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n-Complete standard wreath products

By J. PANAGOPOULOS (Athens), E. RAPTIS (Athens) and D. VARSOS (Athens)

Abstract. Let γn+1(G) be the n+1 term of the lower central series of the group G
and fn : Aut(G) −→ Aut(G/γn+1(G)) the obvious homomorphism. If Ker fn ≤ I(G),
the group of the inner automorphisms, then the group G is said to be n-Complete.

In this paper we examine the n-Completeness of a restricted standard wreath
product W = AwrB in respect of the n-Completeness of the groups A and B.

1. Introduction

Let W = AwrB be the restricted standard wreath product of the
groups A and B. In [3] necessary and sufficient conditions are given,
under which the group W is semicomplete. In this paper we study the
more general problem of the n-completeness of W in conection with the n-
completeness of the groups A and B. In section 3 it is proved that if W is
n-complete then A is at most n-complete and B is nilpotent of class at most
n. We shall see in the section 4 that the above conditions are not sufficient.
Also, in the section 4, we give examples of non n-complete standard wreath
products constructing outer automorphisms of these groups.

2. Definitions and notations

The restricted standard wreath product W = AwrB of two groups A
and B is the splitting extension of the direct power AB by the group B,
with B acting on AB according to the rule: if b ∈ B then f b(x) = f(xb−1)
for all f ∈ AB , x ∈ B. The base group AB is characteristic in W in all
cases exept when A is of order 2 or is a dihedrall group of order 4k+2 and
B is of order 2. In the following it is assumed that AB is characteristic in
W .
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If G is a group and G = γ1(G), γ2(G), . . . , γn(G), . . . the lower central
series of G we define the series K1, K2, . . . , Kn, . . . , where Kn consists of
the automorphisms of G which induce the identity on the group G/γn+1(G).
Now we give the definition of a n-complete group which is a generalization
of the definition of a semicomplete group.

Definition 2.1. A group G is called n-complete if n is the least posi-
tive integer such that Kn ≤ I(G), where I(G) is the group of the inner
automorphisms of G.

If a group is nilpotent of class m, then clearly is n-complete for some
n with n ≤ m. We have by definition 2.1 that a group is 1-complete if and
only if it is semicomplete.

In the following we need the next extensions:
i) If a ∈ Aut(A) then a∗ ∈ Aut(W ), where (bf)a∗ = bfa∗ for all

b ∈ B, f ∈ AB and fa∗(x) = (f(x))a for all x ∈ B.
ii) If β ∈ Aut(B) then β∗ ∈ Aut(W ), where (bf)β∗ = bβfβ∗ for all

b ∈ B, f ∈ AB and fβ∗(x) = f(xβ−1
) for all x ∈ B.

3. Characterizations of A and B when W = AwrB
is n-complete

Proposition 3.1. If W = AwrB is n-complete then A is at most
n-complete.

Proof. If a ∈ Kn(A) and f ∈ AB , then fa∗(x) = (f(x))a = f(x)ux

for all x ∈ B and ux ∈ γn+1(A). If g ∈ AB such that g(x) = ux for
all x ∈ B, then fa∗(x) = (fg)(x) for all x ∈ B. Hence fa∗ = fg, where
g ∈ γn+1(W ). Thus we conclude that a∗ ∈ Kn(W ). Since W is n-complete
we have that Kn(W ) ≤ I(W ) and so a∗ ∈ I(W ). But a∗ ∈ I(W ) if
and only if a ∈ I(A) (cf. J. Panagopoulos [3], Prop. 4.3). Hence,
Kn(A) ≤ I(A). ¤

Proposition 3.2. If W = AwrB is n-complete then B is nilpotent of
class at most n.

Proof. Let L(B) be the left regular representation of the group B.
To each element `b ∈ L(B), (b ∈ B) there corresponds an automorphism `∗b
of W defined by (cf)`∗b = cf `∗b , for all c ∈ B, f ∈ AB , where f `∗b (x) = f(bx)
for all x ∈ B. (cf. J. Panagopoulos [3], Lemma 5.1). If f1 ∈ AB such
that f1(1) = a, f1(x) = 1 for all x ∈ B, x 6= 1 and b ∈ B, b 6= 1 then
f

`∗b
1 (b−1) = f1(1) = a and f

`∗b
1 (x) = f1(bx) = 1 for all x 6= b−1. It is easy

to see that f
`∗b
1 = f1g, where g(1) = a−1, g(b−1) = a and g(x) = 1 for all
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x ∈ B, x 6= 1, b−1. For the element g ∈ AB we have that g = [b−1, ϕ],
where ϕ ∈ AB with ϕ(1) = g(1) and ϕ(x) = 1 for all x 6= 1. (cf. P.
Neumann [2], Lemma 4.2).

Also, if xi ∈ B we define the element fxi
∈ AB by fxi

(xi) = a

and fxi
(c) = 1 for all c ∈ B, c 6= xi, then f

`∗b
xi = fxi

gxi . If we choose
an element b ∈ γn(B), then the automorphism `∗b belongs to the group
Kn(W ) ≤ I(W ). But `∗b ∈ I(W ) if and only if b ∈ Z(B) which means that
the group B is nilpotent of class at most n. ¤

Proposition 3.3. If W = AwrB is n-complete and B is nilpotent of
class n, then A is directly indecomposable.

Proof. Let A = U × V a non trivial direct decomposition of A. If
f ∈ AB then f(x) = uxvx for all x ∈ B, where ux ∈ U , vx ∈ V . If gf ∈ AB

such that gf (x) = ux for all x ∈ B and z ∈ γn(B) ≤ Z(B), z 6= 1, we
define a mapping γ : W → W by (bf)γ = bf [gf , z]. Since gfh = gfgh

and gy
f = gfy for all f, h ∈ AB and y ∈ B, we can see that γ is an outer

automorphism of W with γ ∈ Kn(W ). This is a contradiction. ¤
Proposition 3.4. Let W = AwrB, where A is finite nilpotent and B

is nilpotent of class n. If W is n-complete, then A is a p-group (p prime),
and if A is abelian then it is cyclic of order p.

Proof. Proposition 3.3 gives that A is a p-group. Moreover since A
is abelian we have that A is cyclic of order pr for some positive integer r.
If r 6= 1 we choose an element z ∈ γn(B), z 6= 1 and define a mapping
γ : W → W by (bf)γ = bf [f, z]p, which is an automorphism of W belong-
ing to the group Kn(W ). (cf. J. Panagopoulos [3], Proposition 4.6).
Since r > 1 it is easy to see that γ is an outher automorphism, so W is
not n-complete. Hence, r = 1. ¤

The proof of the next proposition is the same as the proof of Propo-
sition 4.7 in J. Panagopoulos [3]. The only change concerns the choice
of the element z ∈ γn(B), z 6= 1.

Proposition 3.5. Let W = AwrB where A is non abelian with A/A′,
Z(A) of finite order and B nilpotent of class n. If W is n-complete then(|A/A′|, |Z(A)|) = 1. ¤

Now, we see that if A is finite nilpotent, B nilpotent of class n and
W = AwrB is n-complete, then A will be abelian. Because, if A is
not abelian then

(|A/A′|, |Z(A)|) 6= 1 which contradicts Proposition 3.5.
Hence, we have the following:

Proposition 3.6. If W = AwrB is n-complete, A finite nilpotent and
B nilpotent of class n, then A is cyclic of prime order. ¤
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4. n-Complete wreath products

In this section we give examples of non n-complete standard wreath
products. Constructing outer automorphisms of W = AwrB we use the
following conclusion:

An automorphism γ of AB is extended to an automorphism of W
leaving B elementwise fixed if and only if γ is commuted with the inner
automorphisms induced by elements of B. (cf. C. Houghton [1]. §3.4).

Proposition 4.1. The wreath product W = CpwrC2, where p is a
prime with p > 3, is not n-complete.

Proof. It is known that if W = AwrB then W ′ = B′M , where M =
{f ∈ AB | π(f) ∈ A′} (cf. P. Newmann [2]. Theorem 4.1). Since B = C2

and |M | ∣∣ |A||B| = p2 it follows that |M | = p. Thus, γn(W ) = M for all
n ∈ Z+, n ≥ 2, because W is not nilpotent. If A = Cp = 〈a〉, B = C2 = 〈b〉
we choose the elements: f1 = (ap−1, a2), f2 = (a2, ap−1), g1 = (a, 1),
g2 = (1, a). Since AB = 〈f1, f2〉 = 〈g1, g2〉 and AB is elementary abelian
of rank 2 and p 6= 3 the mapping g1 → f1, g2 → f2 can be extended to an
automorphism γ of AB , which commutes with the automorphism of AB

induced by the element b ∈ B. Thus, the automorphism γ can be extended
to an automorphism of W , which fixes B elementwise (cf. C. Houghton
[1]).

Since gγ
1 = (a, 1)γ = (ap−1, a2) = (a, 1)(ap−2, a2), gγ

2 = (1, a)γ =
(a2, ap−1) = (1, a)(a2, ap−2) with (ap−2, a2), (a2, ap−2) ∈ M = γn(W ),
n ≥ 2, we have that γ ∈ Kn(W ), n ≥ 2 and γ is an outher automorphism.
Hence, W = CpwrC2 is not n-complete. ¤

Proposition 4.2. The wreath product W = CpwrB, where p is a
prime with p > 3 and B is finite nilpotent of class n with k = |B| ≥ 3, is
not n-complete.

Proof. If we put A = Cp = 〈a〉 then the group AB will be an
elementary abelian p-group. Clearly, the set gxi ∈ AB for all xi ∈ B =
{x1, x2, . . . , xk} with gxi(xi) = a, gxi(xj) = 1, xj 6= xi is a basis of AB .
We consider the mapping: gxi → fxi = gxi [b, gxi ] = g2

xi
(g−1

xi
)b for all

xi ∈ B, where b ∈ γn(B). This mapping is extended to an automorphism
γ̄ of AB because the set fxi , xi ∈ B is a basis of AB . In fact, since Cp

∼= Zp

(Zp is the ring of integers mod p) and p > 3, the determinant

D =

∣∣∣∣∣∣∣

2 0 . . . 0 −1 0 . . . 0
0 2 . . . −1 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . −1 0 0 . . . 2

∣∣∣∣∣∣∣
∈ Zp,
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is not zero, where the element 2 is in the main diagonal and in each row
and column we have once the element −1. Since the automorphism γ̄ of
AB commutes with the automorphisms of AB which are induced by the
elements of the group B, γ̄ can be extended to an automorphism γ of
the group W , which fixes B elementwise. Clearly, the automorphism γ
is an outer automorphism with γ ∈ Kn(W ). Hence, the group W is not
n-complete. ¤

In the following we study the n-completeness of W = AwrB with
A = C2 and B finite. First we need the following:

Lemma 4.3. If W = AwrB then f ·f b2
n−1k ∈ γn+1(W ) for all f ∈ AB ,

b ∈ B, k ∈ Z.

Proof. By induction. If n = 1 then [f, bk] = f · f bk ∈ W for all

f ∈ AB , b ∈ B. Let f · f b2
n−1k ∈ γn+1(W ). Then [f · f b2

n−1k

, b2n−1k] =
f · f b2

n
k ∈ γn+2(W ), for all f ∈ AB , b ∈ B. ¤

Proposition 4.4. The wreath product W = C2wrB is not n-complete,
where B is finite abelian with m = |B| ≥ 4 and m is an odd number.

Proof. We distinguish the next cases.
a) We assume that there exist two elements b, c ∈ B of order three

with b 6∈ 〈c〉. Since AB =
m∏

i=1

〈ai〉, where A = C2 = 〈a〉 and 〈ai〉 ∼= 〈a〉 for all

i = 1, 2, . . . ,m we define an automorphism γ̄ of AB by aγ̄
i = aia

b
ia

c
ia

b2c
i abc2

i
for all i = 1, 2, . . . , m. The automorphism γ̄ is extended to an outer
automorphism γ of W , which fixes B elementwise. (cf. J. Panagopoulos
[3], Lemma 6.3). For this automorphism γ we have that γ ∈ Kn(W ). In
fact:

i) If 2n−1 ≡ 1 (mod3) then b2n−1
= b and b2n

= b2. Thus aγ
i =

aia
b
ia

c
ia

b2
n

c
i abc2n

i with ab
ia

c
ia

b2
n

c
i abc2n

i ∈ γn+2(W ) ≤ γn+1(W ).
ii) If 2n−1≡2 (mod3) then b2n−1

=b2. Thus aγ
i = aia

b
ia

c
ia

b2
n

c
i abc2n

i with
ab

ia
c
ia

b2
n

c
i abc2n

i ∈ γn+1(W ).
b) We assume that B contains an element b of order r not divisible

by three. We define an automorphism γ̄ of AB by aγ̄
i = aia

b
ia

b2

i for all
i = 1, . . . , m. The automorphism γ̄ is extended to an outher automorphism
γ of W . Now, let k ∈ Z a solution of the congruence 2n−1x ≡ 1 (modr).

Then, aγ
i = aia

b
ia

bb2
n−1k

i with ab
ia

bb2
n−1k

i ∈ γn+1(W ).
c) Let the orders of the elements of B are divisible by 3. If all elements

of B have order 3 we are in the case a). On the other hand there is an
element b ∈ B of order 9. We define an automorphism γ̄ of AB by aγ̄

i =
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aia
b
ia

b3

i for all i = 1, 2, . . . , m. The automorphism γ̄ is extended to an outer
automorphism γ of W . If k ∈ Z is a solution of the congruence 2n−1x ≡
2 (mod9), then b2 = b2n−1k. Thus aγ

i = aia
b
ia

bb2
n−1k

i with ab
ia

bb2
n−1k

i ∈
γn+1(W ).

Finally, we see that in all cases there exists an outer automorphism in
Kn(W ), so that the wreath product W = C2wrB is not n-complete. ¤

We have assumed up to this point that the subgroup AB is character-
istic in W = AwrB. Now, we study the case of W in which A is a special
dihedral group and B is of order 2. At this case AB is not characteristic
in W .

Proposition 4.5. Let W = DmwrC2, where Dm = 〈a, b | am = 1,
b2 = 1, (ab)2 = 1〉, m = 2k + 1, k ∈ N and C2 is the cyclic group of order
2. Then the group W is n-complete if and only if m = 3.

Proof. We have for the lower central series of the group Dm :
γi+1(Dm) = 〈a2i〉, for all i = 1, 2, . . . . Since m is an odd number, it
follows that

(1) γ2(Dm) = γ3(Dm) = . . . = γi(Dm) = γi+1(Dm) = . . .

If the group W = DmwrC2 is n-complete, then it follows by Proposition
3.1, that the group Dm is at most n-complete. This means by (1), that
Dm is semicomplete and this is true if and only if m = 3. Since the
group W = D3wrC2 is semicomplete, clearly it will be n-complete. (cf. J.
Panagopoulos [4]). ¤
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