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Regular functions that preserve digital representation

By ZOLTÁN BOROS (Debrecen)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on the occasion of their 60th birthday

Abstract. A functional equation related to generalized number systems in Eu-
clidean spaces is investigated. Reasonable sufficient conditions, under which every so-
lution of the equation is continuous or every smooth solution of the equation is linear,
are established.

Definitions. Let us consider a finite set P with {0} $ P ⊂ R, a
positive integer N , and a sequence (qn) : Z→ RN such that

∑∞
n=1 |qn| < ∞

(where |u| denotes the Euclidean norm of u ∈ RN ) and for every vector
x ∈ RN there exist m ∈ Z and εn ∈ P (n = m, m + 1, . . . ) satisfying x =∑∞

n=m εnqn. Such a pair (P, (qn)) will be called a digital representation
system in RN . We say that a function f : RN → R preserves the digital
representation with respect to (P, (qn)) if

(1) f

( ∞∑
n=m

εnqn

)
=

∞∑
n=m

εnf(qn)

holds for every m ∈ Z and εn ∈ P (n = m, m + 1, . . . ).
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Remark 1. Obviously every linear functional f : RN → R satisfies (1).
It is, however, an open problem whether there exist non-linear solutions f
of (1). For the particular case N = 1 analogous problems are investigated
in [9], [5] and [1]; the main theorems in [5] and [1] suggest the conjecture
that every solution of (1) has to be linear. We neither prove nor disprove
this conjecture in this generality here. Our aim is to take the first step to-
wards the characterization of representation preserver functions involving
dimensions greater than (or equal to) one.

Proposition 1. If f preserves the digital representation with respect
to the digital representation system (P, (qn)), then

∑∞
n=1 |f(qn)| < ∞.

Proof. Let p ∈ P \ {0}, εn = p if f(qn) ≥ 0, while εn = 0 if
f(qn) < 0, and δn = p− εn (n ∈ N). It follows from equation (1) that the
following series are convergent and

f

( ∞∑
n=1

εnqn

)
− f

( ∞∑
n=1

δnqn

)

=
∞∑

n=1

εnf(qn)−
∞∑

n=1

δnf(qn) = p

∞∑
n=1

|f(qn)|.

Notation. In the sequel we consider a fixed digital representation
system (P, (qn)) in RN and the corresponding sets defined by

Sm =

{ ∞∑
n=m+1

εnqn

∣∣ εn ∈ P (n = m + 1,m + 2, . . . )

}
(m ∈ Z),

Rk =

{
k∑

l=1

εlql

∣∣ εl ∈ P (l = 1, 2, . . . , k)

}
(k ∈ N) and

Tm =

{
m∑

l=m−k

εlql

∣∣ εl ∈ P (l = m− k, . . . , m), k ∈ N
}

(m ∈ Z).

We will also write ‖P‖ = max{|p| | p ∈ P},

σm = ‖P‖
∞∑

n=m+1

|qn|, and %m = ‖P‖
∞∑

n=m+1

|f(qn)| (m ∈ Z).

We will denote the open ball with radius r and centered at x by Br(x), the
interior of the set H by H◦, and the (metric) closure of the set H by H.
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Remark 2. It follows from 0 ∈ P that 0 ∈ Sm ∩ Rk ∩ Tm for every
m ∈ Z and k ∈ N, where 0 denotes the zero vector in RN . Moreover, if
f : RN → R preserves the digital representation with respect to (P, (qn)),
then

f(t + s) = f(t) + f(s) (t ∈ Tm , s ∈ Sm) (m ∈ Z)

and

f(z + u + w) = f(z) + f(u) + f(w) (z ∈ T0, u ∈ Rk, w ∈ Sk) (k ∈ N).

In particular, f(0) = 0. Let us also observe that

Sm ⊂ Bσm(0) and f(Sm) ⊂ B%m(0) (m ∈ Z).

We may (and will) assume that qn 6= 0 (n ∈ Z).

Definition. We call the digital representation system (P, (qn)) non-

accumulative if T0
′ = ∅.

Proposition 2. The digital representation system (P, (qn)) is non-

accumulative if and only if the set Tm ∩B contains finitely many elements

for every m ∈ Z and for every bounded set B ⊂ RN .

Proof. The finite intersection property is clearly sufficient: one only
has to apply it for m = 0 and B = Br(x) with arbitrary r > 0 and x ∈ RN .
Conversely, if (P, (qn)) is non-accumulative and B ⊂ RN is bounded, then
T0 ∩ B is finite (cf. the Bolzano-Weierstrass theorem). If m < 0, then we
have Tm ⊂ T0, hence Tm∩B ⊂ T0∩B, thus Tm∩B is also finite. If m > 0,
let rm = ‖P‖∑m

l=1 |ql| and B1 = B + B2rm(0). If u ∈ Tm ∩B, then there
exist t ∈ T0 and w ∈ Rm such that u = t + w. In this case t ∈ B1, since
|t−u| = |w| ≤ rm < 2rm. Obviously B1 is bounded, thus T0 ∩B1 is finite.
The set Rm is also finite and Tm ∩B ⊂ (T0 ∩B1) + Rm, hence Tm ∩B is
also finite.

The first part of the following result is proved for geometric sequences
in [4] and in full generality in [2]. It is, however, reasonable to involve the
short proof, which is due to Maksa (cf. [10]), into this presentation as
well.
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Lemma 1. The set Sm , corresponding to a digital representation sys-
tem (P, (qn)), is compact and satisfies Sm = S◦m for every m ∈ Z.

Proof. The set of sequences with values in the finite set P can be
considered as a topological product of infinitely many copies of the compact
set P , hence it is also compact. The mappings φn(εm+1, εm+2, . . . ) = εnqn

are continuous and the sum φ =
∑∞

n=m+1 φn is uniformly convergent,
hence φ is also continuous and the codomain Sm of φ is compact.

Now it follows easily that the interior of Sm is non-void for every
m ∈ Z. Indeed, if we assume that S◦m = ∅ for some m ∈ Z, then Sm =
Sm yields that Sm is a nowhere dense set. Since Tm is a countable set
and RN = Tm + Sm, we obtain that RN is a set of first category, which
contradicts the completeness of RN (cf. Baire’s theorem).

Let us begin the proof of Sm = S◦m (for arbitrary m ∈ Z) with the
the trivial inclusion S◦m ⊂ Sm = Sm. In order to prove the reversed
inclusion we consider arbitrary x ∈ Sm and r > 0. Then there exist εn

(n = m + 1,m + 2, . . . ) and k ∈ N such that x =
∑∞

n=m+1 εnqn , k > m,
and σk < r/2. Let xk =

∑k
n=m+1 εnqn and s =

∑∞
n=k+1 εnqn = x − xk.

Since S◦k 6= ∅, there exists u ∈ S◦k . Let y = xk +u. Then y ∈ xk +S◦k ⊂ S◦m
and |y − x| = |u− s| ≤ 2σk < r, which completes the proof.

Having enumerated some interesting properties of digital representa-
tion systems we begin the investigation of representation preserver func-
tions.

Theorem 1. If the digital representation system (P, (qn)) is non-
accumulative and f : RN → R preserves the digital representation with
respect to (P, (qn)), then f is continuous.

Proof. Let us fix x0 ∈ RN and σ > 0 arbitrarily. Due to Proposition
1 there exists m ∈ N such that %m < σ/2. Let x1 ∈ Bσm(x0). If u ∈ Tm

with |u − x0| ≥ 2σm, then |x1 − u| > σm, hence x1 − u /∈ Sm. The
intersection W = Tm ∩ B2σm

(x0) is finite, therefore W1 + Sm is compact
for every W1 ⊂ W . Thus there exists r ∈]0, σm[ such that for every t ∈ W
we have either x0 ∈ t + Sm or (t + Sm)∩Br(x0) = ∅. Let us now consider
an arbitrary x ∈ Br(x0). Then there exists t ∈ W such that x − t ∈ Sm

and x0 − t ∈ Sm, hence (cf. Remark 2)

|f(x)− f(x0)| = | (f(t) + f(x− t))− (f(t) + f(x0 − t)) |
= |f(x− t)− f(x0 − t)| ≤ 2%m < σ.
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Example 1. If (θ, P ) is a canonical number system in the ring of Gauss-
ian integers and qn = θ−n (n ∈ Z), then (P, (qn)) is a digital representa-
tion system in C (now regarded as R2) by [7] and obviously T ′0 = ∅ (since
T0 = Z+ iZ). Further examples are provided in [6] and [8].

The following generalizations of the notion of directional derivatives,
which will serve as powerful devices in our investigations, are closely related
to Clarke’s generalized directional derivatives (cf. [3]). Let us note that
our generalized directional derivatives are not necessarily finite.

Definition. If D ⊂ RN , f : D → R, x0 ∈ D◦, v ∈ RN , and δ > 0 such
that Bδ(x0) ⊂ D, let

∂δ
0f(x0, v) =

{
1
t
(f(x + tv)− f(x))

∣∣ t ∈ R with x, x + tv ∈ Bδ(x0)
}

,

∂δ
Lf(x0, v) = inf ∂δ

0f(x0, v), ∂δ
Uf(x0, v) = sup ∂δ

0f(x0, v),

∂Lf(x0, v) = lim
δ→0

∂δ
Lf(x0, v), and ∂Uf(x0, v) = lim

δ→0
∂δ

Uf(x0, v).

Lemma 2. If 0 ∈ S◦m for every m ∈ Z and f : RN → R preserves

the digital representation with respect to the digital representation system

(P, (qn)), then ∂Lf(x, v) ≤ ∂Uf(y, v) for every x, y, v ∈ RN .

Proof. Let x, y, v ∈ RN and ε > 0. We may assume that v 6= 0
(the v = 0 case is trivial). Our definitions yield limm→∞ σm = 0, hence
there exists m ∈ Z such that σm < ε/2. Since RN = Tm + Sm , we can
choose x′, y′ ∈ Tm such that x ∈ x′ + Sm and y ∈ y′ + Sm, which implies
max{|x′ − x|, |y′ − y|} ≤ σm < ε/2. By our assumption there exists r > 0
with Br(0) ⊂ Sm. Let δ ∈ ]0, 1

|v| min{r, ε/2}[ and t ∈ ]− δ, δ[. This choice
yields tv ∈ Sm, hence

|(x′ + tv)− x| ≤ |tv|+ |x′ − x| = |t| |v|+ |x′ − x| < ε

2
+

ε

2
= ε

i.e. x′ + tv ∈ Bε(x) and, similarly, y′ + tv ∈ Bε(y). Due to Remark 2 we
have

f(tv)
t

=
f(x′) + f(tv)− f(x′)

t
=

f(x′ + tv)− f(x′)
t

∈ ∂ε
0f(x, v)
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and, analogously, f(tv)
t ∈ ∂ε

0f(y, v), thus

∂ε
Lf(x, v) ≤ f(tv)

t
≤ ∂ε

Uf(y, v).

Letting ε tend to 0 we obtain the statement.

Proposition 3. If D ⊂ RN and f : D → R is continuously differ-

entiable at x0 ∈ D◦, then ∂Lf(x0, v) = ∂Uf(x0 , v) = f ′(x0)v for every

v ∈ RN .

Proof. Under our assumption there exists r > 0 such that f is
differentiable on Br(x0). If x ∈ Br(x0), v ∈ RN , and t ∈ R \ {0} such
that x + tv ∈ Br(x0), then we can apply Lagrange’s mean value theorem,
which yields (f(x + tv) − f(x))/t = f ′(x + t1v)v with some t1 between 0
and t. Since f ′ is continuous at x0 , this implies the statement.

Theorem 2. If 0 ∈ S◦m for every m ∈ Z, f : RN → R is continuously

differentiable, and f preserves the digital representation with respect to

the digital representation system (P, (qn)), then f is linear.

Proof. Combining Lemma 2 with Proposition 3 we obtain that
f ′(x)v ≤ f ′(y)v for every x, y, v ∈ RN . The reversed inequality follows
by interchanging x and y, therefore f ′ is constant, hence f is an affine
function with f(0) = 0 (cf. Remark 2), i.e. f is linear.

Definition. The digital representation system (P, (qn)) will be called
uniform if there exist K > 0, R > 0, and a mapping d : BR(0) \ {0} → Z
such that for every x ∈ BR(0) \ {0} we have x ∈ Sd(x) and K|x| ≥ σd(x).

Lemma 3. If the digital representation system (P, (qn)) is uniform,

then there exists M > 0 such that for every v ∈ RN and k ∈ Z we have

|v>qn| ≥ M |v| |qn| for some n > k.

Proof. We shall use the notation introduced in the above definition.
Let M = 1

2K and assume that, on the contrary, there exist v ∈ RN and k ∈
Z such that |v>qn| < M |v| |qn| for every n > k (whence v 6= 0). Obviously
one can replace v with u = λv in the above inequality if λ ∈ R\{0}. We can
choose m0 ∈ Z such that m0 ≥ k and σm0 < R. Let δ = σm0/K. For any
x ∈ BR(0) \ {0} obviously |x| ≤ σd(x), hence K ≥ 1. Then δ < R and for
every x ∈ Bδ(0)\{0} we have σm0 = Kδ > K|x| ≥ σd(x), thus d(x) > m0.
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Let u = δ
2|v|v. Then u ∈ Bδ(0) \ {0}, hence there exist m = d(u) ∈ Z and

εn ∈ P (n = m + 1,m + 2, . . . ) such that u =
∑∞

n=m+1 εnqn and

|u|2 = |u>u| =
∣∣u>

∞∑
n=m+1

εnqn

∣∣ =
∣∣

∞∑
n=m+1

εnu>qn

∣∣

≤
∞∑

n=m+1

|εn| |u>qn| <
∞∑

n=m+1

‖P‖M |u| |qn| = M |u|σm ≤ MK|u|2 ,

i.e. MK > 1, which contradicts the above given formula for M .

Theorem 3. If (P, (qn)) is a uniform digital representation system
in RN , f : RN → R preserves the digital representation with respect to
(P, (qn)), and x0, y0 ∈ RN such that f is differentiable at x0 and y0, then
f ′(x0) = f ′(y0).

In particular, if f is a differentiable representation preserver function
with respect to a uniform digital representation system, then f is linear.

Proof. Let αn denote the coefficient of qn in the digital representa-
tion of x0 and choose α′n ∈ P \ {αn} for every n ∈ Z (where, of course,
αn = 0 for almost all, i.e. except finitely many, negative integers n). Since
f is differentiable at x0 , for arbitrary ε > 0 there exists m1 ∈ Z such that
for n > m1 and x =

∑
k∈Z\{n} αkqk + α′nqn we have

ε >
|f(x)− f(x0)− f ′(x0)(x− x0)|

|x− x0|

=
|(α′n − αn)f(qn)− f ′(x0)(α′n − αn)qn|

|(α′n − αn)qn| =
|f(qn)− f ′(x0)qn|

|qn| ,

i.e., |f(qn) − f ′(x0)qn| < ε|qn|. Analogously, there exists m2 ∈ Z such
that for every n > m2 we have |f(qn) − f ′(y0)qn| < ε|qn|. Applying
these inequalities and choosing n > max{m1,m2} as in Lemma 3 with
v = (f ′(x0)− f ′(y0))>, we obtain

2ε|qn| > |(f ′(x0)− f ′(y0))qn| ≥ M |(f ′(x0)− f ′(y0))>| |qn|.
Since ε > 0 was arbitrary, this yields f ′(x0) = f ′(y0).

Example 2. It follows from the proof of Theorem 5 in [4] that for any
non-real q ∈ C with 0 < |q| < 1 there exist N ∈ N and r0 > 0 such that
with PN = {0, 1, . . . , N} the pair (PN , (qn)) is a digital representation sys-
tem in C (as R2) and B|q|kr0(0) ⊂ Sk = qkS0 (k ∈ Z), therefore (PN , (qn))
is uniform.



316 Zoltán Boros : Regular functions that preserve digital representation

References

[1] Z. Boros, On completely P -additive functions with respect to interval-filling se-
quences of type P , Acta Math. Hung. 65 no. 1 (1994), 17–26.

[2] Z. Boros, Sequences of connected spectrum and the Vilenkin group, Publ. Math.
Debrecen 47 no. 3-4 (1995), 403–410.

[3] F. H. Clarke, Generalized gradients and applications, Trans. Am. Math. Soc.
205 (1975), 247–262.

[4] Z. Dar�oczy and I. K�atai, Generalized number systems in the complex plane,
Acta Math. Hung. 51 (1988), 409–416.

[5] Z. Dar�oczy, I. K�atai and T. Szab�o, On completely additive functions related
to interval-filling sequences, Arch. Math. (Basel) 54 no. 2 (1990), 173–179.

[6] I. K�atai and I. K�ornyei, On number systems in algebraic number fields, Publ.
Math. Debrecen 41 no. 3-4 (1992), 289–294.

[7] I. K�atai and J. Szab�o, Canonical number systems for complex integers, Acta Sci.
Math. (Szeged) 37 (1975), 255–260.

[8] B. Kov�acs, Representation of complex numbers in number systems, Acta Math.
Hung. 58 no. 1-2 (1991), 113–120.

[9] Gy. Maksa, On completely additive functions, Acta Math. Hung. 48 no. 3-4 (1986),
353–355.

[10] Gy. Maksa, Interval-filling sequences and the dyadic group, Grazer Math. Ber.
315 (1991), 69–74.
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