inverse of the bijective order preserving map from Theorem 4.2, 3. But 
the condition d > 2 can be replaced by d > 1, because the twofold of the 
inverse fundamental unit e$1 cannot be a minimum in the 1-chain of O : 
though 2sQ1 > 1 is imaginable, surely the conjugate disables minimality,
as £^1 =  u2PL(° K\ l )  G M i n ( O x )  and thus | ( 2 ^ 1)'( >  |(e^*1)'! > 
1. Therefore the running param eter j  can vary from 1 upwards without 
restrictions.

Further the periodicity of the norms of minima enforces $ 0 to be 
contained in the first primitive period of M i n ( O ) 1 i.e., j  <  PL(O) .

FinaUy the symmetry property of the norms of lattice minima with 
respect t a  the first primitive period (see § 2, section 6, Remark) implies 
that ^ 0 appears even in the first half of the first primitive period alreadv: 
j < \ P L { 0 ) .  □

Remark. This result permits a uniformization of the procedure for 
computing the fundamental unit in any real quadratic number field, re
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gardless of its D -type, by the successive construction of the lattice min
ima (^ i( l) ) j> i in the 1-chain of the order O =  Z ® Z V D  and the con
trol, if some minimum has either norm ±4 (in the case D  =  5 (mod 8), 
(Е к  - E o )  =  3) or ±1 (in the cases D  =  5 (mod 8), (Е к  • E o )  =  1 or 
D  =  1 (mod 8) or D = 2, 3 (mod 4)).

In view of CoroUary 3.4 this means tha t for any field K  =  Q ( VD)  
some convergent for the continued fraction expansion of V D  determines 
the fundam ental unit, more explicitly, either £o =  \ v[iX) =  \ ( P j - i  ^  
Q j - i V D )  for some 0 <  j  < \ P L ( 0 )  or e0 =  ^f ( I )  =  Pp- 1 +  Q p -iV D  
with p = P L ( O ) .

The only exception, where the utiHzation of the principal lattice О к  — 
Z ® Z |(1  +  V D )  w ith the finer meshes and the direct com putation of the 
fundam ental unit by expanding | ( - 1  +  VD )  or |( 1  +  V D )  in a continued 
fraction cannot be avoided, is the case D  =  5. Here even the sublattice O 
is still so extraordinary fine tha t its minima leave out algebraic integers 
with norm  dh4, which must be considered as a “large” norm in this case.

Concerning the position of the smallest minimum $o £ Mi n ( O)  with 
tfo > 1 and | iV^ |Q($o) |  =  4 in the first primitive period of M i n ( O ) ,
i.e., the running param eter j  G N 0, 0 <  j  < | PL( O)  wit.h t?o — ^i(I)> 
compare the detailed discussion at the end of § 6.

In Table A we list the radicands D  of the first 37 exceptional D - 
type IIB fields with unit group index ( Е к  • E o )  =  1, together with the 
absolute ordinal number of D  in the sequence of all squarefree radicands 
D  =  5 (mod 8), the prime factorization of D  (if D £  P ) , the actual 
minimal non-trivial discriminantal principal factor (PF , see § 5), the class 
number h ^ , the associated totally real cubic field L  w ith a generating 
polynomial p ( X)  G Z[X] of minimal index, and the running number of 
discr(L  I Q ) in the sequence of all discriminants of totally real cubic fields. 
The polynomials have been taken from V. ENNOLA and R. TURUNEN [9] 
(see also [10]).

The table starts with the well-known example D  — 37, frequently 
cited for the purpose of illustration tha t D  =  5 (mod 8) alone is (necessary 
but) not sufficient for the existence of “half-units” . A glance at the class 
numbers of these fields shows tha t they are not divisible by 3, without 
exceptions. Indeed, in the next Theorem 4.4, 3 we shall see, tha t in the 
special case of gcd(ft^ ,3) =  1 the existence of a totally real cubic field 
extension L  | Q with discriminant discr(L  | Q) =  4-discr(K\Q)  is necessary 
and sidficient for ( Е к  : E o )  =  1.

But unfortunately not so for D -type IIB fields w ith positive 3-rank, 
where this condition still impHes ( Е к  • E o )  — 1, but not conversely, as 
the first examples, starting with D  =  1765, in Table B reveal, and thus is 
seems to be difficult to provide a general necessary and sufficient criterion 
for the existence of “half-units” . In those cases of Table B, where the suf
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ficient condition for { E x  - Eo )  =  1 is satisfied, beginning with D — 7053, 
the associated totaJly real cubic “auxiHary fields” L  arise in triples with 
the same discriminant, because, together with the field L ', they are sub
fields of a split extension (here always of type C3 x C3), according to 
Theorem 4.4, 2.b. In the remaining cases, however, no cubic extension
L  I Q with discr{L  | Q) =  4JD exists and F ^ { K )  | K  is a non-split exten
sion (here always w ith group C9). Table B immediately continues Table A, 
but is restricted to fields whose class number is divisible by 3. Addition
ally we record the associated totaHy real cubic field V  with discriminant 
discr{L ' |Q )  =  discr{K  |Q) ,  a generating polynomial q{X)  E *Z*[X] of 
minimal index, and the running number of discr{L' | Q) in the sequence 
of аП discriminants of totally real cubic fields.

T heorem  4.4. (Arithmetical criteria for unit group in d e x (# #  : E o )  
=  1 in D -type IIB fields.)

Suppose that D  E N , D  =  5 (mod 8) is the radicand o f a real quad
ratic num ber field K  =  Q {VD)  of  D -type IIB. (Then d iscr{K  | Q) =  D.)
Further let C x denote the (ordinary) ideal class group, C2 the ring class 
group m odulo 2, Fi the Hilbert class field, and #2 the ring class held 
modulo 2 o f K .

1 . The relation between the class number h x  and the ring class number 
modulo 2 o f A", h2, is expressed by

h2 =  3 • h x / { E x  : E o )•

Hence {E x  - E o )  =  1 &  [F2 : Fi] = 3.

2 . The following statem ents are equivalent.
a) There exists a totally real cubic extension L  | Q with discriminant 

discr{L  I Q) =  4 • discr{K  | Q).
b) [F2 : Fi] = 3 and Gal{F2 | K ) is a split extension o f the cyclic

group Gal{F2 I Fi) -  C3 by Gal{Fx | K ).
c) The 3-rank o f C2 is strictly greater than the 3-rank o f Cx-

3. In particular, in the  case o f a class number h x  coprime with 3, we 
have the equivalence

{E x  : E 0 ) =  1 <* 3L  I Q [L : Q] =  3, discr{L \ Q) =  4D.

PRO O F. Denote by T  — 2 O x  the conductor of the suborder O in the 
maximal order O x  ° f  K . By Proposition 4.1, 1, T  is a prime ideal in K  
and U { O x / F )  -  C3, if D = 5 (mod 8).

1 . For an arbitrary number field K  | Q and an integral ideal m  E T x  
let ATx (m) C K x (resp. X(m) C I # ,  resp. 7i{m) C H x )  be the group 
of algebraic numbers (resp. ideals, resp. principal ideals) coprime with
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m , K x =  {a G K x (m) \  a  =  l(m o d xm)}, : the map
a. ^ t  а О к , K m =  *(^m ) the ray modido m, =  T(m )/7 the ray
class group modulo m, and E m = ЕкП the ray units modulo m in 

In the special case of an ideal m =  / О к ,  with /  G N , we also define 
K ^  -{a G K * ( m )  | 3r_G Z ( r , / ) _ = l ,  =  r (m o d x m)}, Æm =
i ( K ^ )  the ring modulo / ,  Cm = J (m )/7 £m the ring class group modulo 
/ ,  and E m =  2¾- П K ^ 1 the ring units moduk> /  in Compare w ith H.
HASSE [14], § 10, pag. 41-42.

We derive basic connections between the class numbers =  
and hm = # C m,resp. hm = # C m.First =  because any
ideal class contains an ideal coprime with m, whence

J  {m) / H{m)  =  J (m ) /( J (m )  D H K)~ Z(m ) • 7 =  Ctf-

Next we move the index (7 i(m ) : 7£m) in the relation

(J(m ) : ^ m) =  (Z(m) : W(m)) • (W(m) :

from ideals to  numbers. The homomorphism satisfies (K x (m )) =  
H(m) ,  г-1 (7£m) =  F lft--/t'^ ,and the refo reÄ 'x (m)/FJi<'-2;i ^  ~ H ( m ) / 7 £ m. 
Moreover the index (Ек • 2v^ : ^ m )  *n

(A '*(m ) : X х ) =  ( K x (m): £ * • * * )  • ( ¾ - ¾  : # * )

can be expressed by means of units : E ^  • K ^ / K ^  ~  A # /(A #  П A ^1) =  
Е к / Е т • Combining the isomorphisms and the index relations, which are 
valid equally well for the groups without bars and arbitrary m  E X^, we 
obtain the general formulas

hm = h K - ( A x (m) : I< *)|{E K  : Am),

^ m =  h K • ( / vx (m) : A X) / (AK : A m).

Finally from the isomorphism induced by the exact sequence

1 -> K x ^  K x (m)  П̂  1,
PGPic,P| m

which is the local description of the congruence relation modx m,  respec
tively from

1 ^  K x ^  K x ^  f ]  t f ( Z / p M / ) z ) ^ l a n d
p6P,p |/

( K x (m)  : K x ) = ( K x (m)
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we conclude (AT*(m) : K * )  =  у>к(гп), and (AT*(m) : AT*) =  Ѵ к Ц О к ) /  
¥>(/), in terms of the generalized, respectively the usual Euler function.

Specialization to AT =  Q(V^J), D  =  5(mod 8), and m  — £  =  2 0 #  
yields: h2 — h2 =  3 • fo # /(£ #  * A?e>), because in this exceptional case the 
ray and the ring modulo 2 coincide, <рк(%Ок) — # U { O x / £ )  =  3, and 
E 2 =  E 2 =  £ # .  Here we take into consideration tha t £49 =  Е к  П (1 +  £ ) ,  
because for a unit e E Е к  with representation e =  | ( x  +  y6) , x, г/ E Z we 
have £ — 1 — | ( ( x  — 2) +  y6) E J7 =  2 0 к  4̂  У =  x — 2 =  x =  0 (mod 2) 
<Ф £ E Eo- Hence ( £ #  : E o )  =  1 is equivalent with h2 =  3 • Л#, tha t is, 
with [£2 : £ 1] =  3, by class field theory.

2. According to H. HASSE [13], §§ 2-3, pag. 573-575 and [14], § 10, 
pag. 4 1 ^ 2 , there exists a totally real cubic extension L  | Q with discrim
inant discr(L  I Q) =  22 • discr(K  | Q), exactly if the ring class field £2 
modulo 2 of K  contains a cyclic cubic extension N  | AT, which is not in
cluded in the Hilbert class field £1 of K  already, and hence its correspond- 
ing idealgroup 7Z2 C H  C J (2 ) with G al{N  | K )  ~  l ( 2 ) / H  has really the 
conductor J7 =  2Ок-  As we are interested only in the subextensions of 
3-power degree, we may restrict ourselves to the Sylow 3-subgroups of 
all involved groups, and thus also to the 3^1ass fields. Then, by Galois
theory, a further equivalent condition is, tha t [A23  ̂ : A i^] =  3 and the 
exact sequence

1 ^  Gal(F Î FÍ3)) Ĝ a/(F2(3) | G a l( F ^  | 1

splits (or the same statem ents for the fuU class fields), or also, in term s of 
abelian 3-groups, tha t the 3-rank of C2 is strictly greater than  the 3-rank 
of Ск-

3. In the special case of 3 \ h x  we have A1̂  =  AT, and therefore the 
exact sequences in the proof of 2. spHt trivially. The claimed equivalence 
then foUows from a) <$> b) in 2. and from 1. □
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TABLE A. (The radicands D  of the first 37 D -type IIB fields 
with unit group index (E x  • E o )  =  1.)

no. abs. D factors PF t*K

1 5 37 _ \ 1
2 12 101 - 1 1
3 15 141 -  3 -47 1
4 21 197 —  1 1
5 28 269 — 1 1
6 36 349 - 1 1
7 39 373 — 1 1
8 40 381 =  3 1 2 7 - 3 1
9 41 389 - 1 1

10 51 485 =  5 • 97 — 1 2
11 58 557 —  1 1
12 60 573 =  3 1 9 1 1
13 70 677 —  1 1
14 72 701 —  1 1
15 73 709 —  1 1
16 78 757 —  1 1
17 80 781 =  11-71 - 1 1 1
18 84 813 =  3 * 271 - 3 1
19 86 829 - 1 1
20 90 877 - 1 1
21 91 885 =  3 • 5 • 59 15 2
22 93 901 =  17-53 —  1 4
23 95 933 =  3 -311 1
24 100 973 =  7 -139 7 1
25 102 997 —  1 1
26 118 1149 =  3 • 383 1
27 119 1157 =  13 • 89 —  1 2
28 121 1173 =  3 - 1 7 -2 3 - 1 7 2
29 125 1213 —  1 1
30 134 1293 =  3 -431 3 1
31 135 1301 - 1 1
32 144 1389 =  3 -4 6 3 - 3 1
33 146 1405 =  5 • 281 5 2
34 164 1605 =  3 -5 -1 0 7 - 5 2
35 165 1613 - 1 1
36 176 1717 =  17 • 101 17 2
37 180 1757 =  7 - 251 7 1
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TABLE A. (The radicands D  of the first 37 D -type IIB fields 
with unit group index (Е к  • E o )  =  1.)

no. d(L |Q) p( X) no.

1 148 X 3 -  X 2 -  ZX  +  1 3
2 404 X 3 -  X 2 -  5X  -  1 10
3 564 X 3 -  A 2 -  5X  +  3 13
4 788 A 3 -  X 2 -  7 X  -  3 21
5 1076 X 3 -  S X  +  6 29
6 1396 X 3 -  X 2 -  I X  +  5 40
7 1492 X 3 -  X 2 -  9X  -  5 44
8 1524 X 3 -  X 2 -  I X  4- 1 46
9 1556 X 3 - X 2 - 9 X  +  11 47

10 1940 X 3 -  S X  4- 2 59
11 2228 X 3 -  X 2 -  13X 4- 9 69
12 2292 X 3 -  X 2 -  13X 4 -1 72
13 2708 X 3 -  X 2 -  I lX  -  7 85
14 2804 X 3 -  X 2 -  9X  -  1 88
15 2836 X 3 -  X 2 -  9X  4- 7 90
16 3028 X 3 -  1 0 X 4 -6 98
17 3124 X 3 -  1 6 X 4-12 99
18 3252 X 3 -  X 2 -  9X  4- 3 106
19 3316 X 3 -  1 6 X 4-22 110
20 3508 X 3 - X 2 - 1 1 X 4 - 1 3 115
21 3540 X 3 -  X 2 -  15X -  15 116
22 3604 X 3 -  X 2 -  17X 4- 31 122
23 3732 X 3 -  X 2 -  13X 4 - 19 125
24 3892 X 3 -  1 0 X 4 -2 131
25 3988 X 3 - 1 6 X 4 - 4 138
26 4596 X 3 - X 2 - l l X - 3 154
27 4628 X 3 -  X 2 -  13X -  9 156
28 4692 X 3 -  X 2 -  17X -  3 160
29 4852 X 3 -  X 2 -  17X 4 -13 168
30 5172 X 3 -  X 2 -  21X 4- 33 177
31 5204 X 3 -  X 2 -  17X 4- 5 178
32 5556 X 3 -  X 2 -  19X -  23 196
33 5620 X 3 - X 2 -  11 X 4 -1 198
34 6420 X 3 -  X 2 -  21X -  15 231
35 6452 X 3 -  X 2 -  13X 4 - 15 232
36 6868 X 3 -  X 2 -  17X -  17 249
37 7028 X 3 - 2 0 X 4 - 1 2 _______ 254
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TABLE B. (The radicands D  of the first 32 D -type IIB fields 
with unit group index (Е к  • E o ) = 1 and with positive 3-rank.)

no. abs. D factors PF q & )

38 181 1765 =  5 • 353 _ 2 X 3 - X 2 -  11X +  16
42 194 1901 - 1 X 3 -  X 2 -  9X  -  4
49 215 2101 =  11 • 191 -1 1 X 3 - X 2 — I lX  — 8
75 298 2917 —  1 X 3 -  X 2 -  13X +  20

100 394 3877 — 1 X 3 -  X 2 -  13X -  10
126 500 4933 —  1 X 3 - X 2 -  I lX  — 2
137 534 5261 —  1 X 3 -  X 2 -  19X +  36
142 556 5477 — 1 X 3 -  X 2 -  18X -  4
154 596 5853 =  3 •1951 - 3 X 3 - X 2 -  13X +  16
182 702 6901 =  67 • 103 - 6 7 X 3 -  X 2 -  25X -  2
187 717 7053 =  3 •2351 3 X 3 -  X 2 -  23X 4- 48

219 852 8373 =  3 •2791 - 3 X 3 -  X 2 -  13X -  2
226 871 8581 - 1 X 3 -  1 6 X 4 -1 7
228 873 8597 - 1 X 3 -  X 2 -  22X -  12
234 893 8789 =  1 1 •1 7 -4 7 47 X 3 -  14X 4- 9
235 898 8837 - 1 X 3 -  X 2 -  27X  4 -18
237 905 8909 =  59 • 151 59 X 3 -  X 2 -  25X 4- 54
249 944 9293 - 1 X 3 -  20X  4- 29
250 945 9301 =  71 • 131 -7 1 X 3 -  X 2 -  21X -  26
272 1023 10069 - 1 X 3 -  X 2 -  22X +  20
278 1050 10333 - 1 X 3 -  25X  4- 28

289 1083 10661 =  7 •1523 - 7 X 3 -  26X  4- 47
290 1089 10733 - 1 X 3 -  14X 4- 3
302 1143 11293 =  23-491 -2 3 X 3 -  X 2 -  23X 4- 46
320 1213 11965 =  5 •2393 - 1 X 3 -  28X  +  53

363 1373 13549 =  17 • 797 - 1 X 3 - X 2 - 3 1 X  +  4
379 1459 14397 =  3 •4799 3 X 3 - X 2 -  15X 4- 6

386 1487 14653 - 1 X 3 -  25X  4- 12
410 1573 15501 =  3-5167 - 3 X 3 -  X 2 -  29X 4- 66

414 1590 15661 - 1 X 3 -  X 2 -  35X 4- 48

415 1598 15757 =  7 •2251 - 7 X 3 -  X 2 -  26X 4- 28

427 1629 16045 =  5 •3209 - 5 X 3 -  X 2 -  30X 4- 52
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TABLE B. (The radicands Dofth e  first 32 D -type IIB fields 
w ith unit group index (Е к  '■ E o )  =  1 and with positive 3-rank.)

no. no. d(L\Q) p ( X) no.

38 52
42 56
49 66
75 92

100 129
126 173
137 179
142 192
154 210
182 251
187 256 28212 X 3 -  X 2 -  37X  -  47 1214

X 3 -  X 2 -  53X  4-153 1215
X 3 - X 2 - 4 1 X  +  93 1216

219 316
226 325
228 326
234 335
235 338
237 341
249 355
250 357
272 385
278 399 41332 X 3 -  X 2 -  35X  -  59 1842

X 3 - X 2 - 5 3 X  +  111 1843
X 3 - X 2 — 23X  — 11 1844

289 410
290 414
302 442
320 478 47860 X 3 - X 2 - 6 1 X - 1 8 5 2156

X 3 — X 2 — 51X  4- 81 2157
X 3 -  X 2 -  45X  4- 97 2158

363 535
379 579 57588 X 3 -  72X 4* 190 2647

X 3 — X 2 — 71X  4- 45 2648
X 3 -  X 2 -  53X  +  75 2649

386 589
410 625 62004 X 3 -  X 2 -  57X  -  141 2862

X 3 -  X 2 -  59X  4-189 2863
X 3 - X 2 - 2 5 X 4 - 1 9 2864

414 634 62644 X 3 - X 2 — 37X  — 61 2905
X 3 -  46X 4 - 110 2906
X 3 -  X 2 -  25X  -  1 2907

415 640 63028 X 3 - X 2 -  43X 4-113 2919
X 3 -  76X 4 - 236 2920
X 3 -  40X  4-  12 2921

427 652
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§5. G enerato rs of am biguous principal ideals

In this paragraph the following problems for real quadratic number 
fields K  = Q(v^D) with C2-gr0up G =  G al(K \Q ) =  (r) will be discussed.

I. The number a ^  (resp. a°K) of primitive ambiguous ideals (resp. prin
cipal ideals) in K .

The solution of this invariance problem is well known. According 
to D. Hilbert [15], there is only one possibility а к  =  (X ^  : Xq) — 2tJrWy 
where Xq = Tiq  ~  Q+ and t +  w is the number of prime divisors 
of R x \q  ([15], §73, pag. 302-303), and there are two possible values, 
a°K = {H% : H q )  E {2,4} ([15], §75, pag. 303-305). In Theorem 5.1 we 
compile a list of necessary and sufficient conditions for each of the two val
ues of a°Ky leading to a subdivision of real quadratic num ber fields into two 
principal factor types (PF-types). See §6 , Tables 3,4 for the frequencies 
and statistics of these types.

More detailed, we are interested in the possibilities for the norms of 
generators of primitive ambiguous principal ideals in О к • &* the Remark 
concerning the formalism of discriminantal divisors, immediately after this 
summary, we shall see tha t, aside from the trivial couple { l , - D } ,  there 
are on principle Xt r̂w — 1 possible couples {2vd \y —2 vd,2} (v E {0, l } yd i\D y 
d 2 = D /d i)  of non-trivial discriminantal principal factor norms in every 
real quadratic field and Theorem 5.1 shows tha t the actual couple in PF- 
type II fields (where a°K =  2) is {D< —1}, whereas in PF-type I fields (with 
a°K =  4) the actual couple is one of the remaining 2t+w — 2 possible couples, 
different from {D y —1}. Thus there arises the need for

II. Arithm etical criteria for the actual occurrence of any one of the pos
sible couples of non-trivial discriminantal principal factor norms.

The question, which of the X1̂ w — 1 possible couples actually consists 
of norms of algebraic integers in K y comprises the distinction of PF-types 
and can be answered by L. Redei’s theory [26], [27], [28], if the structure

/ 9 ^_i.
of the restricted (narrower) 2-class group CK of K  is k110wn. For actual 
computations, handy versions of this theory have developed by P . MOR- 
TON [23] and J . C. LAGARIAS [20]. Proposition 5.2 reminds of a simple 
special case, in view of D-type IB fields.

III. The indirect com putation of the fundamental unit e0 >  1 of K  by 
seeking a radical of a multiple of the unit in the maximal order or 
also in the suborder, if D  =  l(m od 4).
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As the continued fraction algorithm determines exactly all the lattice 
minima among the algebraic integers in an order, according to Corollary 
3.4, the question arises, which conditions must be satisfied by the radicand 
D, in order th a t a radical of a muUiple of the fundamental unit appears 
as a lattice minimum in the maximal order О к • Generally, in arbitrary 
algebraic num ber fields, radicals of multiples of units are algebraic inte
gers, composed of certain “highly ramified” prime ideals, more exactly, of 
prime ideals with non-coprime ramification exponents, as is shown by D. 
C. MAYER [21], Proposition 4.1 and Theorem 4.3. Like in any cyclic ex
tension of prime degree, in a quadratic field K  every ramified prime ideal 
V  is already totally ramified and has  maximal e ^ |g (P )  =  2 , whence
I ^ / J g  ~  C^ w 7 and radicals of multiples Corollary 5.8 only a generator 
with the minimal (that is, absolutely smaller) norm in the actual couple 
can be a lattice minimum in О к • Fortunately, Theorem 5.11 brings the 
concluding resuU tha t in an arbitrary real quadratic field every algebraic 
integer with minimal discriminantal principal factor norm is a minimal 
point in the maximal order О к , and the existence of a non-trivial gener
ator among the minima of the suborder O in the case of a D-type II field 
of PF-type I, is warranted by Theorem 5.12.

Remark. Similarly as with the problems in § 4, the relations in an 
arbitrary order O  of a real quadratic field can be quite different from 
those in the maximal order О к  and in the particular suborder O =  0 2 , 
if D  =  l(m od 4). They are heavily dependent on the conductor 
cond(0) = f Ö K  of the order. The investigation of these phenomena will 
be the topic of a subsequent paper.

Remark. (The formalishm of discriminantal divisors in real quadratic 
number fields.)

Let D  G N,jD >  2 be a squarefree radicand, and d G Z, d\D  a dis
criminantal divisorfor the real quadratic number field K  =  Q(v^D), more 
exactly, a divisor of the ramification quantity i?#|Q of K .  In contrast to 
pure cubic fields, where the sign of norms is inessential because of the anti
symmetry ofiV*|Q w ithrespect to theorigin, N ^ |Q(—Ö0 =  - N # |g ( a ) ,  *>he 
individual norm —1 must be treated as a nontrivial dicriminantal divisor 
in real quadratic fields because iVjt|Q ls symmetric, N ^ |g (-c*) =  AT#|g(a).

The positive integers

d\ = Ш ?  G P  I vp(D  ̂l j  1^

d2 =  f p P  e  P  I Vp(D)  1 ,  0 }

are called canonicalfactors of the radicand D  with respect to  the discrimi
nantal divisor d. By means of these numbers, D  and d have representations 
in the form

D — d1d2 , d — dbdi.
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Further R x\Q  — Zw^ d 2, where w G {0 ,1} and w =  1, iff D  =  3(mod 4). 
(The ramification of the rational prime 2 causes some complications in 
fields of D-type IB, notationally as well as theoretically.) We declare the 
normalized radical of K  with respect to the discriminantal divisor d to be

7  =  7d =  S/d i{>  0), where 6 = y/D.

For a numeration of the possibilities for discriminantal divisors, we 
need a more explicit description. Let t  =  J f { p  G P  | Vp ( D )  > 0} and 
suppose tha t p i , . . .  ypt G P  are the prime factors of D y then R x \Q = 
= 2 wpi ° • • pty or in uniform notation Rx\Q  — Pi * • • Pt+W, where we set
Pt+i=  2 .
If we define the multiplicative subgroup D  =  (—1) x {p i,. . .  yp t+w) < Q x , 
then, as (Q x , x ) -  ((Z /2Z ) x Z^p>,+), we have V  ~  (Z /2Z ) x Z t^ wy 
V 2 ~  (2Z)*+u;, and hence the group of discriminantal divisors for K y

V / V 2 ~  ((Z /2Z ) x Z t* w)/(2 Z ) t+w ~
-  (Z /2Z ) x (Z /2 Z y+ W ~  (Z /2Z )*+"+1,

is an elementary abelian 2-group of the order # ( V / V 2) =  2<+ш+1. Canon
ical representatives for V j V 2 are the 2*+^+1 signed divisors of ii# |Q .

We call an integer 2vd with d G Z, d\D  and with v G {0,1}, where 
V — 1 at most, if D  =  3(mod 4), a discriminantal principal factor  for 
K y iff 3 a  G O ft N x |Q(o) =  2vd. Because then on the one hand, 
2vd =  i :p j1 ***Pt4^ I ^#IQ  w^ h  certain exponents t> i,... ,t>* G {0 , 1}, 
vt+i = v y and R x |Q I d isc r (K |Q ), and on the other hand a  is the gen
erator of an ambiguous principal ideal а О к  £ 71% (invariant under G = 
=  G a l(K |Q )), tha t is, of a differental principalfactor in K  (principal ideal 
divisor of the absolute different of K ) y a O x  =  V \ l * * * P*+tT I d i f f ( K  |Q), 
denoting by P i , . . .  ,P<+u; € Р к ' the prime ideals lying over the rami
fied primes p i , . . .  ,p*+w In particular, the discriminantal principal fac
tor is called escalatoryy iff v =  t^+i =  1 (and hence D ~  3(mod 4)). 
The complementary discriminantal and differental divisors for 3z2vdi and 
a y respectively, are =p2vd 2 =  1FPi~V l'" p ] ~ Vl 'P*+^> anc  ̂ (a ^ /d i )O x  —
= p * “ Vl .. • p * ~ v* . P*+t^, respectively, because 8 0 x  =  P i * * * Pt-

Always 1 and —D are the frm a/discrim inantal principal factors, com
ing from rational units and from radicals: 1 =  JV ^ |q (l), —D  =  \fD - 
i - V D )  = 6 • т(£) =  N x |q(^)- Therefore we are interested in the fac
tor group ( V /V 2) /  ( -D )  of V j V 2 with respect to the subgroup gen
erated by —D  (more exactly, by the element —D  mod V 2 of order 2),
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( - D )  =  { ! ,—£)}. Then 2 vd{—D) =  {± 2 vd i,^ f2 vd2} is the coset, gener
ated by 2vd, of { -D )  in V jD 2. These cosets of the trivial couple {1, —D} in 
V j V 2 are caUed the possible couples of non-trivial discriminantal principal 
factors. The total number of cosets of { -D )  in V j V 2 is 2*+u,+1/2  =  2*+™ 
and the number of possible couples of non-trivial discriminantal principal 
factors is 2f+w — 1 =  | ( 2 t+u,+1 — 2). Compare also with P . BARRUCAND 
and H. COHN [1], 7-10, and L. RÉDEI [28], 31-33, for the notation.

In every real quadratic field there exists exactly one actual couple 
of non-trivial discriminantal principal factors, according to the following 
theorem.

T heorem  5Л. (Classification of real quadratic number fields, accord
ing to the number a°K of primitive ambiguous principal ideals in K .)

Let K  =  Q(v^D) be a real quadratic number field with C2-group 
G = G a l{K |Q) =  (r), r ( 8 ) =  —8 . Further let e0 G E x  be an arbitrary 
fundamental unit o f K , that is, E x  =  (—1, ^o)-
There are the following principal factor types or PF-types o f real quadratic 
number fields:

1 . K  is o f PF-type 1', that is, K  has non-trivial ambiguous principal
ideals, if f  one o f the following equivalent conditions is satisfied:
(1) The period length o f the continued fraction expansion o f \fD  

(and also o f |( 1  +  V D ) in the case D  =  1 (mod 4)) is even, that 
is, P L (O ) = P L (O x ) =  0(mod 2 ).

(2) ІѴ*|д(б0) = +1.
(3) Ve G E x  N x |q(e) =  + 1, that is, N x ^ ( E x ) = {1}.
(4) The group o f relative units in K  is E X \Q =  E x .
(5) E x  =  (—1, 60)0 is non-cycHc as a G-module.
(6) E 1K r = ( 4 ) .
(7) 3 oc G O l  eo =  QLl ~T = a 2 j  N xlq (a ) ,  \NxlQ(a)\ <j { l , D} .
(8) 3 m  G Z x 3 OL G K x m  • e0 =  a 2.
(9) 3 a  G O l  Nx{Q(a)\Rm , |JV*,q(a)| £ {l,JD}.

(10) The actual couple {2vd i , —22d2} o f non-trivial discriminantal 
principal factors is different from {D, —1}.

(11) The solvable anti-Pellian ( iiSingularyy) equation is 1̂X2 - d2Y 2 = 2V, resp. X 2 -  D Y 2 = 2vdu  resp.
X 2 — D Y 2 =  —2vd2, where neither 2 vdi = 1 nor 2vd2 = 1.

(12) PCl/TÍQ  ~  E x ^Q jE1Jf r ~  C2 X C2, that is, a°K =  4. More 
explicitly, aside from the two trivial ambiguous principal ideals, 
O x , SOx  =  Vi • • -V t, there are also two non-trivial ambiguous

principal ideals, a O K =  V?,- • • V}~Vl • • •
j , l  - v t> pvt+»' where vi . . ., G {0 , 1} and =  p}1 • • • p"‘.
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2 . K  is o f PF-iype II, that is, K  has only the trivial ambiguousprincipaI 
ideals, if f  one o f the foUowing equivalent conditions is satisfied:
(1) The period length o f the continued fraction expansion o f V D

(and also o f | ( 1  +  V D ) in the case D  =  1 (m od 4)) is odd, that
is, P L (O )  =  P L (O x )  = 1 (mod 2). 

(2) N K\ Q(e0) =  - 1.
( 3 )  3e6 Е к  N K \ Q ( e )  =  — 1 ,  th  =  {—1» 1}-
(4) The group o f relative units Ex\Q  (—1, ^o)-

(5) E x  =  (^о)а Is cyclic as a G-module.
(6) E'K~r = ( -el ) .  '
(7)V a G C>xe0 / a '  r =  a 2 /  iV*-|q(a).
(8)Vm 6 Z x Va 6 K x m • €0 a 2-
(9)V a € O x ( NK \Q( a) \ RK\Q = *  \Nm (ct)\ e { l ,D ] ) .

(10) The actual couple {2vdi, —2vd2} o f non-trivial discriminantal 
principal factors is {D , —1}.

(11) The solvable anti-Pellian ( “singular”) equation is D X 2 — Y 2 = 1, 
resp. X 2 — D Y 2 = D , resp. X 2 — D Y 2 — —1 (the Pellian minus 
equation).

(12) T ift/7 fq  ~  E x \Q /E ^ ~ T ~  C2, that is, a°K = 2. More explicitly, 
there are only the two trivial ambiguous principal ideals O x  an^  
SO x = V 1 - - V t .

PROOF. See. 0.PERRON [25], pag. 93, D. HlLBERT [15], §75, 303- 305, T. KUBOTA [18], 119-120, [19], pag. 66 and 69-71, P. BARRUCAND 
and H. COHN [1], 10-12, and H.-J. STENDER [32]. □

P ro p o sitio n  5 .2 . (A  coarse sufficient condition for P F -type I o f a real 
quadratic field.)

Let K  = Q (V D ) be a real quadratic ßeld. As —1 is a quadratic non
residue for primes p =  3(m od 4), we obtain the following conditions for 
the PF-type o f K :

1 . I f  K  is o f PF-type II, then Vp E P  \  {2} (p\D  = >  p = 1 (mod 4)).
2 . Hence, i f3 p  E P  p\D, p =  3(mod 4) (in particular, i f  K  is o f D-type 

IB, D  =  3(mod 4)), then K  is o f PF-type I .

P ro p o sitio n  5 .3 . (Ordering of the sym bolic powers |c*1 _ r | =
=  ót2 /  |<N#|Q(a)| w ith norm 1.)

Let K  = Q (V D ) be a real quadratic ßeld, O an order in K , а  E O x 
and ц>,ф E M in(O ).

1. If|a | < |p |, thena2/|W tf|Q(a)| < ^ 2/|iVK|Q(^)|.
2. I^l < \y>\ ц=Ф> Ф2/МК \сі(Ф)\ <  V2/
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PROOF. 1. If a  £  G, a ф0, £ w ith  |a |  <  |<̂ >|, th e n
|y>'| <  | a ' |  (b e c a u se  o th e rw ise  y> co u ld  n o t b e  a  la t t ic e  m in im u m  in  O).  
H en ce  0 <  а 2 / | І Ѵ ^ |д ( а ) |  =  | a | / | a ' |  <  M /I< * 'l 4>\(W\  ^ / ^ R |Q _ ( ^ ) I •

2. T he converse can be proved, only if both  points are la ttice minima. 
T he proof is done by contraposition: if \ф \ >  |y>|, then by 1. we get
V / N K,q(0)| > v 2/ \ N K\ct(v)\ • □

P ro p o sitio n  5.4. (Properties of lattice m inim a w ith  discrim inantal 
principal factor norms in real quadratic P F -type I fields.)

Let K  =  Q (V D )  be a reai quadratic field and suppose that Ö is either 
the maximal order o f K  or aIso the suborder Z ® Z \fD , i f  D = 1 (m od 4). 
Further let а  G O be an algebraic integer, ú G M in(O ) a lattice m inim um  
in Ö, and бо € E o , ô >  1 ^he fundamental unit in O,

1 . The norms o f prim itive algebraic integers, whose symbolic (І — r)-th  
powers are units in Ö, must be discriminantal principal factors for K , 
that is,

a 1~r =  ot2/N K |Q(a) G E 0  and

oc is prim itive in Ок^==>Нк\сі(&) | R x |Q-

Li particular, for lattice minima (which are primitive, a priori) with 
discriminantal principal factor norms, we have:

N*:|Q(i?) I Rj<c\Q ¢=½ d 2/N K\Q(ű) G E 0 .

2 . If the lattice m inim um  additionally belongs to the first prim itive pe
riod in Ö, then

NKlQ(ti) I Ä îQ, 1 < 'd < e0 <=̂  2̂/|ІѴА'|д(г9)| = e0, d > 0.

3. Am ong the lattice minima in the first prim itive period o f the 1-chain 
in O there can be at most one non-unit with discriminantal principal 
factor norm, that is,

#{V> G M in (O )I iV*r|Q(V>)|#R|Q, 1 <  eo} <  1.

4. If iVjc|Q( )̂|^R|Q, and 1 < $ < e0, $2/Î Jt|Q(̂ )l =
m oregenerally for arbitrary integers £ Z : (eo)V l^A '|Q ^o)l =  e^'1,

(e?  • ^ ) 2/I ^ R |Q (^ o  • ^ ) l  — 4 П+\  JS>

{ф6 M i n +(O )I N l i n W l R K i q )
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is bejective and order preserving.
PROOF. 1. Here we make use of some general results for arbitrary 

algebraic number fields in [21], §4: Proposition 1 shows

£*2/NiC|g(<*) E Е к  ^=> осОк G H%,

and if additionally а  is primitive in О к ,  be., а О к  is a primitive ambiguous 
principal ideal in K , then we obtain, by Theorem 3, that N^\ç^(a) | R x |q> 
and vice versa. It only remains to show tha t

a2 / N K\Q( < * )  G  E K<=> ( a )  6

in the case of D  =  l(m od 4) and a  E O. For this purpose denote 
d = |7V ^|q(a)| E N  and assume a 2/d  E Е к  C О к , then, as we know 
already, d |i2# |q  and Я к |q  = D y whence d =  l(m od 2). Thus d is coprime 
with the conductor 2 of the suborder O y and therefore a 2 E O fldO ^  =  d 0 , 
a 2/d  E 0  П £ #  =  Eo- The inverse implication is trivial.

In particular, if d E M in (O ), then d is primitive in O y according to 
§2 , sections 2.7, Remarks.

2 . If î9 E M in (O )y 1 < |d| < 6o is a lattice miniinum in the primitive 
period of the 1-chain of the point 1 in O with discriminantaI principal factor 
norm iVj^|Q(d)|i2^|Q, then by Proposition 5.3:

1 =  12/ 1̂ K IQ( 1 ) I < ^ 2/I^A '|q(^)l < €o / l ^ | Q ( 6o)| =  ô>

and by 1.: d 2/|iV#|q(t9)| E Eo-  Hence, as E o  =  (—1,60), we get 3n E Z 
tf2/I^K |Q (tf)| =  1̂=6O> where the minus sign is impossible and 0 < n < 2 , 
because 1 =  6$ < eJ <  e%. Therefore n =  1, i.e., d2/ \N K\Q(d)\eo. Con
versely, if d 2/ \N K\Q(d)\ =  e0 E E o , then by 1.: N K\Q (ß)\Rx\Q , and 
by Proposition 5.3: 1 <  \d\ < eo, because if |d| < 1 or |d| >  6o, then 
^ 2/ \ N K \ Q ^ ) \  <  12/І^А:|д(1)І =  1 or ^ V |N jq q (d ) |  >  6o/I^Ar|Q(eo)| =  ^o, 
in contradiction to 1 <  60 <  бд.

3. If tf,y? E M in(O )  with N K \Q(ti)\R K\QyN K\Q(v ) \R K iQy and 
1 <  d < y> < 60, then by 2 .: ^ 2/|ІѴ^|д(г?)| =  y>2/|Njv|q(vOI =  e0 and 
therefore the two units are equal. But, according to Proposition 5.3: 
1 <  d 2/ 1iVft'Iq (d ) I < V?2/ l ^ rA'|q(v>)l <  6o> which Is a contradiction.

4. If iV if|q(d)|i2# |q  and 1 < d < eo, then we obtain by 2 .: 
^ V l^ R |q W I  =  6O- Finally the relations (en • d )2l \ N x \ q ^ n * d)| =  6gn+1 
and (бп)2/|іѴ^'|д(бп) I =  боп, together with Proposition 5.3,2 and the natu
ral action of E~Q on M in + (0 ), §2, section 6 , establish the order preserving 
bijection. □
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CoroiIary 5,5. (A second version of the unit algorithm: the indirect 
calculation of the fundamental unit in fields of PF-type I.)

JJnder the same assumptions as in Proposition 5.4, when there is a 
non-unit а  G M in(O ) \  E o  among the lattice minima in O with discrimi- 
nantaI principal factor norm N ^ |q(o;) | i2/c|Q; then the fundamental umt 
e0 o f O has the repsentation

d 2

e° =  P W * o ) r

where $ 0 =  ^ i( I )  £ M in(O ) with j  =  m in { i >  1 | ATj^|Q^{(l)|J2#|Q}. In 
fact, the position o f d 0 in the ßrst prim itive period 1 <  ^ i(I)  < ^2(I) < 
<  . . .  <  V i ^ 0 ^ 1̂  =  €0 of M in(O ) can be specified definitively:

3 m  G N  P L(O ) = 2m  =  0(m od  2), tf0 =  ^ Г (І) ,

that is, ^o is situated exactly in the middle o f the first prim itive period in
O .

PROOF. As a  is а nonunit, there exists а uniquely determined expo
nent n G Z, such tha t eJ <  \a\ < €o+1> respectively 1 <  d <  e0, where 
we put i9 =  ja| • е$п. The natural operation of E@ on M in ^ (O )  (see. 
§2 , section 6 ) causes d to be a lattice minimum in M in ^ (O )  again, and 
№ к\q W  =  |i^R'|q(^)l* From this fact, together with N K | c j ( t f )  | RK\Qi 
we get $ 2/|iVX|Q(tf)j =  €0 by 4. Further, the (metrical) minimality of

^ 0 =  min{V> G M in(O )  I ф >  1, N KlQ(xp)\RK \Q}

implies 1 <  d 0 <  $ < ^o, but, in view of 3., $0 <  d is impossible and thus 
we must have $0 =  $• The rest follows from Theorem 5.1,1.(1), Proposition
5.4,3 and the symmetry property of the norms of lattice minima, §2, section 
6 , Remark. □

Remark. For fields of PF-type II, the unit algorithm can also be term i
nated in the middle of the first primitive period, because of the symmetry 
property of the lattice minima (see H. C. WlLLIAMS and J. BROERE [36], 
pag. 888).

P roposition  5,6. (Conclusions from certain divisibility properties of 
the norms of algebraic integers.)

Let K  =  Q(V^D) be o f arbitrary D-type, d G N , а  G О к  ^n algebraic 
integer, and x ,y  G Z, n G { l,2}, such that the representation 
а = ^(ж + yv^D) is reduced, that is, g cd (n ,x ,y )  =  1

1. I fd  divides а  in О к  (that is, а  G dOx)? then dP\Nx\Q(ot).
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2 * I fd \D , then d is squarefree and

d\N K\Q(a) =r> d \x .

3o d|25, then

d2 |iV ^|Q(a) =½ a  E d O x , ш particular^ d \g c d (x ,y ) .

4* More generaUy, i f  d contains only prime factors which are undecom
posed', that is, ramified or inert, in K  (in particular, i f  d \R x\Q ), then:

d2\NK\Q(a ) = >  Oi E dOi<c*

As a special case (cfr. Prop. 4.1,5.b), i f  D = 5(m od 8), then: 

М ^ к \я ( а ) = ^  а  € 2Cbo

PROOF. I« If а  E dO # , then there exists ß E 6½ , such th a t а  = dß 
and therefore iV ^ |q (a ) —■ d ß N x |q (ß ) with N x |q (ß ) £ 25, tha t is, d2 di
vides N x  |q(&0 -

2 » Suppose d\D, then d is squarefree, because 25 is squarefree.
^K|q(a) = ^R|q(K* + ŷ )) = M x2 ~ DV2) e Z l̂id hence 
d\N KiQ(a) = >  d |n 2iV^!Q(a) = >  d |x2 =  (x2 -  D y2) +  D y 2 =½ d\x.

3* I f  even d2 |fV # |q(a), then d |iV ^ |q (a) and, by 2 e, d\x, d2|x2. There
fore, as d is squarefree, d2 |i5y2 =  - ( x 2 — D y2) + x 2 = >  d|y2 = >  d\y, 
whence d  j gcd(x, y) and a  =  d* ^ (x /d + y /d á )  E d O x , because, in the case 
n =  1 : x /d  +  y/d<5 E Z ® Zd — O C C5#, and in the case n =  2 (and hence 
D = l(m od 4)): x /d  = y /d  =  l(m od 2) and \ { x /d  +  y /d 8 ) E Ox>

4c To realize, that d must not be divisible by splitting primes, sup
pose generally d — Прер р ^ ,  then d2 =  Прер р 2и̂  and dOx  =  
Пр^р(Пр|р P e(v M )wP, The statem ent is trivial for a =  0. For a  E O x  let 
a O x  =  H peP icP tjp, th e n A ^ |q (a O ic )  — Прер(П р |рр^(7>̂ )ѵр ) a n d o n th e

o ther hand =  N K \Q (a)6>*r =  ПреРр ^ і р /№ і , 7 \  N ow  a  G <=»
oC>K C d 0 *  «=*• 3 ^ G  H°KU p & x V * r

Vp G P  V P |p  np >  e(P |p)w p and d?\NK Пр€Рp L ^ i?  _  
=  n • Прер P2u7P <4= >  Vp E P  E p lP /(P |p )^ P  > 2iTp. Finally for p E P :

a) i f  p rem ains ( to ta lly )  in e rt, f (V\p)  = 2, e (P |p ) =  1, then  f (V \p)vp =  
=  2¾  >  2u^>, resp., r P >  wp = >  vp > e(V\p)wp.

b) i f  p is ( to ta lly )  ram ified , f{V]p)  =  1, e (P |p ) =  2, th e n  also f (V \p ) vp — 
— г?р >  2ггР = ^  г;р >  e('P|p)iTp. Hence, i f  p is no t decomposed, i.e.,
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e (V \p )f(V \p )  =  2 , then the desired impUcation holds surely: 
f(V{p)vT> >  2wp =$> vv  > 2wp/f(V \p )  = e{V\p)wp. 

c) But if p spHts, then the implication doesn’t hold any longer, in general. 
In particular, if K  is of D type IIB, D  =  5(mod 8), then d =  2 

remains inert in K , and we see once more (cfr. Proposition 4.1,5.b), that 
4 |N iq g (a )  =4- a  G 2 0 # .  □

Proposition  5oT. (Characterization of the minimal representative in 
a coset of discriminantaI divisors.)

Let D  G N , D > 2 be the squarefree radicand o f a real quadratic 
number field, d G N , d|Z) a positive non-escalatory discriminantaI divisor,
7d =  \ ÍD /d  the normalized radical with respect to d, and c G N , 
c G {d ,D /d ]  a dicriminantal divisor in the unsigned coset o f d.

1. The following statements are equivalent:
a) c is the minimal (absolutely smaller) represantative in the coset 

{ d ,D /d } , that is,
c =  min {d ,D /d } .

b) y /c /d  =  m in { l,7d} (in particular yJcjd  G Q(v^D)).
c) The discriminantaI divisor c is smaller than its complementary 

discriminantaI divisor D /c,

c < D /c.

d) The discriminantaI divisor c is smaller than the squareroot o f the 
radicemd D, c < \ fD .

e) The normalized radical with respect to c is greater than 1, J c > 1 .
2 . Besides the general assumptions above, suppose now additionally that 

а  G O is an algebraic integer in the real quadratic field K  = Q (V~D), 
where O denotes either the maximal order o f K  or also the suborder 
Z 0  Z y/D  in the case D = 1 (mod 4).

a) I f  the norm o f а is divisible by the discriminantaI divisor d, then 
the number a> /D /d is also an algebraic integer in the order Ö:

d\NK\Q(a) => 6 O,

N K\Q(a V D /d )  N K{Q(a )/d .

b) U  ót has the norm N ^ jq (a )  = ± 2 V • d with v G {0 ,1} and v = 1 
at m ost, i f  D  =  3(mod 4) (that is, ± 2 V • d is a discriminantaI
principal factor for K ), then Oi\J~Djd G O is an algebraic integer, 
exactly with the complementary discriminantaI principal factor 
o f iV ^ |g (a) =  ± 2 V • d as norm, JV^|g(av^D/d) =  =p2v • D /d , and
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the following characterization
an algebraic integer ßG {<*, a ^ D /d ) (C

N KlQ(ß) = ± 2 v -c :
1)Î R |cj(^)| =  2V • min {d ,D  min
2) \ß\ =  |a | • sJcJd. = m in{ |a |, |a | • 7*}.
3) \ ß \ < \ ß \ - l c

PROOF. 1. а) <*=* b): 
c =  min{d, D/d}Ф=>- c/d = m in{l, D  m in{l, «*=>• \J c /d  =
=  m in { l,6/d} =  m in { l,7d} G Q (V^D)-

a) <==> c):
Is t case, c = d : d =  m in{d ,D /d ]  <=> d < D /d , but D  is squarefree, in 
particular not a square, whence even d < D /d .
2nd case, c =  D /d  : D /d  =  m in{d ,D /d }  <£=> D /d  < d (strict inequaHty 
by the same argument as in the Ist case) and further d can be w ritten in 
the form d = D /(D /d ) .

c) <=> d) <==> e): 
c < D /c  <==> 1 <  D /c 2 =  (S /c )2 <=> 1 <  8 /c  =  7c, resp., c <  6 .

2 . a) If d|JV/qg(a), then iVW|Q(a<S) =  N K\Q (a)N x\Q (8 ) =
- D N x |Q(a ) ls divisible by d2, because d\D . Hence, by Proposition 5.6,3, 
a£  G dCbc, i*e., a 8 /d  G O ^ . Further iV^|g(a<5/d) =  N K \Q(oc)Nx\Q(8 )/cP 
= —(D /d)N x\Q (& )/d . Moreover, if D  =  l(m od 4) and a  G Ö =  Z ® ZÍ, 
then d|ZJ ==> d =  l(m od 2), i.e., 2 +  d, d is coprime w ith the conductor 
cond(0) =  2Cbf, and therefore, as 6 G Ö, c*6 G Ö П d ö #  =  dO, i.e., a 8 /d  
is an integer in Ö, not only in O x-

b) Using 1 ., we obtain \Nx\Q (ß)\ =  2vc =  2v min {d ,D /d }  <=> c =
=  m in{d ,D /d )  <==> V ^  =  n d n { l,7 ^} 4==> |a |yJcjd — m in { |a |, |a |7d}, 
and furthermore, 4= ^  1 < Jc <==> \ß\ < \ß \jc- 
It only remains to show tha t \ß\ =  |a |^Jc/d.
Is t case, ß — a: then c =  d and otyJcfd — a = ß.
2nd case, ß  =  a 8 /d: then c =  D /d  and ot^Jc/d =  a y /D /d ^  — a 6 /d  = ß.

□
Now it is easy to show, tha t only a generator a  of the differential prin

cipal factor w ith the absolutely smaller (minimal) discriminantal principal 
factor norm in the actual couple can be a lattice minimum in the geometric 
Minkowski image of the maximal order O x ,  or also of the suborder 0 ,  if 
D =  l(m od 4) and a  G O.

C orollary 5.8. (A restriction for lattice minima w ith discriminantal 
divisor norm.)

Let K  =  Q (V D ) be a reai quadratic fíeld. O denotes the maximal 
order o f K , or also the suborder Z ® Zv^D in the case D  EE 1 (m od 4).
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Further let eQ G Е к , Ч >  1 be the fundamental unit o f O. FinaUy 
d G N , d\D is a discriminantal divisor for K , and а  G O is supposed to 
be generator o f a difFerental principal factor in O with norm N ^ |q (o ) =  
=  dz2v • d, V G {O5I} (t; =  1 = >  D  =  3(mod 4)). а  can be a lattice 
m inim um  in O j at mostj i f  d =  min {d ,D /d } , that is,

\а\ ф m in{|a |, \a\ • 7d] = >  ot ¢ M in (O ).

In particular, i f  |iV ^|Q(a)| =  D j then а  ^ M in (O ) . Furtherj in this case, 
a. — ± 6g • S for some n G Z,

PROOF, a) Let a  G O and |AT#|Q(a)| =  2vd. If |a | ф m in{ |a |, |<2 |7 d},
i.e., \а\ >  \a\jd ^=^ d > Sj then also the conjugate satisfies |(or7^) |̂ =  
=  W \ * l7 dl =  I0 l̂ * ! "  à/d\ =  И  • S/d  < |o:'|. The point a y d in the norm 
rectangle of a  is an algebraic integer in O j by Proposition 5.6, whence 
a ¢: M in (O ) .

b) In particular, if d =  |iV#|Q(a)| =  D j then D jd  — D jD  — 1 <  D  =  
=  d and hence, by a), a ¢. M in (O ) . □

The next theorem transforms a geometric problem into a diophantine 
problem, showing tha t for the existence of a nonzero lattice point within 
the interior of the norm rectangle of an algebraic integer with discrimi
nantal principal factor norm it is necessary and sufficient tha t a certain 
system of two binary linear diophantine inequalities (the so caUed “critical 
norm rectangle inequaHties”) with congruential constraints, depending on 
the residue class of the radicand D  modulo 4, has a couple of (rational) 
integers as a solution.

This is an effectful device for the number geometric treatm ent of al
gebraic integers , whose norms are neither constant (as in Theorem 4.2) 
nor absolutely bounded (as in Theorem 2.3), but increase together with 
the radicand D  and are only relatively bounded by 2V D .

T heorem  5*9. (A diophantine criterion for the existence of a non
trivial lattice point within the norm rectangle of an algebraic integer with 
discriminantal principal factor norm.)

Let K  = Q(y^D) be o f arbitrary D-type. Further suppose that d G N 7 
d\D is a discriminantal divisor for K  (not divisible by 2, in the case o f D- 
type IB), with associated normalized radical 7  =  7d = S/d.

I» Assume that
either K  is o f D-type I, and а  G O (= О к ), I^A'|q(<*)l ~  d is an alge
braic integer with discriminantal principal factor norm, in particular, 
non-escalatory in the case o f D-type IB,
or K  is o f D -type II, and а  G O _in the suborder is the generator o f 
an ambiguous principal ideal with |ІѴд-|д(а)| =  d.
Then а  ¢. M in (O ), exactly i f  there exists a couple o f integers 
(k, 1) G Z2 with the properties
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(1) 0 < k +  /7  <  1,
(2) | * - Z 7 | < l .

2 . Assume that
either K  is o f D -type Ш, and а  E O # , |іУ ^ |д(а)| =  2d is an algebraic 
integer with escaIatory discriminantaI principal factor norm (divisible

by 2),'
or K  is o f D -type II, and а  E O x  in the maximal order generates an 
ambiguous principal ideal with |A ^ |Q (a)| =  d.
Then esc ¢: M in (O x )? exactly i f  there exists a couple o f integers 
(k, 1) E Z 2 with the properties
(1) 0 <  k +  /7 <  2 ,

(2)  \k — /7 | <  2 ,
(3) k = l(m od 2).

PROOF. Suppose at first that O is either the maximal order or 
the suborder of K .  Let а  E O j |AT#|q(a)| =  2vd with v E {0,1} 
(v =  1 = >  D =  3(mod 4)), and d E N , d|Z>. Then а  ^  0 and generally:
0  ^ M in (O )j ifF there exists a point $ E O such tha t 0 < |i9| <  |a | 
and |$ '| <  |a*|, i.e., a non-trivial lattice point within the norm rectan
gle of a. The number £ =  |$j • \Nx\Q (oi)/a\ = |$| • |a '|  E O has the 
metrical -properties 0 <  £ — |iV^|Q(a)|. |^ |/ |a |  <  \Nx\Q(&)\ =  2vd,
I^l — I^RT|Q(a )l * l^*l/l0 !̂ <  I^JV|Q(°OI — 2vd, and the divisibility prop- 
erty N K\Q( 0  =  iV *|g(|tf|) • iV ^ |q ( |a '|)  =  iV*r|q(a) • iV#|q(tf), i.e., 2wd =  
=  |^АГ|д(«)| I K̂\Q(£)• Write £ =  (x +  with G Z, n G {1,2}
(n =  2 Ф=Ф D  =  l(m od 4)), in not necessarily reduced representation (if 
n =  2). According to Proposition 5.6,2, d\xJ because d\N x\c$(0  and d\D . 
If we set k =  x /d , Î =  y, then k J 1 E Z and

fc +  /7 =  x /d +  y 8 /d  =  (x +  y£)/d  =  n£ /d  <  2vn,
(k +  /7 )' =  it -  /7  =  n f '/d  < 2vn.

I e Now let O be the suborder of K  again. In the case a  E O j 
|7Ѵ^|д(а)| =  dJ we have v =  0 , n =  1 and hence 0 < k + l j  <  1, \k — lj \  < 1. 
Conversely assume (k ,l)  E Z2, such tha t 0 < k + l j  <  1, |Л: — /7 1 < 1. Then 
the number d — d(k+ lj)-\a /N x\Q (o t)\ = d(k + l^ )- \a \/d  = (k + l~/)-\a\ has 
thedesiredm etricalpropertiesO  < d < \a\ and |i9'| =  \k — l^ \ ’\aê\ < |a '|.  It 
only remains to show tha t d E O. d (k+ l7 ) — dk+ di8 /d  = x + y 8 E O j if we 
put X = dkJ y = Ij Xj y E Z. Then N x\Q (x+ y8 ) = X2- D y 2 = d2k2—D l2 =  
=  d • (dk2 -  I2D Id), i.e., d I N K\q(x  +  y8). Now d2 [N K]Q((x  +  y 6 ) • |a |)  
and Proposition 5.6,3 shows that (x +  y8) • \a\ E dO x  П O = dO, taking 
into account, tha t 2 +  d, if D  =  l(m od 4). Hence d — (x  +  y8 ) • \a \/d  E O=

2 . In the case D  =  l(m od 4), we have v =  0, n =  2 and hence 
0 <  k +  /7  < 2 , |fc — Z7 | <  2. B y Theorem 1.1,2, x = y(mod 2) and
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hence k =  dk =  x =  y =  /(mod 2), because d =  l(m od 2). In the case 
D = 3(mod 4) we have v =  1, n =  1 and hence 0 < fc+ /7  < 2, \k — lj \  < 2. 
X 2 — Dy2 =  X 2 — y 2 =  x — y(mod 2) shows that 2 |iV # |q (x  +  y£), ifF 
x =  y(mod 2), and hence A: = dk =  x ~  y =  /(mod 2), because 
d = l(m od 2).
Conversely let (&,/) G Z2 such tha t 0 < k + /7 <  2, |fc — /7 | <  2 and 
k =  /(mod 2). Then the number $ =  2ѵ -1с?(& +  /7 ) • |a /iV ^ |q (a ) | =  
=  2v“ 1d(A: +  /7 ) • |a | / ( 2vd) =  (A: +  /7 ) • |a |/2  has the desired metrical prop
erties 0 <  d < \a\ and |i?'| =  |Л: — /7 | • |or'|/2 < |a '|.  But we must show that 
d G О к • If we set x  =  dk, y =  /, x ,y  G Z, then d(A: +  /7 ) =  dk +  dl8 /d  = 
= x  +  y6 G O  C Ö K , t f* |q (*  +  ytf) =  *2 -  i V  =  №  -  £>/2 =  
d \d k 2—l2D /d ), i.e., d |A # |q (x+ y£). First consider the case D  =  l(m od 4). 
Then v =  0, d = \d (k  +  /7 ) • |a |/d ,  and x =  dk =  k =  1 =  y(mod 2), be
cause d =  l(m od 2). Hence, according to Theorem 1.1,2, x +  y<S G 2 0 ^  
and therefore 4 |iV /q q (x  +  y6). As 2 +  d, also d | fA f# |q (x  +  y£) =  
iV ^ |q ((-(x  +  y8 )). Now cP |iV ^ |q (|(x  +  y6) • \a\) and Proposition 5.6,3 
shows tha t | ( x  +  y8 ) • |a | G dÖK , i-e., $ =  |( x  +  y£) • |a |/ d  G CV- Second 
consider the case D  =  3(mod 4). Then v =  1, $ =  d(k +  /7 )- |a | / ( 2d) and 
x =  dk =  k =  / =  y(mod 2), because d =  l(m od 2). Hence, by the above 
consideration, x =  y(mod 2) =Ф- 2 |iV ^|q(x +  y£). And, as 2 +  d, also 
2d|iV#|q(x +  y£). Now (2d)2 |iV #|q((x +  yS) • |a |)  and Proposition 5.6,4 
shows that (x +  y 6 ) • |a | G 2dO x, i*e., $ =  (x +  y6 ) • |a |/(2 d ) G О к • □

Now we analyze the diophantine criterion for the existence of a non
trivial lattice point within the norm rectangle of an algebraic integer with 
discriminantal principal factor norm, which is henceforth supposed to be 
minimal in its coset.

Lem m a 5.10. (The solutions of the critical systems of binary linear 
diophantine inequalities with congruential constraints.)

Let 7 G R , 7 >  1.
1* There are no couples o f integers (k, /) G Z2 with the properties

(1) 0 <  k +  /7 <  1,
(2) |i: -  l7 | <  1.

2. Further there does not exist a couple o f integers (k ,l)  G Z2 with the
properties
(1) 0 <  k +  /7  <  2 ,

(2 ) \ k - h \ < 2 ,
(3) k =  l(m od 2).

PROOF. 1. Lemma 2.1 yields the basic restriction for a couple 
(&,/) G Z2 with jA: + /7) < 1 and |k — /7J < 1 : |Arj, |/7| < 1 and hence 
\l\ <  l /7  < 1/1 =  1. Therefore only the trivial couple (0,0) is a candidate. 
But, as we demand 0 < k +  /7, no couple remains.
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2. The fundamental restriction for a couple (k, /) G Z2 with 
|fc+/7 | <  2 and \k — lj \  < 2 comes from Lemma 2.1: \k\, |/7| < 2 and hence 
|/| <  2 /7  < 2/1 =  2. Thus there are basically 32 =  9 possibilities for 
the couple (k ,l)  G {—1 ,0 ,1}2. Next we use condition k =  /(mod 2) to 
exclude (k ,l)  G { ( -1 ,0 ) ,(0 ,-1 ) ,(0 ,1 ) ,(1 ,0 )} , leaving 9 — 4 =  5 pos
sibilities. Further 0 < k + /7 together with 7  >  1 discourages 
(k, /) G {(0,0), (—1, —1), (1, -1 )}  and there remain 5 — 3 =  2 possible cou
ples. Finally & +  /7  <  2, 7  >  1 implies (k ,l)  ф (1,1), andfrom  jk — /7 1 < 2, 
7  >  1 we infer k • / ф —1 and hence (&,/) 7̂  (—1,1). Thus even the last 
two possibilities are culled out. □

Now we have solved the diophantine problem and see th a t the critical 
system of norm rectangle inequalities for an algebraic integer with minimal 
discriminantal principal factor norm is insoluble in any case.

Therefore, as a conclusion, we prove in Theorem 5.11 th a t an algebraic 
integer a  with minimal discriminantal principal factormorm can always be 
found among the lattice minima in the geometric Minkowski image as well 
of the maximal order О к , as of the suborder O in the case of D-type 
II, if a  G O . This result can be obtained by the geometrical Theorem
2.3 only in the cases, when the discriminantal principal factor norm is 
“sufficiently small” , hence not always for odd radicands D  =  3(mod 4) or 
D  =  l(m od 4).

T heorem  5.11. (Main theorem on algebraic integers, whose norm is 
a minimal discriminantal principal factor.)

Let K  =  Q (V D )  be a real quadratic field, and d G N , d\D a minimal 
discriminantal principal factor for K , that is, d =  min{d, D /d }, or, in 
terms o f the associated normalized radical, 7  =  7d =  V D /d  >  1. Further 
suppose that а  G О к  is an algebraic integer with norm  |N ^ |q (a ) | =  2vd, 
where v G {0 ,1} and v =  1 at most, i f  K  is o f D-type IB, D  =  3(mod 4).

1 . H  K  is o f D -type IA, D  =  2(mod 4), then а  G М іп (О к ).
2 . I f  K  is o f D -type IB, D  =  3(m od 4), and 7V^|q(a) is non-esca^latory, 

that is, v =  0 resp. 2 +  iV # |q(a), then а  G М іп (О к)-
3. I f  K  is o f D -type II, D  =  1 (mod 4), and а  G O  =  Z ® Z \fD  is 

contained in the suborder, then а  G M in(O ).

1 ., 2 ., 3. are the easy cases, where |iV ^ |q (a)| =  d < y/D , and which 
therefore could have been treated by Theorem 2.3 directly, too.

4. I f  K  is o f D -type IB, D  =  3(m od 4), and а  has an escalatory norm, 
that is, v = 1 resp. 2 |iV #|q(a), then nevertheless а  G M in {O x)-

5. I f  K  is o f D -type II, D  =  1/m od 4), and а  G О к  =  Z 0  Z |(1  +  V D )  
is an arbitrary integer in the maximal order, then nevertheless
а  G М іп (О к)-

4., 5. are the difficult cases, where Theorem 2.3 generally fails, because in
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4. |AV|Q(a )l =  2d need not be smaller than V D 9 although d < V D 9 and 
in 5 . |AV|q(oOI =  d may be greater than |  V D 9 though d < V D .

Summarized: In real quadratic ßelds o f arbitrary B -type an algebraic 
integer а  with minimal discriminantal principal factor norm is a lattice 
m inim um  in the maximal order О к ? &nd also in the suborder O 9 i f  
D  =  1 (mod 4) and а  G O.

P R O O F .  In the cases 1., 2., 3. for the algebraic integer а  G O = 
Z ф ZS first Theorem 5.9,1 brings a translation of the minimality of а  G O 
in a critical system of binary linear diophantine inequalities, and then 
Lemma 5.10,1 shows the insolubility of this systein: а  G M in (O ) 9 ex
actly if there are no couples of integers (k 9 /) G Z2 with the properties 
0 <  k +  /7 <  1, j k — /7 | <  1, and indeed there are none.

In the cases 4 .,5. Theorem 5.9,2 translates the minimality of а  G О к  
in a critical system of binary linear diophantine inequalities, with congru- 
ential constraints, and Lemma 5.10,2 shows tha t these have no solutions ei
ther: а  G М іп (О к ), if and only if there is no couple of integers (fc, 1) G Z2 
with 0 <  k + /7 < 2, jk — l7 | < 2, k =  l(mod  2), and really there does not 
exist one, □

T heorem  5.12. (Existence of principal factors in the suborder 
O =  Z 0  Z V D  of a real quadratic D-type II field of PF-type I.)

Let K  =  Q (VD) be real quadratic with radicand D  =  lfm od 4) and 
with normpositive fundamental unit9 e0 G Е к ,  e0 >  1 and N K |q(c) =  +1, 
and suppose that 7]0 £ F ^ 5 770 > 1 Is the fundamental unit o f the suborder
O .

1. If  a  G О к  Is the generator o f a non-trivial differental principal factor 
in K 9 with norm  AV|q (a )  =  d9 d G Z 9 d\D 9 \d\ ¢ { I 9D }, then 
either already а  itself belongs to the suborder O (in fact, always, 
i f D  =  lfm od 8), or at most the third power a 3 is contained in the 
suborder O. But a 3 G dQ is necessarily imprim itive in O 9 whereas 
Qpjd is still contained in the suborder O 9 has norm d, and is generator 
o f a non-trivial primitive ambiguous principal ideal in K .

2 . There exists a lattice m inimum <p G M in (O ) in the ßrst prim itive 
period o f O 9 1 < <p < Tjo9 such that AV|q(y>)|^V|Q*
Further9 i f d  G М іп (О к ) is a la ttice m in im um  in the  ßrst prim itive  
period o f O je, 1 < d < е0, such that  AV|q($ ) | R>K|Q? then

a) p> =  d in the case (Е к  : E o ) — 1 ,
b) xp —  $ 3 / | A V | q ( $ ) |  ~  eo • d but  d ,  e 2  • d ¢, O in the  case 

(Е к  : E o ) — 3.
h i any case  A V | q ( y > )  =  A V | q *

PROOF. 1. Assume jA V |q(a)l =- d w ith d G Z, d|J9. As 
i5 =  1 (m od 4), D 9 and hence in particu lar d 9 is coprim e w ith 2. But



Lattice minima and units in real quadratic number fields 73

then also g c d (a O x ,2 0 x )O x ,  because a O x  L> d O x, O x  =  d O x  + %Ox C 
a O x  +  2O x  C O x-  Now with the aid of Proposition 4.1: in the case 
D  =  l(m od 8): gcd(a,2 ) =  1 implies a E O already, and in the case 
D  =  5(rnod 8): from gcd(a,2 ) =  1 follows either a E O  or a ¢. Ö, 
a.3 E O . In the la tter case a 3 is imprimitive in Ö, because d?\N x\Q (a3), 
whence a 3 E dÖ K > by Proposition 5.6,3, and thus a 3 E O  П dÖK — dO , 
because d = l(m od 2). Hence a 3/d  is also contained in O  and a 3/d  
is primitive in O, by Proposition 5.4,1, as N ^ ^ ( a 3/d )  =  N x\Q (a )3/cP 
= d3/d 2 = d \R K]Q =  D.

2 . By 1 ., Theorem 5.11,3, and the periodicity of M in (O )  (see §2 , 
section 6), there exists p  E M in (O ), 1 <  p  < rjo, N ^ |q (^0 | R x |Q- In 
fact also a minimum d E M in (O x ) ,  1 <  d < 60, N x |q ($ ) i R x |Q exists 
by Theorem 5.11,5 and the periodicity of M in (O x )»

a) If (E x  ' E o )  =  1, i.e., 770 =  ô> then 1 < d < €0 and the uniqueness 
statem ent in Proposition 5.4,3 for the maximal order O x  immediately 
implies p  =  d.

b) If (E x  : E o )  =  3, i.e., 77<> =  6¾, then 1 <  $ <  60 implies
1 < d • 60 < ô < ^o- Now, putting d =  |iV ^|q($)|, d 3/d  E O by 1., 
and, as 1 <  d < 60 implies d 2jd  =  60, by Proposition 5.4,2, we have 
d3/d  =  d • d2/d  — d • 60 G Ch Together with 1 <  <p <  770, the uniqueness 
statem ent in Proposition 5.4,3 for the suborder O shows p  =  $*6o- Finally, 
as N x\Q (to) — +1  : Nx\Q(<fi) =  ^A'|Q(^o)* N K\Q(ő) = N K\Q(d). □

Remark. W ith the aid of Theorem 5.12,2,b we finally obtain a proof 
for the fact, mentioned in Proposition 4.1,8 already, th a t under the as
sumptions of Theorem 5.12

P L (O )  =  P L (O x )(mod 4).

(Compare also with F. HALTER-KOCH [11], pag. 37.) For this purpose we 
assume ip — v™(l) E M in (O ), 2m =  P L(O )  and d =  2/ f ( l )  G M in (O x ) , 
2n =  P L (O x )  for some ттг,п G N , according to Corollary 5.5. From 
Theorem 5.12,2.b we know іѴЛ'|д (^ )  =  N x\Q (d). Therefore ( — l ) m — 
=  sg n (N K |Q ^ r ( l) )  =  ^ ^ (^ A '|Q ^ r ( l) )  =  (_ 1 )n? which implies m  =  
=  n(m od 2), and hence 2m  =  2n(m od 4). Here we make use of a weak 
consequence of Scheffler’s formula (see the Remark after Corollary 3.4), 
concerning the sign of the norm of a lattice minimum: s g n (N x |Q ^ i(l)) =  
(—l) J for all j  >  0 .

§6 . Tables and recognizable tendencies

The first six tables are associated in successive pairs. Tables 1, 3, 5, 
7 list relative intervals of length IO4 with upper bounds from IO4 to IO5
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and two samples at 5 • IO5 and 106. On the other hand in Tables 2 , 4, 6 
absolute intervals w ith upper bounds between 50 and IO5 are recorded.

Table 1 and Table 2 reveal the remarkable constancy of the percentage 
of squarefree radicands around 60.793%, thus confirming the asymptotic 
approximation of the absolute percentage of all squarefree numbers by 
100 • ^2 ~  60.792 (cfr. D. 3HANKS [30], pag. 26).

Further the equipartition of squarefree positive integers among the 
residue classes =  l,2 ,3 (m o d  4) and =  l , 5(mod 8) is striking. Only for 
very small radicands (at the begin of Table 2) the percentage of D-type I 
fields is a Uttle bit higher and decreases from about 73% towards 67%. But 
the la tter limit is attained akeady for D  «  IO4 and so this initial effect 
does not appeax in Table 1.

Table 3 clearly shows an increasing tendency of PF-type I with small 
fluctuations. This behaviour can be recognized in each of the individual 
D-types, with the exception of D-type IB, where a priori only PF-type I 
is possible ( 100%), because —1 is a quadratic non-residue for all primes 
p =  3(mod 4) (see Proposition 5.2). But the relative percentages differ for 
D-type IA and for D-type II (where the subdivision in types IIA and IIB 
does not reveal remarkable differences); we have an increase from 82% to 
85% for D-type IA, from 57% to 67% for D-type II, and from 80% to  84% 
for all D-types together. An explanation for the fact tha t D-type IA shows 
almost the same values as aU D-types together would be the equipartition 
of squarefree positive integers D  =  2(mod4) in those w ith y  =  l(m od4) 
and the others with y  =  3(mod4).

In Table 4 the osciUations of relative frequencies are smoothened and 
now PF-type I shows even a monotonic increasing behaviour: an increase 
from 70% to  84% for D-type IA, from 25% to 62% for D-type II, and from 
68% to 82% for all D-types together. The frequencies for the upper bound 
15000 coincide with those mentioned by H.C. WlLLIAMS [38], pag. 272.

For statistical results concerning the solvability of the Pellian minus 
equation in arbitrary orders of real quadratic fields compare W. PATZ [24] 
{D <  104) or B. D. BEACH and H. C. WlLLIAMS [3] {D < 106). Concerning 
more special solutions of PeUian equations see H.C. WlLLIAMS and C. R. ZARNKE [34] (D  <  106), [35] (D  < 2 • 106).

In Table 5 the percentage of D-type IIB fields with unit group index 
3 moves around 70.97% with deviations from —3.61% to +2.65%. The 
stability seems to be slightly better for PF-type I, showing deviations from 
—3.31% to +3.10% around 71.81%, than for PF-type II with deviations 
from —4.18% to +3.02% around 69.59%.

Again the relative effects are smoothened in Table 6 and now a slow 
decrease of unit group index 3 is visible, for PF-type I almost monotonic. 
This tendency is probably due to the increasing density of discriminants 
of totaUy real cubic “auxiliary fields” (see §4, Tables A,B). We have a 
decrease from 100% to 72% for PF-type I, from 86% to 70% for PF-type 
II, and from 91% for both PF-types together. Thus the frequency of unit
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group index 3 for PF-type I fields is obviously a little bit higher than  for 
PF-type II fields»

Table 7 records the increasing maximal period lengths, bounded from 
above by C  • v ^ lo g lo g i9 ( C  =  const.). Although the intervals are rela
tive, they are big enough to reveal monotonic increasing behaviour. The 
vakæs for P L (O ) 1 i.e., the period length of the continued fraction expan
sion of \^D 1 agree w ith those in the table of H. C. W lLLIAMS [37] (except 
for the value 2492, which is only a local maximum, because the interval 
length IO4 is already too smaU here to catch the real hichamp). In [37] the 
corresponding hichamp radicands D  can also be found and the constant C  
is specified. The hsted expression [л/P lo g lo g D j is calculated for the up
per interval bounds, not for the individual hichamp radicands. The values 
for P L (O x ) ,  he., the period length of the continued fraction expansion
of | ( 1  +  VD )1 are only considered for D  =  l(m od4). For more details 
compare R. KoRTUM and G. M cNlEL [7] (D  <  5 • 104), D. SHANKS [29], 
B. D. BEACH and H. C. WlLLIAMS [2] (D  <  1 .2 -106), or H. C. WlLLIAMS 
[37] (D  < 2 - 1 0 9).

Moreover we have made statistics of the ratios P L (O ) /P L (O x )  in 
the case of D -type II fields, and also of the position of the twofold 2бо of 
the fundam ental unit €o > 1 of О к  in the first primitive period of M in(O )  
in the case of unit group index 3 for radicands D  =  5(mod8), D  ^  5.

Except for fluctuations, due to small periods, these considerations de
tect a very close coincidence of P L (O )  and P L (O x )  in the case of unit 
group index 1 for radicands D  =  l,5(m od8), whereas P L (O )  æ 3 -P L (O x )  
in the case of unit group index 3 for D  =  5(mod8). However, these pro
portions are distorted for small period lengths and one has to proceed 
up to rather big radicands in order to  асЫеѵе long periods and to re
alize the crystallized phenomena offered by the lattice minima. Possi
ble deviations are 0.33 <  P L (O )/P L (O x )  <  2.43 in the case of unit 
group index 1 for radicands D  =  l,5 (m od8), and on the other hand 
1.36 <  P L (O )/P L (O x )  <  5.00 in the case of unit group index 3 for 
D = 5(mod8).

For fields with radicand D  =  5(mod8), D ф 5 and unit group index 3 
the positions j ,  k £ N  of the twofolds of the fundam ental unit €o > 1 of O x  
and of its square el among the lattice minima in O 1 tha t is, 2ec — ^ i( I )  and 
2el =  ^ i( I )  in M in (O ) 1 satisfy j  «  \P L (G )  and k «  | P L ( O ) 1 but again 
for small period lengths deviations in the range 0.20 <  j / P L ( 0 )  <  0.42 
are possible. Hence 0.58 <  k /P L (O )  <  0.80, as a consequence of the 
symmetry property of norms of lattice minima with respect to the first 
primitive period in M in (O )  (§2 , section 6 , Remark). This empirical result 
suggests a further modification of the unit calculation:

RemarL  (A third variant of the unit algorithm.)
For large radicands D = 5(mod8) almost exactly half of the computer
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time can be saved by the application of the second algorithmic version 
(Corollary 5.5 and the Remark afterwards) to the maximal order О к ,  be., 
the expansion of | ( 1  +  V D )  ) or | ( - 1  +  V~D) instead of V~D (thus giving 
up the uniform inialization, according to the first modification, Corollary 
4.3), if (Е к  • E o )  =  3, and if (Е к  • E o )  =  1, the amount of needed time 
remains approximately the same.

The typical phenomena for long periods show tha t the spacing of the 
minima is then comparable in both orders, and tha t the m agnitude of the
г-th  lattice minimum v[(l) (i >  0) is approximately ^ i(I)  ~  e J PL^°K  ̂ «

• /pLi(o}Tj0' as well in М іп (О к )  as in M m (O ), where e0 > 1 denotes the
fundamental unit in 0 # , and rjo >  1 th e fundamental unit in O.

Table 8 contains typical examples of D-type II fileds with large pe
riod lengths and various combinations of PF-types and unit group indices. 
Considered are all radicands D  =  l(m od4), IO6 < D < IO6 +  1850 with 
P L ( 0 K ) > 1500, if D  EE l(m od8), P L (O ) > 1490, if D  =  5(mod8), 
(E K : E 0 ) =  3, and P L(O ) > 400, if D = 5(mod8), (E K : E 0 ) = 1. 
Similarly as in Tables A,B we denote by P F  the actual minimaI non-trivial 
discriminantal principal factor in the field.

All tables have been computed at the EDV-center of the Karl-Fran- 
zens-Universität in Graz on a VAX 785 computer. The programs were 
w ritten in PASCAL.
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TABLE 1 . (Relative numbers and frequencies of D-types.)

radicands total IA IB
# % # % # %

0 < D  <  10000 6082 60.82 2027 33.33 2030 33.38
10000 < D  < 20000 6077 60.77 2029 33.39 2025 33.32
20000 < D  < 30000 6082 60.82 2025 33.30 2030 33.38
30000 < D <  40000 6068 60.68 2023 33.34 2022 33.32
40000 < D <  50000 6091 60.91 2030 33.33 2028 33.30
50000 < D  < 60000 6072 60.72 2027 33.38 2026 33.37
60000 < D  < 70000 6083 60.83 2024 33.27 2029 33.36
70000 < D  < 80000 6071 60.71 2021 33.29 2022 33.31
80000 < D <  90000 6086 60.86 2035 33.44 2024 33.26

90000 < D  <  100000 6081 60.81 2026 33.32 2031 33.40

500000 < D  < 510000 6082 60.82 2027 33.33 2029 33.36
1000000 < D <  1010000 6079 60.79 2025 33.31 2027 33.34

radicands ÍÍ IIA I I B
# % # % # %

0 < D <  10000 2025 33.30 1009 16.59 1016 16.71
10000 < D  < 20000 2023 33.29 1012 16.65 1011 16.64
20000 < D  < 30000 2027 33.33 1014 16.67 1013 16.66
30000 < D  < 40000 2023 33.34 1009 16.63 1014 16.71
40000 < D  < 50000 2033 33.38 1017 16.70 1016 16.68
50000 < D  <  60000 2019 33.25 1011 16.65 1008 16.60
60000 < D <  70000 2030 33.37 1013 16.65 1017 16.72
70000 < D  < 80000 2028 33.41 1015 16.72 1013 16.69
80000 < D  <  90000 2027 33.31 1015 16.68 1012 16.63

90000 < D  < 100000 2024 33.28 1010 16.61 1014 16.68

500000 < D  < 510000 2026 33.31 1013 16.66 1013 16.66
1000000 < D  < 1010000 2027 33.34 1015 16.70 1012 16.65
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TABLE 2 . (Absolute numbers and frequencies of D-types.)

radicands total IA IB
# % # % # %

2 < D  <  50 30 60.00 11 36.67 11 36.67
2 <  D  <  100 60 60.00 20 33.33 21 35.00
2 < D  < 200 121 60.50 41 33.88 42 34.71
2 < D  <  500 305 61.00 102 33.44 103 33.77
2 < D <  1000 607 60.70 204 33.61 204 33.61
2 < D  <  2000 1214 60.70 404 33.28 408 33.61
2 < D  < 5000 3041 60.82 1015 33.38 1018 33.48
2 < D  <  10000 6082 60.82 2027 33.33 2030 33.38
2 < D  < 15000 9119 60.79 3039 33.33 3043 33.37
2 < D <  20000 12159 60.80 4056 33.36 4055 33.35
2 < D  <  50000 30400 60.80 10134 33.34 10135 33.34
2 < D <  100000 60793 60.79 20267 33.34 20267 33.34

radicands II IIA IIB
# % # % # %

2 < D  <  50 8 26.67 3 10.00 5 16.67
2 <  D <  100 19 31.67 8 13.33 11 18.33
2 < D <  200 38 31.41 17 14.05 21 17.36
2 < D <  500 100 32.79 48 15.73 52 17.05
2 < D  <  1000 199 32.78 97 15.98 102 16.80
2 < D <  2000 402 33.11 199 16.39 203 16.72
2 < D <  5000 1008 33.15 502 16.51 506 16.64
2 <  D  < 10000 2025 33.30 1009 16.59 1016 16.71
2 <  D  <  15000 3037 33.30 1515 16.61 1522 16.69
2 < D  <  20000 4048 33.29 2021 16.62 2027 16.67
2 <  D  <  50000 10131 33.33 5061 16.65 5070 16.68
2 <  D  <  100000 20259 33.33 10125 16.66 10134 16.67
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TABLE 3. (Relative numbers and frequencies of PF-type I 
in the various D-types.)

radicands total IA IB
# % # % # %

0 <  D  <  10000 4838 79.55 1658 81.80 2030 100.00
1000 < D  <  2000 4939 81.27 1689 83.24 2025 100.00
2000 <  D  <  3000 4988 82.01 1710 84.44 2030 100.00
3000 < D  < 4000 4991 82.25 1704 84.23 2022 100.00
4000 < D  < 5000 5007 82.20 1711 84.29 2028 100.00
5000 < D  <  6000 5017 82.63 1714 84.56 2026 100.00
6000 < D  <  7000 5034 82.76 1707 84.34 2029 100.00
7000 < D  < 8000 5018 82.66 1713 84.76 2022 100.00
8000 < D  <  9000 5057 83.09 1720 84.52 2024 100.00

9000 < D  <  100000 5054 83.11 1722 85.00 2031 100.00
500000 < D  <  510000 5137 84.46 1737 85.69 2029 100.00

1000000 < D  < 1010000 5119 84.21 1729 85.38 2027 100.00

radicands II IIA IIB
# % # % # %

0 < D  <  10000 1150 56.79 576 57.09 574 56.50
1000 <  D  < 2000 1225 60.55 612 60.47 613 60.63
2000 < D  < 3000 1248 61.57 620 61.14 628 61.99
3000 < D <  4000 1265 62.53 638 63.23 627 61.83
4000 <  D  < 5000 1268 62.37 633 62.24 635 62.50
5000 <  D <  6000 1277 63.25 639 63.21 638 63.29
6000 <  D <  7000 1298 63.94 649 64.07 649 63.82
7000 <  D  <  8000 1283 63.26 649 63.94 634 62.59
8000 <  D  < 9000 1313 64.78 654 64.43 659 65.12

9000 <  D  < 100000 1301 64.28 651 64.46 650 64.10
500000 < D <  510000 1371 67.67 686 67.72 685 67.62

1000000 < D  <  1010000 1363 67.24 679 66.90 684 67.59
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TABLE 4. (Absolute numbers and frequencies of PF-type I 
in the various D-types.)

radicands total IA IB
# % # % # %

2 < D  <  50 21 70.00 8 72.73 11 100.00
2 <  D <  100 41 68.33 14 70.00 21 100.00
2 <  D  < 200 86 71.07 31 75.61 42 100.00
2 < D  < 500 228 74.75 79 77.45 103 100.00

2 < D  <  1000 463 76.28 161 78.92 204 100.00
2 < D <  2000 936 77.10 321 79.46 408 100.00
2 < D  <  5000 2393 78.69 823 81.08 1018 100.00

2 <  D <  10000 4838 79.55 1658 81.80 2030 100.00
2 < D  <  15000 7306 80.12 2500 82.26 3043 100.00
2 <  D <  20000 9777 80.41 3347 82.52 4055 100.00
2 < D  <  50000 24763 81.46 8472 83.60 10135 100.00

2 < D  <  100000 49943 82.15 17048 84.12 20267 100.00

radicands II IIA IIB
# % # % # %

2 <  D <  50 2 25.00 1 33.33 1 20.00
2 <  D  < 100 6 31.58 2 25.00 4 36.36
2 < D <  200 13 34.21 6 35.29 7 33.33
2 < D  <  500 46 46.00 23 47.92 23 44.23

2 <  D <  1000 98 49.25 51 52.58 47 46.08
2 <  D <  2000 207 51.49 106 53.27 101 49.75
2 <  D <  5000 552 54.76 277 55.18 275 54.35

2 < D <  10000 1150 56.79 576 57.09 574 56.50
2 <  D  <  15000 1763 58.05 886 58.48 877 57.62
2 <  D  <  20000 2375 58.67 1188 58.78 1187 58.56
2 < D  <  50000 6156 60.76 3079 60.84 3077 60.69

2 <  D <  100000 12628 62.33 6321 62.43 6307 62.24
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TABLE 5. (Relative numbers and frequencies of unit group index 
( Е к '■ E o )  =  3 in both PF-types for =  5(mod8).)

radicands total PF I PF II
# % # % # %

0 < D  < 10000 748 73.62 430 74.91 318 71.95
10000 < D  < 20000 739 73.10 450 73.41 289 72.61
20000 < D  <  30000 718 70.88 457 72.77 261 67.79
30000 < D  <  40000 714 70.41 447 71.29 267 68.99
40000 <  D  <  50000 742 73.03 467 73.54 275 72.18
50000 < D  < 60000 679 67.36 437 68.50 242 65.41
60000 < D  <  70000 715 70.31 467 71.96 248 67.39
70000 < D  <  80000 699 69.00 439 69.24 260 68.60
80000 < D <  90000 709 70.06 470 71.32 239 67.71

90000 < D <  100000 729 71.89 465 71.54 264 72.53

500000 < D <  510000 726 71.67 481 70.22 245 74.70
1000000 < D <  1010000 695 68.68 476 69.59 219 66.77
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TABLE 6. (Absolute numbers and frequencies of unit 
group index (Е к  • E o )  =  3 in both PF-types 

for D  =  5(mod8).)

radicands
#

total
% #

PF I
% #

PF II
%

2 <  D  <  50 4 80.00 1 100.00 3 75.00
2 <  D  <  100 10 90.91 4 100.00 6 85.71
2 < D  <  200 17 80.95 6 85.71 11 78.57
2 < D  < 500 42 80.77 21 91.30 21 72.41

2 <  D  <  1000 77 75.49 39 82.98 38 69.09
2 < D  <  2000 158 77.83 82 81.19 76 74.51
2 <  D  < 5000 380 75.10 213 77.46 167 72.29

2 < D <  10000 748 73.62 430 74.91 318 71.95
2 <  D  <  15000 1129 74.18 657 74.92 472 73.18
2 <  D <  20000 1487 73.36 880 74.14 607 72.26
2 <  D  <  50000 3661 72.21 2251 73.16 1410 70.75

2 < D <  100000 7192 70.92 4529 71.81 2663 69.59

TABLE 7. (Maximal primitive period lengths of the chains 
of lattice minima in the order O =  Z 0  Z V 5 ,  and for 
D-type II also in the order О к  =  Z 0  Z |(1  +  V D ).)

radicands P L(@ K  ) m a x P L (O )maix [V D  log log D j

0 < D  < 10000 173 217 222
10000 < D <  20000 261 332 324
20000 < D <  30000 326 388 404
30000 < D <  40000 378 449 472
40000 <  D <  50000 443 544 533
50000 < D <  60000 487 566 587
60000 < D  < 70000 537 618 638
70000 < D <  80000 564 696 686
80000 < D <  90000 626 720 730

90000 < D <  100000 648 750 773

500000 < D <  510000 1606 1866 1840
1000000 < D <  1010000 2353 2492 2640
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TABLE 8. (The typical spacing of lattice minima in the 
first primitive period of the maximal order О к  and 

of the suborder O in D-type II fields.)

D mod 8 PF P L ( 0 K ) P L (O ) P L ( 0 / P L ( 0 K )

1000101 5 - 3 514 1498 2.914
1000141 5 — 19 590 1774 3.007
1000189 5 -2 6 3 522 1562 2.992
1000261 5 271 588 552 0.939
1000381 5 —  1 495 489 0.988
1000429 5 —  1 567 1763 3.109
1000437 5 400 400 1.000
1000509 5 412 432 1.049
1000669 5 —  1 503 1503 2.988
1000741 5 —7 674 2006 2.976
1000861 5 - 1 825 2409 2.920
1000981 5 —  1 593 1769 2.983
1001149 5 -4 9 1 606 1786 2.947
1001173 5 —  1 403 421 1.045
1001221 5 — 1 389 403 1.036
1001269 5 -3 1 598 1794 3.000
1001389 5 —  1 747 2247 3.008
1001509 5 -1 9 398 414 1.040
1001629 5 — 1 429 407 0.949

1000081 1 __1 1693 1687 0.996
1000321 1 7 1820 1824 1.002
1000393 1 - 1 1525 1539 1.009
1000609 1 — 1 1849 1871 1.012
1000849 1 —  1 1779 1725 0.970
1001089 1 — 1 1515 1477 0.975
1001209 1 -1 1 1562 1546 0.990
1001401 1 —  1 2139 2117 0.990
1001449 1 - 6 7 2078 2042 0.983
1001569 1 —  1 1699 1673 0.985
1001809 1 — 1 1841 1807 0.982
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TA BLE 8. (The typical spacing of lattice minima in the 
first primitive period of the maximal order О к  and 

of the suborder O in D-type II fields.)

D j j /P L ( C )

1000101 510 0.34
1000141 576 0.32
1000189 518 0.33
1000429 583 0.33
1000669 517 0.34
1000741 666 0.33
1000861 797 0.33
1000981 579 0.33
1001149 590 0.33
1001269 608 0.34
1001389 745 0.33
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