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On orthogonally additive functions

By KAROL BARON (Katowice) and PETER VOLKMANN (Karlsruhe)

Daróczy Zoltánnak és Kátai Imrének 60. születésnapjuk alkalmából

Abstract. Under appropriate conditions we decompose orthogonally additive
functions into an additive and a quadratic part.

In this paper, G means an abelian group, and V is a vector space
over a field Λ, where char Λ 6= 2. We also consider some binary relation
⊥ in V , which we call orthogonality. In fact, the literature offers a lot of
possibilities for ⊥, all of them reflecting some properties of the ordinary
orthogonality, which stems from an inner product. For our purposes we
only need two properties of ⊥, which are valid in many of the existing
orthogonality spaces (V,⊥); we quote them below as (O), (P).

A function f : V → G is called orthogonally additive (cf. the survey
article by Paganoni and Rätz [6]), if

f(x + y) = f(x) + f(y) (x, y ∈ V ; x ⊥ y),(1)

it is called additive, if

f(x + y) = f(x) + f(y) (x, y ∈ V ),
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and it is called quadratic, if

(2) f(x + y) + f(x− y) = 2f(x) + 2f(y) (x, y ∈ V ).

Now we are able to formulate (O) and (P):

(O) 0 ⊥ 0, and from x ⊥ y the relations −x ⊥ −y, x
2 ⊥ y

2 follow.

(P) If an orthogonally additive function from V to G is odd, then it
is additive; if it is even, then it is quadratic.

Orthogonality spaces fulfilling (O), (P) (the abelian group G in (P)
being arbitrary) can be found in the papers by Rätz [7]–[9], Rätz and
Szabó [10], Szabó [12]–[19]. Very often (P) is true because the space
V under consideration has the following property (which trivially im-
plies (P)):

(Q) Orthogonally additive functions from V to G are additive.

For example, if V is a real normed space which is not an inner product
space, and if ⊥ is the orthogonality in the sense of Birkhoff and James,
then (Q) holds. The proof of this fact has been a longer story, as can
be realized from the series of papers by Sundaresan [11], Gudder and
Strawther [4], Lawrence [5], Rätz [7], and Szabó [12]; cf. Szabó [16].
It will be clear in a moment that in the present paper (Q) is not of interest.
So we are rather concerned with orthogonality spaces V satisfying (P) but
not (Q); the papers of Rätz and Szabó [10] and of Szabó [14] are good
references for this.

Under the assumptions (O), (P) we show in Theorem 1 that every
orthogonally additive function f : V → G has the form

(3) f(x) = a(x) + q(x) (x ∈ V ),

a being additive and q being quadratic. This theorem holds without further
assumptions on the abelian group G: The case of a 2-torsion-free group
has already been treated by Rätz and Szabó [10], whereas the case of an
inner product space V (again no restriction upon G) can be found in [2].
Let us also mention that, with exception of Remark 2, the vector space V

always can be replaced by an abelian group V , which is uniquely divisible
by two; concerning the orthogonality ⊥ in V , nothing has to be changed.

Let us start with two lemmas where the relation ⊥ in V is not needed.
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Lemma 1. Let f : V → G satisfy f(0) = 0, and suppose (3) to hold,

a being an additive function and q a quadratic one. Then a, q are uniquely

determined, viz.

a(x) = f
(x

2

)
− f

(
−x

2

)
(x ∈ V ),(4)

q(x) = 2
[
f

(x

2

)
+ f

(
−x

2

)]
(x ∈ V ).(5)

Proof. Since f(0) = a(0) = 0, we get from (3) that q(0) = 0. So
x = 0 in

(6) q(x + y) + q(x− y) = 2q(x) + 2q(y) (x, y ∈ V )

implies that q is an even function. Hence we get from (3) the relation

(7) f(−x) = −a(x) + q(x) (x ∈ V ).

Subtracting this from (3), replacing x by x
2 , and using the additivity of a

gives (4). Now, addition of (3), (7) and multiplication by 2 yields

4q(x) = 2(f(x) + f(−x)) (x ∈ V ).

When using (6) with y = x, we can replace 4q(x) by q(2x), and finally we
replace x by x

2 to get (5).

Remark 1. From (3), (4), (5) it follows (after replacing x by 2x) that

f(2x) = 3f(x) + f(−x) (x ∈ V ).

Lemma 2. Let f : V → G be a function such that f(0) = 0. Then f

is a solution of (2) if and only if

(8) f(x) = b(x, x) (x ∈ V )

for some biadditive, symmetric b : V ×V → G. The function b is uniquely

determined by f , viz.

(9) b(x, y) = f

(
x + y

2

)
− f

(
x− y

2

)
(x, y ∈ V ).
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Proof. Suppose first that f : V → G satisfies (8) with some biaddi-
tive, symmetric b : V × V → G. Then (9) is easily established:

f

(
x + y

2

)
− f

(
x− y

2

)
= b

(x

2
+

y

2
,
x

2
+

y

2

)
− b

(x

2
− y

2
,
x

2
− y

2

)

= 4b
(x

2
,
y

2

)
= b(x, y).

Now let f : V → G be a solution of (2), such that f(0) = 0. Then f

is even (put x = 0 in (2)). In this step of the proof we define the function
b : V ×V → G by (9), and we show its biadditivity (by a routine argument;
cf. [1], pp. 419, 420): (2) implies

(10) b(z1 + z2, y) + b(z1 − z2, y) = 2b(z1, y),

whence b(2z1, y) = 2b(z1, y). Replacing the right hand side of (10) by this
and then setting z1 = x1+x2

2 , z2 = x1−x2
2 gives

b(x1, y) + b(x2, y) = b(x1 + x2, y).

The rest of the proof (of this lemma) is easy.

Lemma 3. Suppose (O), (P) to hold, and let f : V → G be an

orthogonally additive function satisfying 2f = 0. Then f = 0.

Proof. From (1) and (O) we get f(0) = 0. Now define g : V → G

by

g(x) = f(x)− f(−x) (x ∈ V ).

This function is odd, and using (O), we obtain that it is orthogonally
additive. Then by (P) it is additive, in particular

g(2x) = 2g(x) = 2f(x)− 2f(−x) = 0 (x ∈ V ),

whence g = 0. So f is an even function, and applying (P) once more gives
(2). Now y = x in this formula yields f(2x) = 4f(x) = 0 (x ∈ V ), whence
f = 0.
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Theorem 1. Suppose (O), (P) to hold, and let f : V → G be given.

Then f is orthogonally additive, if and only if the following condition is

fulfilled:

(11) f(x) = a(x) + b(x, x) (x ∈ V ),

where a : V → G is additive, b : V × V → G biadditive and symmetric,

and

(12) b(x, y) = 0 (x, y ∈ V ; x ⊥ y).

Moreover, in this case the functions a, b, and q(x) = b(x, x) (x ∈ V ) are

uniquely determined; they are given by (4),

b(x, y) = 2
[
f

(
x + y

4

)
+ f

(−x− y

4

)
− f

(
x− y

4

)
− f

(−x + y

4

)]

(x, y ∈ V ),

and (5), respectively.

Proof. It is easy to see that (11) defines an orthogonally additive
function f , provided a, b are as in the above condition. So, let now f be an
orthogonally additive function, i.e., a solution of (1). Define a, q0 : V → G

by

a(x) = f
(x

2

)
− f

(
−x

2

)
, q0(x) = f

(x

2

)
+ f

(
−x

2

)
(x ∈ V ).

Obviously a is odd, q0 is even and, due to (O), both functions are or-
thogonally additive and q0(0) = 0. Applying (P) we obtain additivity of
a and quadraticity of q0. Lemma 2 shows the existence of a biadditive,
symmetric function b0 : V × V → G such that

q0(x) = b0(x, x) (x ∈ V ).

Since q0 is orthogonally additive, we get

2b0(x, y) = 0 (x, y ∈ V ; x ⊥ y).

Consequently the function b : V × V → G defined by

b(x, y) = 2b0(x, y) (x, y ∈ V )
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is biadditive, symmetric and satisfies (12). On the other hand,

2f(x) = a(2x) + q0(2x) = 2(a(x) + 2q0(x)) (x ∈ V ),

i.e., the orthogonally additive function f0 = f − a− 2q0 satisfies 2f0 = 0.
By Lemma 3 we get f0 = 0, hence

f(x) = a(x) + 2q0(x) = a(x) + b(x, x) (x ∈ V ).

This shows that f really fulfils the condition of the theorem. From Lem-
mas 1, 2 we get the uniqueness of a, b, q, as well as the formulas for their
representation.

Remark 2. Assume Λ is a euclidean ordered field (cf. [3]), dim V ≥ 2,
and ϕ : V × V → Λ is bilinear, symmetric, positive definite. According to
Rätz [8] the orthogonality ⊥ defined by

x ⊥ y ⇔ ϕ(x, y) = 0

satisfies (O), (P), and every even orthogonally additive function q : V→G

has the form q(x) = g(ϕ(x, x)) (x ∈ V ) with an additive g : Λ → G. To-
gether with Theorem 1 it follows that every orthogonally additive function
f : V → G has the form

(13) f(x) = a(x) + g(ϕ(x, x)) (x ∈ V )

with additive functions a : V → G, g : Λ → G. Moreover,

a(x) = f
(x

2

)
− f

(
−x

2

)
(x ∈ V ),

g(λ) = f

(
u
√

λ√
2ϕ(u, u)

)
+ f

(
− u

√
λ√

2ϕ(u, u)

)
(λ ∈ Λ, λ ≥ 0)

with an arbitrary (but fixed) u ∈ V \{0}. When choosing Λ = R, we get a
real inner product space V , and (13) can be read as f(x) = a(x)+g(‖x‖2);
this was the result obtained in [2].
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