n-Complete standard wreath products

By J. PANAGOPOULOS (Athens), E. RAPTIS (Athens) and D. VARSOS (Athens)

Abstract

Let $\gamma_{n+1}(G)$ be the $n+1$ term of the lower central series of the group G and $f_{n}: \operatorname{Aut}(G) \longrightarrow \operatorname{Aut}\left(G / \gamma_{n+1}(G)\right)$ the obvious homomorphism. If Ker $f_{n} \leq I(G)$, the group of the inner automorphisms, then the group G is said to be n-Complete.

In this paper we examine the n-Completeness of a restricted standard wreath product $W=A \mathrm{wr} B$ in respect of the n-Completeness of the groups A and B.

1. Introduction

Let $W=A \mathrm{wr} B$ be the restricted standard wreath product of the groups A and B. In [3] necessary and sufficient conditions are given, under which the group W is semicomplete. In this paper we study the more general problem of the n-completeness of W in conection with the n completeness of the groups A and B. In section 3 it is proved that if W is n-complete then A is at most n-complete and B is nilpotent of class at most n. We shall see in the section 4 that the above conditions are not sufficient. Also, in the section 4 , we give examples of non n-complete standard wreath products constructing outer automorphisms of these groups.

2. Definitions and notations

The restricted standard wreath product $W=A \mathrm{wr} B$ of two groups A and B is the splitting extension of the direct power A^{B} by the group B, with B acting on A^{B} according to the rule: if $b \in B$ then $f^{b}(x)=f\left(x b^{-1}\right)$ for all $f \in A^{B}, x \in B$. The base group A^{B} is characteristic in W in all cases exept when A is of order 2 or is a dihedrall group of order $4 k+2$ and B is of order 2. In the following it is assumed that A^{B} is characteristic in W.

[^0]If G is a group and $G=\gamma_{1}(G), \gamma_{2}(G), \ldots, \gamma_{n}(G), \ldots$ the lower central series of G we define the series $K_{1}, K_{2}, \ldots, K_{n}, \ldots$, where K_{n} consists of the automorphisms of G which induce the identity on the group $G / \gamma_{n+1}(G)$. Now we give the definition of a n-complete group which is a generalization of the definition of a semicomplete group.

Definition 2.1. A group G is called n-complete if n is the least positive integer such that $K_{n} \leq I(G)$, where $I(G)$ is the group of the inner automorphisms of G.

If a group is nilpotent of class m, then clearly is n-complete for some n with $n \leq m$. We have by definition 2.1 that a group is 1 -complete if and only if it is semicomplete.

In the following we need the next extensions:
i) If $a \in \operatorname{Aut}(A)$ then $a^{*} \in \operatorname{Aut}(W)$, where $(b f)^{a^{*}}=b f^{a^{*}}$ for all $b \in B, f \in A^{B}$ and $f^{a^{*}}(x)=(f(x))^{a}$ for all $x \in B$.
ii) If $\beta \in \operatorname{Aut}(B)$ then $\beta^{*} \in \operatorname{Aut}(W)$, where $(b f)^{\beta^{*}}=b^{\beta} f^{\beta^{*}}$ for all $b \in B, f \in A^{B}$ and $f^{\beta^{*}}(x)=f\left(x^{\beta^{-1}}\right)$ for all $x \in B$.

3. Characterizations of A and B when $W=A \mathbf{w r} B$ is n-complete

Proposition 3.1. If $W=A_{w r} B$ is n-complete then A is at most n-complete.

Proof. If $a \in K_{n}(A)$ and $f \in A^{B}$, then $f^{a^{*}}(x)=(f(x))^{a}=f(x) u_{x}$ for all $x \in B$ and $u_{x} \in \gamma_{n+1}(A)$. If $g \in A^{B}$ such that $g(x)=u_{x}$ for all $x \in B$, then $f^{a^{*}}(x)=(f g)(x)$ for all $x \in B$. Hence $f^{a^{*}}=f g$, where $g \in \gamma_{n+1}(W)$. Thus we conclude that $a^{*} \in K_{n}(W)$. Since W is n-complete we have that $K_{n}(W) \leq I(W)$ and so $a^{*} \in I(W)$. But $a^{*} \in I(W)$ if and only if $a \in I(A)$ (cf. J. Panagopoulos [3], Prop. 4.3). Hence, $K_{n}(A) \leq I(A)$.

Proposition 3.2. If $W=A w r B$ is n-complete then B is nilpotent of class at most n.

Proof. Let $L(B)$ be the left regular representation of the group B. To each element $\ell_{b} \in L(B),(b \in B)$ there corresponds an automorphism ℓ_{b}^{*} of W defined by $(c f)^{\ell_{b}^{*}}=c f^{\ell_{b}^{*}}$, for all $c \in B, f \in A^{B}$, where $f^{\ell_{b}^{*}}(x)=f(b x)$ for all $x \in B$. (cf. J. Panagopoulos [3], Lemma 5.1). If $f_{1} \in A^{B}$ such that $f_{1}(1)=a, f_{1}(x)=1$ for all $x \in B, x \neq 1$ and $b \in B, b \neq 1$ then $f_{1}^{\ell_{b}^{*}}\left(b^{-1}\right)=f_{1}(1)=a$ and $f_{1}^{\ell_{b}^{*}}(x)=f_{1}(b x)=1$ for all $x \neq b^{-1}$. It is easy to see that $f_{1}^{\ell_{b}^{*}}=f_{1} g$, where $g(1)=a^{-1}, g\left(b^{-1}\right)=a$ and $g(x)=1$ for all
$x \in B, x \neq 1, b^{-1}$. For the element $g \in A^{B}$ we have that $g=\left[b^{-1}, \varphi\right]$, where $\varphi \in A^{B}$ with $\varphi(1)=g(1)$ and $\varphi(x)=1$ for all $x \neq 1$. (cf. P. Neumann [2], Lemma 4.2).

Also, if $x_{i} \in B$ we define the element $f_{x_{i}} \in A^{B}$ by $f_{x_{i}}\left(x_{i}\right)=a$ and $f_{x_{i}}(c)=1$ for all $c \in B, c \neq x_{i}$, then $f_{x_{i}}^{\ell_{b}^{*}}=f_{x_{i}} g^{x_{i}}$. If we choose an element $b \in \gamma_{n}(B)$, then the automorphism ℓ_{b}^{*} belongs to the group $K_{n}(W) \leq I(W)$. But $\ell_{b}^{*} \in I(W)$ if and only if $b \in Z(B)$ which means that the group B is nilpotent of class at most n.

Proposition 3.3. If $W=A w r B$ is n-complete and B is nilpotent of class n, then A is directly indecomposable.

Proof. Let $A=U \times V$ a non trivial direct decomposition of A. If $f \in A^{B}$ then $f(x)=u_{x} v_{x}$ for all $x \in B$, where $u_{x} \in U, v_{x} \in V$. If $g_{f} \in A^{B}$ such that $g_{f}(x)=u_{x}$ for all $x \in B$ and $z \in \gamma_{n}(B) \leq Z(B), z \neq 1$, we define a mapping $\gamma: W \rightarrow W$ by $(b f)^{\gamma}=b f\left[g_{f}, z\right]$. Since $g_{f h}=g_{f} g_{h}$ and $g_{f}^{y}=g_{f^{y}}$ for all $f, h \in A^{B}$ and $y \in B$, we can see that γ is an outer automorphism of W with $\gamma \in K_{n}(W)$. This is a contradiction.

Proposition 3.4. Let $W=A_{w r} B$, where A is finite nilpotent and B is nilpotent of class n. If W is n-complete, then A is a p-group (p prime), and if A is abelian then it is cyclic of order p.

Proof. Proposition 3.3 gives that A is a p-group. Moreover since A is abelian we have that A is cyclic of order p^{r} for some positive integer r. If $r \neq 1$ we choose an element $z \in \gamma_{n}(B), z \neq 1$ and define a mapping $\gamma: W \rightarrow W$ by $(b f)^{\gamma}=b f[f, z]^{p}$, which is an automorphism of W belonging to the group $K_{n}(W)$. (cf. J. Panagopoulos [3], Proposition 4.6). Since $r>1$ it is easy to see that γ is an outher automorphism, so W is not n-complete. Hence, $r=1$.

The proof of the next proposition is the same as the proof of Proposition 4.7 in J. Panagopoulos [3]. The only change concerns the choice of the element $z \in \gamma_{n}(B), z \neq 1$.

Proposition 3.5. Let $W=A$ wr B where A is non abelian with A / A^{\prime}, $Z(A)$ of finite order and B nilpotent of class n. If W is n-complete then $\left(\left|A / A^{\prime}\right|,|Z(A)|\right)=1$.

Now, we see that if A is finite nilpotent, B nilpotent of class n and $W=A \mathrm{wr} B$ is n-complete, then A will be abelian. Because, if A is not abelian then $\left(\left|A / A^{\prime}\right|,|Z(A)|\right) \neq 1$ which contradicts Proposition 3.5. Hence, we have the following:

Proposition 3.6. If $W=A w r B$ is n-complete, A finite nilpotent and B nilpotent of class n, then A is cyclic of prime order.

4. n-Complete wreath products

In this section we give examples of non n-complete standard wreath products. Constructing outer automorphisms of $W=A \mathrm{wr} B$ we use the following conclusion:

An automorphism γ of A^{B} is extended to an automorphism of W leaving B elementwise fixed if and only if γ is commuted with the inner automorphisms induced by elements of B. (cf. C. Houghton [1]. §3.4).

Proposition 4.1. The wreath product $W=C_{p} w r C_{2}$, where p is a prime with $p>3$, is not n-complete.

Proof. It is known that if $W=A \mathrm{wr} B$ then $W^{\prime}=B^{\prime} M$, where $M=$ $\left\{f \in A^{B} \mid \pi(f) \in A^{\prime}\right\}$ (cf. P. Newmann [2]. Theorem 4.1). Since $B=C_{2}$ and $|M|\left||A|^{|B|}=p^{2}\right.$ it follows that $| M \mid=p$. Thus, $\gamma_{n}(W)=M$ for all $n \in \mathbf{Z}^{+}, n \geq 2$, because W is not nilpotent. If $A=C_{p}=\langle a\rangle, B=C_{2}=\langle b\rangle$ we choose the elements: $f_{1}=\left(a^{p-1}, a^{2}\right), f_{2}=\left(a^{2}, a^{p-1}\right), g_{1}=(a, 1)$, $g_{2}=(1, a)$. Since $A^{B}=\left\langle f_{1}, f_{2}\right\rangle=\left\langle g_{1}, g_{2}\right\rangle$ and A^{B} is elementary abelian of rank 2 and $p \neq 3$ the mapping $g_{1} \rightarrow f_{1}, g_{2} \rightarrow f_{2}$ can be extended to an automorphism γ of A^{B}, which commutes with the automorphism of A^{B} induced by the element $b \in B$. Thus, the automorphism γ can be extended to an automorphism of W, which fixes B elementwise (cf. C. Houghton [1]).

Since $g_{1}^{\gamma}=(a, 1)^{\gamma}=\left(a^{p-1}, a^{2}\right)=(a, 1)\left(a^{p-2}, a^{2}\right), g_{2}^{\gamma}=(1, a)^{\gamma}=$ $\left(a^{2}, a^{p-1}\right)=(1, a)\left(a^{2}, a^{p-2}\right)$ with $\left(a^{p-2}, a^{2}\right),\left(a^{2}, a^{p-2}\right) \in M=\gamma_{n}(W)$, $n \geq 2$, we have that $\gamma \in K_{n}(W), n \geq 2$ and γ is an outher automorphism. Hence, $W=C_{p} \mathrm{wr}_{2}$ is not n-complete.

Proposition 4.2. The wreath product $W=C_{p} w r B$, where p is a prime with $p>3$ and B is finite nilpotent of class n with $k=|B| \geq 3$, is not n-complete.

Proof. If we put $A=C_{p}=\langle a\rangle$ then the group A^{B} will be an elementary abelian p-group. Clearly, the set $g_{x_{i}} \in A^{B}$ for all $x_{i} \in B=$ $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ with $g_{x_{i}}\left(x_{i}\right)=a, g_{x_{i}}\left(x_{j}\right)=1, x_{j} \neq x_{i}$ is a basis of A^{B}. We consider the mapping: $g_{x_{i}} \rightarrow f_{x_{i}}=g_{x_{i}}\left[b, g_{x_{i}}\right]=g_{x_{i}}^{2}\left(g_{x_{i}}^{-1}\right)^{b}$ for all $x_{i} \in B$, where $b \in \gamma_{n}(B)$. This mapping is extended to an automorphism $\bar{\gamma}$ of A^{B} because the set $f_{x_{i}}, x_{i} \in B$ is a basis of A^{B}. In fact, since $C_{p} \cong \mathbf{Z}_{p}$ $\left(\mathbf{Z}_{p}\right.$ is the ring of integers $\left.\bmod p\right)$ and $p>3$, the determinant

$$
D=\left|\begin{array}{rrrrrrrr}
2 & 0 & \ldots & 0 & -1 & 0 & \ldots & 0 \\
0 & 2 & \ldots & -1 & 0 & 0 & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & \ldots & -1 & 0 & 0 & \ldots & 2
\end{array}\right| \in \mathbf{Z}_{p}
$$

is not zero, where the element 2 is in the main diagonal and in each row and column we have once the element -1 . Since the automorphism $\bar{\gamma}$ of A^{B} commutes with the automorphisms of A^{B} which are induced by the elements of the group $B, \bar{\gamma}$ can be extended to an automorphism γ of the group W, which fixes B elementwise. Clearly, the automorphism γ is an outer automorphism with $\gamma \in K_{n}(W)$. Hence, the group W is not n-complete.

In the following we study the n-completeness of $W=A \mathrm{wr} B$ with $A=C_{2}$ and B finite. First we need the following:

Lemma 4.3. If $W=A w r B$ then $f \cdot f^{b^{2^{n-1} k}} \in \gamma_{n+1}(W)$ for all $f \in A^{B}$, $b \in B, k \in \mathbf{Z}$.

Proof. By induction. If $n=1$ then $\left[f, b^{k}\right]=f \cdot f^{b^{k}} \in W$ for all $f \in A^{B}, b \in B$. Let $f \cdot f^{b^{2^{n-1} k}} \in \gamma_{n+1}(W)$. Then $\left[f \cdot f^{b^{2^{n-1} k}}, b^{2^{n-1} k}\right]=$ $f \cdot f^{b^{2^{n}} k} \in \gamma_{n+2}(W)$, for all $f \in A^{B}, b \in B$.

Proposition 4.4. The wreath product $W=C_{2} w r B$ is not n-complete, where B is finite abelian with $m=|B| \geq 4$ and m is an odd number.

Proof. We distinguish the next cases.
a) We assume that there exist two elements $b, c \in B$ of order three with $b \notin\langle c\rangle$. Since $A^{B}=\prod_{i=1}^{m}\left\langle a_{i}\right\rangle$, where $A=C_{2}=\langle a\rangle$ and $\left\langle a_{i}\right\rangle \cong\langle a\rangle$ for all $i=1,2, \ldots, m$ we define an automorphism $\bar{\gamma}$ of A^{B} by $a_{i}^{\bar{\gamma}}=a_{i} a_{i}^{b} a_{i}^{c} a_{i}^{b^{2} c} a_{i}^{b c^{2}}$ for all $i=1,2, \ldots, m$. The automorphism $\bar{\gamma}$ is extended to an outer automorphism γ of W, which fixes B elementwise. (cf. J. Panagopoulos [3], Lemma 6.3). For this automorphism γ we have that $\gamma \in K_{n}(W)$. In fact:
i) If $2^{n-1} \equiv 1(\bmod 3)$ then $b^{2^{n-1}}=b$ and $b^{2^{n}}=b^{2}$. Thus $a_{i}^{\gamma}=$ $a_{i} a_{i}^{b} a_{i}^{c} a_{i}^{{b^{2}}^{n}} c_{i}^{b c^{2^{n}}}$ with $a_{i}^{b} a_{i}^{c} a_{i}^{2^{2^{n}}} c_{i}^{b c^{2^{n}}} \in \gamma_{n+2}(W) \leq \gamma_{n+1}(W)$.
ii) If $2^{n-1} \equiv 2(\bmod 3)$ then $b^{2^{n-1}}=b^{2}$. Thus $a_{i}^{\gamma}=a_{i} a_{i}^{b} a_{i}^{c} a_{i}^{b^{2^{n}}} c^{b c^{2^{n}}}$ with $a_{i}^{b} a_{i}^{c} a_{i}^{b^{2^{n}}}{ }^{c} a_{i}^{b c^{2^{n}}} \in \gamma_{n+1}(W)$.
b) We assume that B contains an element b of order r not divisible by three. We define an automorphism $\bar{\gamma}$ of A^{B} by $a_{i}^{\bar{\gamma}}=a_{i} a_{i}^{b} a_{i}^{b^{2}}$ for all $i=1, \ldots, m$. The automorphism $\bar{\gamma}$ is extended to an outher automorphism γ of W. Now, let $k \in Z$ a solution of the congruence $2^{n-1} x \equiv 1(\bmod r)$. Then, $a_{i}^{\gamma}=a_{i} a_{i}^{b} a_{i}^{b b^{2^{n-1} k}}$ with $a_{i}^{b} a_{i}^{b b^{2^{n-1} k}} \in \gamma_{n+1}(W)$.
c) Let the orders of the elements of B are divisible by 3 . If all elements of B have order 3 we are in the case a). On the other hand there is an element $b \in B$ of order 9 . We define an automorphism $\bar{\gamma}$ of A^{B} by $a_{i}^{\bar{\gamma}}=$

88 J. Panagopoulos, E. Raptis and D. Varsos : n-Complete standard wreath products
$a_{i} a_{i}^{b} a_{i}^{b^{3}}$ for all $i=1,2, \ldots, m$. The automorphism $\bar{\gamma}$ is extended to an outer automorphism γ of W. If $k \in Z$ is a solution of the congruence $2^{n-1} x \equiv$ $2(\bmod 9)$, then $b^{2}=b^{2^{n-1} k}$. Thus $a_{i}^{\gamma}=a_{i} a_{i}^{b} a_{i}^{b b^{2^{n-1} k}}$ with $a_{i}^{b} a_{i}^{b 2^{n-1} k} \in$ $\gamma_{n+1}(W)$.

Finally, we see that in all cases there exists an outer automorphism in $K_{n}(W)$, so that the wreath product $W=C_{2} \mathrm{wr} B$ is not n-complete.

We have assumed up to this point that the subgroup A^{B} is characteristic in $W=A \mathrm{wr} B$. Now, we study the case of W in which A is a special dihedral group and B is of order 2. At this case A^{B} is not characteristic in W.

Proposition 4.5. Let $W=D_{m} w r C_{2}$, where $D_{m}=\langle a, b| a^{m}=1$, $\left.b^{2}=1,(a b)^{2}=1\right\rangle, m=2 k+1, k \in \mathbf{N}$ and C_{2} is the cyclic group of order 2. Then the group W is n-complete if and only if $m=3$.

Proof. We have for the lower central series of the group D_{m} : $\gamma_{i+1}\left(D_{m}\right)=\left\langle a^{2^{i}}\right\rangle$, for all $i=1,2, \ldots$. Since m is an odd number, it follows that

$$
\begin{equation*}
\gamma_{2}\left(D_{m}\right)=\gamma_{3}\left(D_{m}\right)=\ldots=\gamma_{i}\left(D_{m}\right)=\gamma_{i+1}\left(D_{m}\right)=\ldots \tag{1}
\end{equation*}
$$

If the group $W=D_{m} \mathrm{wr} C_{2}$ is n-complete, then it follows by Proposition 3.1, that the group D_{m} is at most n-complete. This means by (1), that D_{m} is semicomplete and this is true if and only if $m=3$. Since the group $W=D_{3} \mathrm{wr} C_{2}$ is semicomplete, clearly it will be n-complete. (cf. J. Panagopoulos [4]).

References

[1] C. Houghton, On the automorphisms groups of certain wreath products, Publ. Math. Debrecen 9 (1963), 307-313.
[2] P. Neumann, On the structure of standard wreath products of groups, Math. Z. 84 (1964), 343-373.
[3] J. Panagopoulos, Groups of automorphisms of standard wreath products, Arch. Math. 37 (1981), 499-511.
[4] J. Panagopoulos, A semicomplete standard wreath product, Arch. Math 43 (1984), 301-302.
J. PANAGOPOULOS, E. RAPTIS AND D. VARSOS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ATHENS
PANPISTEMIOPOLIS, 15784 ATHENS
GREECE
(Received February 20, 1991)

[^0]: AMS/MOS classification 20E22.

