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A general minimax theorem

By I. JOÓ (Budapest)

In the present note we prove a minimax theorem using the ideas of
the papers [1–4]. Our theorem gives a generalization of the well-known
theorem of Brezis – Nirenberg – Stampacchia [5] and also of a recent
of G. Horváth [6]. To formulate our result we need the following

Definitions. A topological space Y is said to be an interval space [4]
if there is a mapping [., .] : Y × Y → P (Y ) such that y1, y2 ∈ [y1, y2] and
[y1, y2] is connected and closed for each y1, y2 ∈ Y .

Let X be any nonempty set, Y an interval space and f : X × Y → R
a function. f is said to be lower-semicontinuous on intervals of Y if for all
x ∈ X the restriction of the function y → f(x, y) to any interval [y1, y2]
of Y is lower-semicontinuous in the subspace topology of [y1, y2]. The
upper-semicontinuity on intervals is defined similarly.

Let X be a topological space, Y an interval space and f : X×Y → R
any function. f is said to be a Ky-Fan function if
(i) for every y ∈ Y, x → f(x, y) is lower-semicontinuous on X;
(ii) for every x ∈ X, y → f(x, y) is quasiconcave on Y , i.e. for every c ∈ R

the set {y ∈ Y : f(x, y) ≥ c} is convex or empty.

In this paper we prove the following

Theorem. Let X be any compact topological space, Y any inter-
val space and f : X × Y → R any Ky-Fan function, which is upper-
semicontinuous on every interval of Y and such that for each y1, y2, . . . yn ∈
Y and a ∈ R the set

n⋂
i=1

{x ∈ X : f(x, yi) ≤ a} is connected or empty. Let

c ∈ R be arbitrary. Then
(i) if c ≥ c∗ then there exists an x0 ∈ X such that f(x0, y) ≤ c for all

y ∈ Y ;
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(ii) if c < c∗, then there exists y0 ∈ Y such that f(x, y0) > c for every

x ∈ X, where c∗ :=
y
sup inf

x
f(x, y).

Proof. (i) For each c ≥ c∗ and y ∈ Y define Hc
y := {x ∈ X :

f(x, y) ≤ c}. We shall prove that
⋂

y∈Y

Hc
y 6= ∅ for every c ≥ c∗, which is

equivalent to (i). To this consider first the case c > c∗. It is easy to see
that for every c > c∗ and y ∈ Y Hc

y 6= ∅. By the hypothesis, the sets Hc
y

are closed, hence they are compact. Hence it is enough to prove that the
family {Hc

y : y ∈ Y } has the finite intersection property. Suppose indeed
that for some n ∈ N the intersection of any n sets is nonempty for each
c > c∗, but there exist c1 > c∗ and y1, y2, . . . , yn+1 for which we have:
n+1⋂
i=1

Hc1
y1

= ∅. Define K(y) := Hc1
y ∩ Hc1

y3
∩ · · · ∩ Hc1

yn+1
(if n = 1 then

let K(y) := Hc1
y ) for any y ∈ Y. According to our induction hypothesis

K(y) 6= ∅ for every y ∈ Y and on the other hand K(y1) ∩K(y2) = ∅ .

We shall show that for all y ∈ [y1, y2], K(y) ⊂ K(y1)∪K(y2). Suppose
that there exists x ∈ K(y) such that x 6∈ K(y1) and x 6∈ K(y2). Then
f(x, y1) > c1, f(x, y2) > c1. Now define c0 := min{f(x, y1), f(x, y2)}.
Clearly c0 > c1 and since the set {y : f(x, y) ≥ c0} is convex, f(x, y) ≥
c0 > c1. Thus we obtain a contradiction with x ∈ K(y). Next we prove
that K(y) ⊂ K(y1) or K(y) ⊂ K(y2) for all y ∈ [y1, y2]. Indeed, if the
closed sets A := K(y)∩K(y1) and B := K(y)∩K(y2) are nonempty, then
the relation K(y) = A ∪ B contradicts the connectedness of K(y). (We
have A ∩B = ∅).

Now define the sets Si := {y ∈ [y1, y2] : K(y) ⊂ K(yi)} for i = 1, 2. It
is easy to see that Si is nonempty, yi ∈ Si (i = 1, 2), S1∪S2 = [y1, y2] and
S1 ∩ S2 = ∅. We can show that both S1 and S2 must be closed in [y1, y2],
which contradicts the connectedness of [y1, y2]. Indeed, y ∈ S1 ⇐⇒ K(y)∩
K(y2) = ∅ ⇐⇒ {x ∈ K(y2) : f(x, y) ≤ c1} = ∅. Take a number c2 such

that c∗ < c2 < c1. Then {x : f(x, y) ≤ c2} ∩
(

n+1⋂
i=3

{x : f(x, yi) ≤ c2}
)
⊂

{x : f(x, y) < c1} ∩
(

n+1⋂
i=3

{x : f(x, yi) ≤ c1}
)
⊂ K(y). The first set is

nonempty since c2 > c∗. Hence K(y2) ∩ {x : f(x, y) < c1} = ∅ implies
K(y) ∩ K(y2) = ∅, taking into account that we have K(y) ⊂ K(y1) or
K(y) ⊂ K(y2). From this it follows that {x ∈ K(y2) : f(x, y) ≤ c1} =
∅ ⇐⇒ {x ∈ K(y2) : f(x, y) < c1} = ∅. Then

S1 = {y ∈ [y1, y2] : f(x, y) ≥ c1 for all x ∈ K(y2)} =
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=
⋂

x∈K(y2)

({y ∈ Y : f(x, y) ≥ c1} ∩ [y1, y2]
)

which, by hypothesis, is closed. In the same way we get that S2 is closed.
This contradiction shows that for all c > c∗

⋂
y∈Y

Hc
y 6= ∅.

Now consider the sets Hc∗
y = {x ∈ X : f(x, y) ≤ c∗}. Since X is

compact and x → f(x, y) is lower-semicontinuous for each y ∈ Y , hence
for each y ∈ Y there exists an xy ∈ X such that f(xy, y) = inf

x
f(x, y),

or in other words xy ∈ Hc∗
y . Thus Hc∗

y 6= ∅ for each y ∈ Y . Observe
that Hc∗

y =
⋂

ε>0
Hc∗+ε

y and by the above statement Mε :=
⋂

y∈Y

Hc∗+ε
y 6= ∅

for all ε > 0. Since Mε is compact, the intersection of the decreasing net
{Mε : ε > 0} is nonempty, i.e.

⋂
y∈Y

Hc∗
y 6= ∅. This completes the proof of

(i).
(ii) If c < c∗, then by definition there exists y0 ∈ Y such that

inf
x

f(x, y0) > c. Therefore f(x, y0) > c for all x ∈ X. The proof of
the theorem is complete.

Corollary 1. Under the conditions of the theorem we have

y
sup inf

x
f(x, y) = inf

x y
supf(x, y)

namely this follows from (i) if we take c = c∗.

Corollary 2. (C. Horváth [6], Theorem 1) Let X be a compact
topological space, Y a convex subset of a vector space and f : X × Y →
R a Ky-Fan function which is upper-semicontinuous on the segments of
Y and such that for every finite subset F or Y and every c ∈ R ,⋂
y∈F

{x ∈ X : f(x, y) ≤ c} is connected or empty. Then

(A) for every c ∈ R exactly one of the following statements holds:
(i) there exists x0 ∈ X such that f(x0, y) ≤ c for every y ∈ Y ,
(ii) there exists y0 ∈ Y such that f(x, y0) > c for every x ∈ X.

(B) inf
x y

supf(x, y) =
y
sup inf

x
f(x, y).

Proof. In Y define the topology on the segments in the usual way.
Then if f : X × Y → R is upper-semicontinuous on the segments of Y i.e.
for every x ∈ X and y1, y2 ∈ Y the function

t → f
(
x, (1− t)y1 + t y2

)

is upper-semicontinuous on [0, 1], then f is upper-semicontinuous on in-
tervals in the sense of our definition.
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Remark 1. Our theorem generalizes Theorem 1 of [6] in two directions:
the statement is established for classes of more general interval spaces and
the alternative given by C. Horváth is precised.

Remark 2. In particular, our result contains the minimax theorem of
H. Brézis, L. Nirenberg and G. Stampacchia [5] (see also [6]).
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