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and Imre Kátai on their 60th birthdays

Abstract. For inner product spaces X and Y , we consider the orthogonality
equation

〈f(x) | f(z)〉 = 〈x | z〉 for x, z ∈ X

as well as its restricted versions

〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ X2 \M

and

〈f(x) | f(z)〉 = 〈x | z〉 for x, z ∈ X \ U

where f : X → Y and the sets M and U are, in some sense, small in X2 and X,
respectively. Under some additional assumptions we prove that for a solution f of
the orthogonality equation postulated almost everywhere (in one of the two senses
mentioned above) there exists a unique solution f∗ of the (unrestricted) orthogonality
equation such that f and f∗ are equal almost everywhere on X.

1. Introduction

Let X and Y be (real or complex) inner product spaces. When dealing
with inner product preserving mappings, i.e., with solutions f : X → Y of
the orthogonality equation

(OE) 〈f(x) | f(z)〉Y = 〈x | z〉X for x, z ∈ X
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one can consider a class of functions satisfying the above equation almost
everywhere, i.e.,

(A) 〈f(x) | f(z)〉Y = 〈x | z〉X for (x, z) ∈ X2 \M

where M ⊂ X2 is supposed to be a “small” set in X2.
The analogous problem for the Cauchy functional equation was raised

by P. Erdös [3] and resulted in numerous papers some of which will be
quoted in a sequel.

One can separate the variables x and z and consider the following
variation of (A)

(A’) 〈f(x) | f(z)〉Y = 〈x | z〉X for x, z ∈ X \ U

where U ⊂ X is “small” in X. Again, there is an analogy with similar
problems for the Cauchy equation dealt with by S. Hartman [9] and
others.

2. Linearly invariant ideals

Definition 1. For an arbitrary set X a family J ⊂ 2X is called an
ideal in X iff (cf. [12], p. 437)

(i) if I ∈ J and J ⊂ I, then J ∈ J ;

(ii) if I, J ∈ J , then I ∪ J ∈ J .

If, in addition, J satisfies

(iii) X /∈ J ,

then it is called proper ideal.

Now, suppose that (X,K, +, · ) is a vector space over K.

Definition 2. We say that an ideal J ⊂ 2X is linearly invariant iff –
besides of (i) and (ii) – it satisfies

(iv) for every x ∈ X, k ∈ K and I ∈ J we have x− kI ∈ J .

Here x − kI = {x − kz : z ∈ I}. Condition (iv) is similar but stronger
than the one in [12] on p. 438. However, a group (X, +) was considered
there, and the condition was

(v) for every x ∈ X and I ∈ J we have x− I ∈ J .
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In the case of vector space, (v) does not imply (iv). For let consider the
vector space (C,C, +, · ) and J ⊂ P(C) where

I ∈ J :⇐⇒ card{=z : z ∈ I} < ∞.

One can check that J is a proper ideal satisfying (v) but not (iv) as for
I = [0, 1] ∈ J , iI /∈ J . Cf. also the final section in this paper.

For a subset A ⊂ X2 of the product vector space X2 and for x ∈ X
and k ∈ K define

A[x, k] := {z ∈ X : (x + kz, z) ∈ A}.

This generalizes the notion A[x] = {z ∈ X : (x, z) ∈ A} used in [12]; for
k = 0 we have A[x, 0] = A[x]. For X = R we have a simple geometrical
interpretation of A[x, k]

α =
1
k

, (k 6= 0);

α =
π

2
, (k = 0).

For k ∈ K we define a bijective mapping ϕk : X2 → X2 by

ϕk(x, z) := (x + kz, z) for (x, z) ∈ X2.

Then we have

(1)
A[x, k] = {z ∈ X : ϕk(x, z) ∈ A}

= {z ∈ X : (x, z) ∈ ϕ−1
k (A)} = ϕ−1

k (A)[x].

According to [12], p. 439, two proper linearly invariant (p.l.i. for short)
ideals J1 and J2 in X and X2, respectively, are called conjugate iff

∀ I ∈ J2 ∃U ∈ J1 ∀x ∈ X \ U I[x] ∈ J1,

i.e., if I ∈ J2, then I[x] ∈ J1 almost everywhere with respect to J1 (briefly:
J1-a.e.) in X.

We propose a possibly stronger condition.
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Definition 3. Let S be a subset of K; we say that ideals J1 and J2

(in X and X2, resp.) are S-conjugate iff

(2) ∀ I ∈ J2 ∃U ∈ J1 ∀x ∈ X \ U ∀ k ∈ S I[x, k] ∈ J1.

Therefore, “{0}-conjugate” means “conjugate” in the terminology of [12].
Because of (1), one can give an equivalent definition: J1 and J2 are S-
conjugate iff

(3) ∀ I ∈ J2 ∃U ∈ J1 ∀x ∈ X \ U ∀ k ∈ S ϕ−1
k (I)[x] ∈ J1.

Remark 1. If J1 and J2 are conjugate (i.e., {0}-conjugate) and

(4) ∀ I ∈ J2 ∀ k ∈ S ϕ−1
k (I) ∈ J2,

then J1 and J2 are S-conjugate. However, (4) is not necessary for S-
conjugacy of J1 and J2. Namely, one can consider the ideal J1 of all
Lebesgue nullsets in R and the ideal J2 consisting of all Lebesgue nullsets
A in R2 with the additional property: A[x] is bounded for all x ∈ R. Ideals
J1 and J2 are p.l.i. R-conjugate ideals (compare Example 3 below) but
for A := {(x, x) : x ∈ R} we have ϕ−1

1 (A)[0] = R – unbounded, whence
ϕ−1

1 (A) /∈ J2.

Following the definition of Ger (cf. [4] or [12] p. 440) for a given p.l.i.
ideal J in X we define

Ω(J ) := {A ⊂ X2 : A[x] ∈ J J − a.e. in X}

and

Π(J ) := {A ⊂ X2 : A ⊂ (U ×X) ∪ (X × U) for some U ∈ J }.

Lemma 17.5.3 in [12] states that both Ω(J ) and Π(J ) are p.l.i. ideals in X2

conjugate to J . This remains true under our definition of linear invariance
(condition (iv)). Namely, we have to ensure that kA ∈ Ω(J ) and kA ∈
Π(J ) whenever A ∈ Ω(J ) or A ∈ Π(J ), respectively. If A ∈ Ω(J ), then
there exists U ∈ J such that for all x ∈ X \ U we have A[x] ∈ J . For
k 6= 0, kU ∈ J and for x ∈ X \kU we have 1

kx ∈ X \U whence A
[

1
kx

] ∈ J
and consequently k

(
A

[
1
kx

]) ∈ J . However, k
(
A

[
1
kx

])
= (kA)[x] whence
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we have: for all x ∈ X \ kU , (kA)[x] ∈ J , i.e., kA ∈ Ω(J ). For k = 0 the
proof is trivial.

Now, if A ∈ Π(J ), i.e., for some U ∈ J , A ⊂ (U × X) ∪ (X × U),
then kA ⊂ (kU ×X) ∪ (X × kU) and kU ∈ J .

Moreover, one can prove that J and Π(J ) are K-conjugate. Indeed,
we already know that they are {0}-conjugate so let k 6= 0 be fixed. For
A ∈ Π(J ) there exists U ∈ J such that A ⊂ (U × X) ∪ (X × U). Let
x ∈ X; then we have

A[x, k] = {z ∈ X : (x + kz, z) ∈ A} ⊂ {z ∈ X : x + kz ∈ U or z ∈ U}

=
(
−1

k
x +

1
k

U

)
∪ U ∈ J

whence {k}-conjugacy holds true. Thus Π(J ) and J are K-conjugate
whereas it is not true for Ω(J ) and J as can be seen in the following
example.

Example 1. Let X = R and let J1 be the family of all bounded subsets
of R. Obviously, J1 is a p.l.i. ideal in R. Let J2 = Ω(J1); thus J2 is a
p.l.i. ideal in R2, and J1 and J2 are conjugate. Let k 6= 0 be arbitrary and
fixed and define

Mk :=
{

(u, v) ∈ R2 : 0 ≤ v ≤ 1
k

u

}
.

We have

Mk[x] =
{ ∅ for x < 0,[

0, 1
kx

]
for x ≥ 0

whence Mk[x] ∈ J1 for all x ∈ R and consequently Mk ∈ J2. On the other
hand

Mk[x, k] =
{ ∅ for x < 0,

[0,∞) for x ≥ 0

whence Mk[x, k] /∈ J1 on [0,∞) /∈ J1. Thus J1 and J2 are p.l.i. ideals in
R and R2, respectively, conjugate but not {k}-conjugate for any k 6= 0.
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3. Additivity

Theorem 1. Let X and Y be inner product spaces over K∈{R,C}.
Let S := {0, 1, i} ∩ K and let J1 and J2 be S-conjugate p.l.i. ideals in X

and X2, respectively. Finally, let M ∈ J2 and satisfy

(5) M [0, 1] ∈ J1 and (for K = C) M [0, i] ∈ J1.

If f : X → Y satisfies (A) with M as above, then there exists a unique

additive function f∗ : X → Y such that there exists a set U ∈ J1 such

that for x ∈ X \ U :

f∗(x) = f(x) (i.e., f∗ = f J1-a.e. in X);(6)

‖f∗(x)‖ = ‖x‖;(7)

f∗(ix) = if(x) (in the complex case).(8)

Proof. J1 and J2 are {0, 1}-conjugate whence there exist U0, U1∈J1

such that

M [x] ∈ J1 for x ∈ X \ U0,

M [x, 1] ∈ J1 for x ∈ X \ U1.

Define

(9) U := U0 ∪ U1 ∪M [0, 1] ∪M [0, i] ∪ (−iM [0, 1])

(in the real case the last two summands have to be omitted) and

(10) Vx := M [x] ∪M [0, 1] ∪ (M [x] ∪M [0, 1]− x) ∪M [x, 1].

We have U ∈ J1 and, for x ∈ X \ U , also Vx ∈ J1. Let x ∈ X \ U and
z ∈ X \ Vx be arbitrary and fixed. We have:

x /∈ U =⇒ x /∈ M [0, 1] =⇒ (x, x) /∈ M ;

z /∈ Vx =⇒ z /∈ M [0, 1] =⇒ (z, z) /∈ M ;

z /∈ Vx =⇒ z /∈ M [x] =⇒ (x, z) /∈ M ;
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z /∈ Vx =⇒ z /∈ (M [x] ∪M [0, 1]− x) =⇒ x + z /∈ M [0, 1]

=⇒ (x + z, x + z) /∈ M ;

z /∈ Vx =⇒ z /∈ (M [x] ∪M [0, 1]− x) =⇒ x + z /∈ M [x]

=⇒ (x, x + z) /∈ M ;

z /∈ Vx =⇒ z /∈ M [x, 1] =⇒ (x + z, z) /∈ M.

Using the above properties and (A) we have for x ∈ X \ U , y ∈ X \ Vx:

‖f(x+z)− f(x)− f(z)‖2 = 〈f(x + z) | f(x + z)〉+ 〈f(x) | f(x)〉
+ 〈f(z) | f(z)〉+ 2<〈f(x) | f(z)〉
− 2<〈f(x) | f(x + z)〉 − 2<〈f(x + z) | f(z)〉

= 〈x + z | x + z〉+ 〈x | x〉+ 〈z | z〉
+ 2<〈x | z〉 − 2<〈x | x + z〉 − 2<〈x + z | z〉 = 0

whence

f(x + z) = f(x) + f(z) for x ∈ X \ U, z ∈ X \ Vx.

Let
M1 :=

{
(x, z) ∈ X2 : x ∈ U or (x ∈ X \ U and z ∈ Vx)

}
.

We have M1 ∈ Ω(J1), Ω(J1) being the largest ideal in X2 conjugate
(cf. [12] p. 441) with J1. Thus we get

(11) f(x + z) = f(x) + f(z) for (x, z) ∈ X2 \M1

where M1 ∈ Ω(J1). Moreover, we have

(12) M1[x] ∈ J1 for x ∈ X \ U.

By virtue of the theorem of de Bruijn–Ger ([12] p. 444) there exists a
unique additive function f∗ : X → Y such that

(13) f∗(x) = f(x) for x ∈ X \ U.

(From the statement of the theorem we know that f∗ = f J1-a.e. in X;
one has to look into Ger’s proof to see that the equality f∗(x) = f(x) holds
on the set X \ U – because of (12).)
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Thus (6) holds.
To prove (7) it is enough to notice that if x ∈ X \U , then x /∈ M [0, 1]

whence (x, x) /∈ M and

‖f(x)‖ =
√
〈f(x) | f(x)〉 =

√
〈x | x〉 = ‖x‖

which together with (13) gives

‖f∗(x)‖ = ‖x‖ for x ∈ X \ U.

Observe that so far we have not needed {i}-conjugacy of J1 and J2 (even
in the complex case). This will be needed to prove (8). For x ∈ X \ U we
have, in particular,

x /∈ −iM [0, 1] =⇒ ix /∈ M [0, 1] =⇒ (ix, ix) /∈ M ;

x /∈ M [0, i] =⇒ (ix, x) /∈ M.

Thus for x ∈ X \ U , because of (A), we obtain:

‖f(ix)− if(x)‖2 = 〈f(ix) | f(ix)〉+ 〈f(x) | if(x)〉 − 2<〈f(ix) | if(x)〉
= 〈ix | ix〉+ 〈x | x〉 − 2< (−i〈ix | x〉) = 0

whence
f(ix) = if(x) for x ∈ X \ U.

As we have (13), f∗ inherits the above property and (8) follows. ¤

4. Boundedness and continuity

Let B(X,Y ) denote the family of all subsets B ⊂ X with the property
that each additive function f : X → Y bounded on B is continuous, i.e.,

(14)
B(X,Y ) := {B ⊂ X : (f : X → Y additive,

f bounded on B) ⇒ f continuous}.

One can put the above definition into a more general setting (e.g., for
topological groups); however, with respect to our main result, we restrict
ourselves to considering this class for X and Y being inner product spaces.

Such a class B (for particular X and Y ) was considered by Kuczma
[11], [12] p. 206 ff, Ger–Kuczma [8], Ger–Kominek [7]. A characteriza-
tion of B(Rn,R) was given by Smital [16].
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Let us note a simple

Lemma 1. If X and Y are arbitrary i.p.s. over K, Y 6= {0}, then

B(X, Y ) ⊂ B(X,K).

Proof. Let B ∈ B(X, Y ) and let f1 : X → K be an additive function
bounded on B. Define f : X → Y by f(x) := f1(x) ·y0 (for some arbitrary
but fixed y0 ∈ Y \ {0}). The function f is additive on X and ‖f(x)‖ =
|f1(x)| · ‖y0‖ whence it is bounded on B. As B ∈ B(X, Y ), f is continuous
and consequently f1 is continuous whence B ∈ B(X,K). ¤

Proposition 1. For an inner product space X and a Hilbert space

Y 6= {0} over K we have

B(X, Y ) = B(X,K).

Proof. We need only prove the reverse inclusion to that in Lemma 1,
i.e.,

B(X,K) ⊂ B(X,Y ).

We will use the following result
Let X be an inner product space and Y a Hilbert space over K ∈
{R,C}. Let f : X → Y be an additive mapping. Then the following

two conditions are equivalent:

(I) f is R-linear, continuous on X;

(II) for every y ∈ Y , the functional fy : X → K defined by fy(x) :=
〈f(x) | y〉 for x ∈ X, is continuous.

This theorem was proved in [15] in the case X = Y , but the proof
runs also in the general case, and the completeness of the target space only
is essential.

Now, let B ∈ B(X,K) and let f : X → Y be an additive function
bounded on B. For an arbitrary y ∈ Y the mapping fy is additive and for
all x ∈ X we have

‖fy(x)‖ = |〈f(x) | y〉| ≤ ‖y‖ · ‖f(x)‖.

As f is bounded on B so is fy whence fy is continuous. Thus we proved
(II) in the theorem quoted above whence (I) holds, i.e., f is continuous.
That means B ∈ B(X,Y ), and the proof is completed. ¤
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According to [7], each nonvoid open subset of a real linear topological
Baire space belongs to B(X,R) as well as each second category subset
with the Baire property (i.e., of the form A = (G ∪ P ) \ R where G is
open and P,R are of the first category) of X does (cf. also [14]). There
are generalizations of classical theorems of Bernstein-Doetsch and Mehdi,
respectively (cf. [12]).

For X = Rn we have the theorem of Ostrowski (cf. [12] p. 210) stating
that each subset of Rn of positive inner Lebesgue measure belongs to
B(Rn,R).
Notice, that the quoted results are far more general; we quoted what we
actually will need in the sequel.

One can quote also Smital’s result. He proved in [16] (Th. 4) that
B ⊂ Rn belongs to B(Rn,R) if and only if Q-convex hull of the set (B−B)
contains a ball.

Bearing in mind our Proposition 1 and the results mentioned above
we can state:

Proposition 2. Let X be a real Baire inner product space and let

Y 6= {0} be a real Hilbert space. If B ⊂ X satisfies one of the following

conditions:

(i) B 6= ∅ and B is open,

(ii) B is of the second category with the Baire property,

(iii) X = Rn, and B ⊂ Rn is of positive inner Lebesgue measure,

then B ∈ B(X,Y ). Moreover, if X = Rn, we have for B ⊂ Rn

(iv) B ∈ B(Rn, Y ) ⇐⇒ Q-convex hull of (B −B) contains a ball.

An inner product space need not be a Baire space; the space K(N) (of
all sequences x = (ξ1, ξ2, . . . ) such that ξi = 0 for almost every i ∈ N) is a
suitably example. A Hilbert space is a Baire space; however, completeness
is not a necessary condition for a Baire inner product space as was shown
by Hausdorff [10].

5. Main result

One can pose a question: does there exist a function g : X → Y sat-
isfying the orthogonality equation (OE), equal J1-almost everywhere on X

to a given function f : X → Y satisfying (A)? As each function satisfying
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(OE) is additive and because of the uniqueness in the assertion of Theo-
rem 1 the question, actually, is: does the function f∗ (from the assertion
of Theorem 1 satisfy the orthogonality equation? This – as it will turn out
– can be reduced to a question as to whether the condition ‖f∗(x)‖ = ‖x‖
holds for all x ∈ X. A positive answer, under some additional assumptions,
will be given.

Theorem 2. Let X and Y be inner product spaces over K ∈ {R,C}.
Let S = {0, 1, i} ∩ K and let J1 and J2 be p.l.i. S-conjugate ideals in X

and X2, respectively. Moreover, assume that J1 satisfies two additional

conditions:

∀V ∈J1 ∃B ⊂ X\V such that B is bounded and B∈B(X, Y );(15)

∀V ∈ J1 ∀ 0 6= x ∈ V ∃ {xn}∞n=1 ⊂ X ∃ {kn}∞n=1 ⊂ R \ {0}
such that xn → x (n →∞) and kn · xn /∈ V (n = 1, 2, . . . ).(16)

Let M ∈ J2 and satisfy M [0, 1] ∈ J1 and (for K = C) M [0, i] ∈ J1.

Then, if a function f : X → Y satisfies

(A) 〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ X2 \M,

then there exists a unique function f∗ : X → Y satisfying the orthogonality

equation (OE) and such that

f∗ = f J1-a.e. on X.

Moreover, dim X ≤ dim Y .

Proof. All the assumptions of Theorem 1 are satisfied, so we can
consider the unique additive function f∗ from the assertion of this theorem
– equal to f on the set X \U (U ∈ J1 and was defined by (9)). According
to (15), there exists a set B ⊂ X \U , bounded and belonging to B(X, Y ).
Because of the condition (7) that holds on X \ U , function f∗ is bounded
on B whence (definition (14)) f∗ is continuous on X and, consequently, R-
linear. For x ∈ X \U we have ‖f∗(x)‖ = ‖x‖. This is also true for x = 0 as
f∗ is additive. Let us consider an x ∈ U\{0}. From (16) there exists {xn} a
sequence in X convergent to x and {kn} a sequence of reals (different from
zero) such that knxn /∈ U (n ∈ N) which implies ‖f∗(knxn)‖ = ‖knxn‖ for
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all n ∈ N. From the R-homogeneity of f∗ we have ‖f∗(xn)‖ = ‖xn‖ for all
n ∈ N, and continuity of f∗ implies ‖f∗(x)‖ = ‖x‖. Thus we have

(17) ‖f∗(x)‖ = ‖x‖ for x ∈ X.

In the case K = C we have also – according to (8) – f∗(iknxn) = if∗(knxn)
for all n ∈ N whence (by R-homogeneity of f∗) f∗(ixn) = if∗(xn) for all
n ∈ N and finally (by continuity of f∗) f∗(ix) = if∗(x). The last equality
holds also for x ∈ X \ U and for x = 0 whence we have

(18) f∗(ix) = if∗(x) for x ∈ X.

Now, for arbitrary x, z ∈ X we have, because of additivity of f∗ and (17),

<〈f∗(x) | f∗(z)〉 =
1
4

(‖f∗(x) + f∗(z)‖2 − ‖f∗(x)− f∗(z)‖2)

=
1
4

(‖f∗(x + z)‖2 − ‖f∗(x− z)‖2)

=
1
4

(‖x + z‖2 − ‖x− z‖2) = <〈x | z〉.

Similarly, making use of (18),

=〈f∗(x) | f∗(z)〉 =
1
4

(‖f∗(x) + if∗(z)‖2 − ‖f∗(x)− if∗(z)‖2)

=
1
4

(‖f∗(x + iz)‖2 − ‖f∗(x− iz)‖2)

=
1
4

(‖x + iz‖2 − ‖x− iz‖2) = =〈x | z〉.

Therefore we have

〈f∗(x) | f∗(z)〉 = 〈x | z〉 for x, z ∈ X,

i.e., f∗ is an inner product preserving mapping.
As f∗ is injective and linear, dim X ≤ dim Y . ¤

Remark 2. If we replaced the condition M [0, i] ∈ J1 by M [0, γ] ∈ J1

for some arbitrary γ ∈ C \ R and if we then replaced in (9) the summand
−iM [0, 1] by γ−1M [0, 1] we would obtain instead of (8): f∗(γx) = γf∗(x)
for x ∈ X \ U . From the last equality, and from the continuity of f∗, one
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can easily derive f∗(ix) = if∗(x) on X \ U . That means, our assumptions
in Theorem 2 can be weakened a little bit.

Notice that if f = f∗ J1-a.e. on X for f∗ satisfying (OE) and

M := {(x, z) : 〈x | z〉 6= 〈f(x) | f(z)〉}

then M [x, k] ∈ J1 for any x ∈ X, k ∈ K \ {0}.
As a corollary from Theorem 1 and Theorem 2 we are able to state

Theorem 3. Let X and Y be inner product spaces over K, let J be

a p.l.i. ideal in X and let f : X → Y satisfy

(A’) 〈f(x) | f(z)〉 = 〈x | z〉 for x, z ∈ X \ U

where U ∈ J . Then there exists a unique additive mapping f∗ : X → Y

such that f∗ = f J -a.e. in X. Moreover, under the assumption that J
satisfies (15) and (16) function f∗ is an inner product preserving mapping,

i.e., it satisfies (OE).

Proof. Define M := (U ×X) ∪ (X × U); then M ∈ Π(J ). As we
know Π(J ) and J are K-conjugate. Moreover, we have

M [0, 1] = {x : (x, x) ∈ M} = U ∈ J ;

M [0, i] = {x : (ix, x) ∈ M} = (−iU) ∪ U ∈ J

whence all the assumptions of Theorem 1 are satisfied and therefore a
unique additive function f∗, equal almost everywhere to f , exists. If we
assume J satisfies (15), (16), then we can apply Theorem 2 with J1 = J ,
J2 = Π(J ) and M defined above to obtain the assertion. ¤

Remark 3. In the case of the Cauchy equation, if f(x+y) = f(x)+f(y)
for x, y ∈ X \U where U belongs to an ideal, then ([12] p. 446) the function
f itself is additive. This is not the case for the orthogonality equation as
one can consider an arbitrary inner product space X with a p.l.i. ideal J ,
an arbitrary set {0} 6= U ∈ J and a function f : X → X given by

f(x) = x for x /∈ U and f = 0 on U.

Obviously, 〈f(x) | f(z)〉 = 〈x | z〉 for x, z ∈ X \ U whereas f is not a
solution of (OE) and need not be additive.
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6. Applications

In this section we provide some examples of applications of Theorems 2
and 3. We restrict ourselves to a real Baire inner product space X and to
Y being a real Hilbert space. In particular, we consider the case X = Rn

and Y = Rm with – a posteriori – m ≥ n.

Remark 2. Let J ℵ0
1 and J ℵ0

2 consist of all at most countable subsets
of X and X2, respectively. Of course, J ℵ0

1 and J ℵ0
2 are R-conjugate p.l.i.

ideals. The ideal J ℵ0
1 satisfies (15); indeed, if V ∈ J ℵ0

1 and B1 denotes the
open unit ball centered at the origin, then B := B1 \V is a bounded set of
the second category with the Baire property (here we use the fact that X

is a Baire space whence B1 is of the second category). Hence, according to
Proposition 2 (ii), B ∈ B(X, Y ). The condition (16) holds trivially (each
ball contains uncountably many elements). Of course if M ∈ J ℵ0

2 , then
M [0, 1] ∈ J ℵ0

1 .

From Theorem 2 we derive

Corollary 1. Let X be a real Baire inner product space and let Y be

a real Hilbert space. If f : X → Y satisfies the condition

〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ X2 \M

where M is an at most countable set, then there exists exactly one function

f∗ : X → Y satisfying

〈f∗(x) | f∗(z)〉 = 〈x | z〉 for x, z ∈ X

and such that f∗ = f on X except for an at most countable subset. More-

over, dim X ≤ dim Y .

Example 3. Let J 0
1 and J 0

2 consist of all Lebesgue nullsets in Rn

and R2n, respectively. Then J 0
1 and J 0

2 are p.l.i. ideals and they are
conjugate (Fubini’s theorem). Moreover, for an arbitrary k ∈ R a mapping

ϕ−1
k (x, z) = (x − kz, z) is linear and for its matrix Φ−1

k =
[

1 −k

0 1

]
we

have
∣∣detΦ−1

k

∣∣ = 1. Thus if A ∈ J 0
2 , then ϕ−1

k (A) ∈ J 0
2 (mapping ϕ−1

k

preserves the Lebesgue measure, cf. [13] Th. 5.4.8. p. 105) and (4) holds.
According to Remark 1, J 0

1 and J 0
2 are R-conjugate. If V ∈ J 0

1 , then
B = B1 \ V is of positive Lebesgue measure whence (Proposition 2 (iii))
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B ∈ B(Rn, Y ) and (15) holds. A Lebesgue nullset cannot contain an open
ball, thus for V ∈ J 0

1 the set Rn \ V is dense in Rn and (16) is satisfied.
Notice that for an arbitrary M ∈ J 0

2 the condition M [0, 1] ∈ J 0
1 need

not be satisfied. Indeed, one can consider M0 := {(x, x) ∈ R2n : x ∈ Rn};
then M0 ∈ J 0

2 whereas M0[0, 1] = Rn /∈ J 0
1 . Thus if we want to apply

Theorem 2, we have to make an additional assumption on the set M .

Corollary 2. Let Y be a real Hilbert space. If f : Rn → Y satisfies

the condition

〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ R2n \M

where M is a Lebesgue nullset in R2n such that the set {x ∈ Rn :
(x, x) ∈ M} is a Lebesgue nullset in Rn, then there exists a unique function

f∗ : Rn → Y satisfying the orthogonality equation and such that f∗ = f

Lebesgue-almost everywhere in Rn. Moreover, dim Y ≥ n.

Example 4. Let J f
1 and J f

2 consist of all first category subsets of X

and X2, respectively. Then J f
1 and J f

2 are p.l.i. ideals (this was stated in
[12] and remains true under our terminology of linear invariance; indeed,
if A is of the first category, so is kA for k ∈ R) and they are conjugate
([12] Th. 2.1.7 p. 30). For k ∈ R the mapping ϕk is a homeomorphism
whence ϕ−1

k (A) is of the first category whenever A is. Hence (4) holds and
consequently (Remark 1) J f

1 and J f
2 are R-conjugate.

If V is of the first category in X (X is a Baire space), then the set
B := B1 \ V is of the second category with the Baire property whence
B ∈ B(X, Y ) according to Proposition 2 (ii), and (15) holds.

To prove (16) notice that if V is of the first category in X, then X \V

has to be dense – otherwise V would contain an open ball – a second
category set in X. (If we assumed X being a compact space we could just
quote the Baire theorem (cf. [17] Baire’s Theorem 1, p. 12): if M is of
the first category in a compact topological space X, then X \M is dense
in X.)

Again, if one wants to apply Theorem 2 one has to assume that
M [0, 1] ∈ J f

1 as it does not follow from M ∈ J f
2 and the other assumptions

(M0 defined in the previous example can be considered here as well).
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Corollary 3. Let X be a real Baire inner product space and let Y be

a real Hilbert space. If f : X → Y satisfies

〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ X2 \M

where M is of the first category in X2 and such that the set {x ∈ X :
(x, x) ∈ M} is of the first category in X, then there exists a unique function

f∗ : X → Y satisfying the orthogonality equation and such that f∗ = f on

a residual subset of X. Moreover, dim Y ≥ dim X.

Example 5. Let J b
1 and J b

2 consist of all bounded subsets of X and
X2, respectively. They are p.l.i. ideals and they are R-conjugate.
If V ⊂ X is bounded, then one can easily find an open ball B such that
B ⊂ X \ V . Then B ∈ B(X,Y ) (Proposition 2 (i)), and (15) is satisfied.
If V ∈ J b

1 and 0 6= x ∈ V , then there exists k ∈ R \ {0} such that kx /∈ V ,
i.e., (16) holds.

Finally, for an M ∈ J b
2 we have M [0, 1] ∈ J b

1 .

Thus one can derive from Theorem 2

Corollary 4. Let X be a real Baire inner product space and let Y be

a real Hilbert space. If f : X → Y satisfies

〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ X2 \M

where M is bounded in X2, then there exists a unique function f∗ : X → Y

satisfying the orthogonality equation on X and such that f∗ = f on X

except for some bounded subset. Moreover, dim Y ≥ dim X.

Example 6. Let Jm
1 and Jm

2 consist of all subsets of Rn and R2n,
respectively, of finite n-dimensional (2n-dimensional, respectively) outer
measure. Jm

1 and Jm
2 are p.l.i. ideals and they are conjugate ([12] p. 440).

The mappings ϕ−1
k preserve the outer measure as we have

∣∣detΦ−1
k

∣∣ = 1
(cf. [13] Corollary 5.4.1). Thus Jm

1 and Jm
2 are R-conjugate.

If V ∈ Jm
1 , i.e., if V is of finite outer measure in Rn, then there exists

n ∈ N such that for Bn being the ball centered at the origin of radius n,
the set Bn \ V is of positive inner measure whence (Proposition 2 (iii))
belongs to B(Rn, Y ). Thus (15) is satisfied.

Suppose that (16) is violated. There would exists V ∈ Jm
1 , x ∈ V \{0}

and ε > 0 such that

∀ z ∈ B(x, ε) ∀ k ∈ R \ {0} kz ∈ V.
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But that would imply n · B(x, ε) ⊂ V for all n ∈ N which contradicts the
fact that V is of finite outer measure. Therefore (16) holds.

From Theorem 2 we obtain

Corollary 5. Let Y be a real Hilbert space. If f : Rn → Y satisfies

the condition

〈f(x) | f(z)〉 = 〈x | z〉 for (x, z) ∈ R2n \M

where M is of finite outer measure in R2n and such that the set {x ∈ Rn :
(x, x) ∈ M} is of finite outer measure in Rn, then there exists a unique

function f∗ : Rn → Y satisfying the orthogonality equation and such that

f∗ = f on Rn except for some set of finite outer measure. Moreover,

dim Y ≥ n.

Remark 4. The above Corollaries do not cover – in particular – the
following conditional orthogonality equation

〈f(x) | f(z)〉 = 〈x | z〉 for x 6= z.

In this case M = {(x, x) : x ∈ X} and M [0, 1] = X. It can be proved
(cf. [2]) that, in the case X = Y = Rn, each solution of the above condi-
tional equation is, in fact, a solution of the orthogonality equation itself.
This is no longer true if we consider an infinite-dimensional space X or
if we take X 6= Y . In those cases, the open question is if there exists a
function f∗ satisfying the unconditional orthogonality equation and equal
to f almost everywhere with respect to some ideal in X.

From Theorem 3 and from the fact that all the ideals considered in
Examples 2–6 satisfy (15) and (16) we have

Corollary 6. Let X be a real Baire inner product space and let Y be

a real Hilbert space. If f : X → Y satisfies

〈f(x) | f(z)〉 = 〈x | z〉 for x, z ∈ X \ U

and U is an at most countable [first category / bounded / of Lebesgue
measure zero (X = Rn) / of finite outer measure (X = Rn)] set, then

there exists a unique solution f∗ : X → Y of (OE) such that f∗ = f on X

except for an at most countable [first category / bounded / of Lebesgue
measure zero / of finite outer measure – respectively] subset.
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7. Final remarks

At the beginning of the present paper we gave the definition of linear
invariance of an ideal (Definition 2). Now we would like to introduce
another definition; more restrictive but, perhaps, more adequate to the
name linear invariance. Namely we propose:

For a vector space (X,K,+, ·) over K (topological vector space / inner
product space etc.) we call an ideal J ⊂ 2X linearly invariant iff (besides
of (i), (ii) from Definition 1) it satisfies

(iv’) for every x ∈ X and for every automorphism l : X → X

if A ∈ J , then x− l(A) ∈ J .

Here by automorphism we mean a bijective and linear mapping pre-
serving all additional structures imposed on X (linear homeomorphism for
topological vector space, unitary mapping for inner product space etc.)

Notice, that all “classical” examples of ideals, especially those consid-
ered in Examples 2–6 (Lebesgue nullsets, bounded subsets, first category
subsets, subsets with positive outer measure, at most countable subsets
in suitable spaces) are still linearly invariant under the stronger condition
(iv’). If one assumes (iv’) in the definition of linear invariance, then –
in particular – the condition (4) holds for all k ∈ K whence (Remark 1)
the concepts of conjugacy and K-conjugacy are equivalent. Thus in the
assumptions of Theorems 1 and 2 we can reduce {0, 1, i}-conjugacy just to
conjugacy.

Of course, the condition (iv’) is strictly stronger than (iv). For let

J1 := {A ⊂ R : mL(A) = 0}
where mL denotes Lebesgue measure in R and let

J2 := {B ⊂ R2 : m2
L(B) = 0 and ∀x ∈ R B[x] is bounded in R}

where m2
L denotes Lebesgue measure in R2. J1 is a proper linearly in-

variant (with (iv’)) ideal in R and J2 is a proper ideal in R2 satisfying
(iv) and R-conjugate with J1. However, J2 does not satisfy (iv’) Indeed,
the set B := {(x, x) : x ∈ R} belongs to J2 while for the automorphism
ϕ : R2 3 (x, y) → (x − y, y) ∈ R2 we have ϕ(B) = {(0, x) : x ∈ R} and
ϕ(B)[0] = R whence ϕ(B) /∈ J2.

One can check that ideals Ω(J ) and Π(J ) are not necessarily linearly
invariant under the new definition, contrary to Definition 2.
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