Publ. Math. Debrecen 41 / 1-2 (1992), 83-88

n-Complete standard wreath products

By J. PANAGOPOULOS (Athens), E. RAPTIS (Athens) and D. VARSOS (Athens)

Abstract. Let $\gamma_{n+1}(G)$ be the n+1 term of the lower central series of the group G and $f_n : \operatorname{Aut}(G) \longrightarrow \operatorname{Aut}(G/\gamma_{n+1}(G))$ the obvious homomorphism. If Ker $f_n \leq I(G)$, the group of the inner automorphisms, then the group G is said to be *n*-Complete.

In this paper we examine the *n*-Completeness of a restricted standard wreath product W = A wr B in respect of the *n*-Completeness of the groups A and B.

1. Introduction

Let W = A wr B be the restricted standard wreath product of the groups A and B. In [3] necessary and sufficient conditions are given, under which the group W is semicomplete. In this paper we study the more general problem of the *n*-completeness of W in conection with the *n*-completeness of the groups A and B. In section 3 it is proved that if W is *n*-complete then A is at most *n*-complete and B is nilpotent of class at most *n*. We shall see in the section 4 that the above conditions are not sufficient. Also, in the section 4, we give examples of non *n*-complete standard wreath products constructing outer automorphisms of these groups.

2. Definitions and notations

The restricted standard wreath product W = A w r B of two groups Aand B is the splitting extension of the direct power A^B by the group B, with B acting on A^B according to the rule: if $b \in B$ then $f^b(x) = f(xb^{-1})$ for all $f \in A^B$, $x \in B$. The base group A^B is characteristic in W in all cases exept when A is of order 2 or is a dihedrall group of order 4k + 2 and B is of order 2. In the following it is assumed that A^B is characteristic in W.

AMS/MOS classification 20E22.

If G is a group and $G = \gamma_1(G), \gamma_2(G), \ldots, \gamma_n(G), \ldots$ the lower central series of G we define the series $K_1, K_2, \ldots, K_n, \ldots$, where K_n consists of the automorphisms of G which induce the identity on the group $G/_{\gamma_{n+1}(G)}$. Now we give the definition of a *n*-complete group which is a generalization of the definition of a semicomplete group.

Definition 2.1. A group G is called n-complete if n is the least positive integer such that $K_n \leq I(G)$, where I(G) is the group of the inner automorphisms of G.

If a group is nilpotent of class m, then clearly is *n*-complete for some n with $n \leq m$. We have by definition 2.1 that a group is 1-complete if and only if it is semicomplete.

In the following we need the next extensions:

i) If $a \in \operatorname{Aut}(A)$ then $a^* \in \operatorname{Aut}(W)$, where $(bf)^{a^*} = bf^{a^*}$ for all $b \in B$, $f \in A^B$ and $f^{a^*}(x) = (f(x))^a$ for all $x \in B$.

ii) If $\beta \in \operatorname{Aut}(B)$ then $\beta^* \in \operatorname{Aut}(W)$, where $(bf)^{\beta^*} = b^{\beta} f^{\beta^*}$ for all $b \in B$, $f \in A^B$ and $f^{\beta^*}(x) = f(x^{\beta^{-1}})$ for all $x \in B$.

3. Characterizations of A and B when W = AwrBis *n*-complete

Proposition 3.1. If W = AwrB is *n*-complete then A is at most *n*-complete.

PROOF. If $a \in K_n(A)$ and $f \in A^B$, then $f^{a^*}(x) = (f(x))^a = f(x)u_x$ for all $x \in B$ and $u_x \in \gamma_{n+1}(A)$. If $g \in A^B$ such that $g(x) = u_x$ for all $x \in B$, then $f^{a^*}(x) = (fg)(x)$ for all $x \in B$. Hence $f^{a^*} = fg$, where $g \in \gamma_{n+1}(W)$. Thus we conclude that $a^* \in K_n(W)$. Since W is *n*-complete we have that $K_n(W) \leq I(W)$ and so $a^* \in I(W)$. But $a^* \in I(W)$ if and only if $a \in I(A)$ (cf. J. PANAGOPOULOS [3], Prop. 4.3). Hence, $K_n(A) \leq I(A)$. \Box

Proposition 3.2. If W = AwrB is n-complete then B is nilpotent of class at most n.

PROOF. Let L(B) be the left regular representation of the group B. To each element $\ell_b \in L(B)$, $(b \in B)$ there corresponds an automorphism ℓ_b^* of W defined by $(cf)^{\ell_b^*} = cf^{\ell_b^*}$, for all $c \in B$, $f \in A^B$, where $f^{\ell_b^*}(x) = f(bx)$ for all $x \in B$. (cf. J. PANAGOPOULOS [3], Lemma 5.1). If $f_1 \in A^B$ such that $f_1(1) = a$, $f_1(x) = 1$ for all $x \in B$, $x \neq 1$ and $b \in B$, $b \neq 1$ then $f_1^{\ell_b^*}(b^{-1}) = f_1(1) = a$ and $f_1^{\ell_b^*}(x) = f_1(bx) = 1$ for all $x \neq b^{-1}$. It is easy to see that $f_1^{\ell_b^*} = f_1g$, where $g(1) = a^{-1}$, $g(b^{-1}) = a$ and g(x) = 1 for all $x \in B, x \neq 1, b^{-1}$. For the element $g \in A^B$ we have that $g = [b^{-1}, \varphi]$, where $\varphi \in A^B$ with $\varphi(1) = g(1)$ and $\varphi(x) = 1$ for all $x \neq 1$. (cf. P. NEUMANN [2], Lemma 4.2).

Also, if $x_i \in B$ we define the element $f_{x_i} \in A^B$ by $f_{x_i}(x_i) = a$ and $f_{x_i}(c) = 1$ for all $c \in B$, $c \neq x_i$, then $f_{x_i}^{\ell_b^*} = f_{x_i}g^{x_i}$. If we choose an element $b \in \gamma_n(B)$, then the automorphism ℓ_b^* belongs to the group $K_n(W) \leq I(W)$. But $\ell_b^* \in I(W)$ if and only if $b \in Z(B)$ which means that the group B is nilpotent of class at most n. \Box

Proposition 3.3. If W = AwrB is *n*-complete and *B* is nilpotent of class *n*, then *A* is directly indecomposable.

PROOF. Let $A = U \times V$ a non trivial direct decomposition of A. If $f \in A^B$ then $f(x) = u_x v_x$ for all $x \in B$, where $u_x \in U$, $v_x \in V$. If $g_f \in A^B$ such that $g_f(x) = u_x$ for all $x \in B$ and $z \in \gamma_n(B) \leq Z(B)$, $z \neq 1$, we define a mapping $\gamma : W \to W$ by $(bf)^{\gamma} = bf[g_f, z]$. Since $g_{fh} = g_f g_h$ and $g_f^y = g_{f^y}$ for all $f, h \in A^B$ and $y \in B$, we can see that γ is an outer automorphism of W with $\gamma \in K_n(W)$. This is a contradiction. \Box

Proposition 3.4. Let W = AwrB, where A is finite nilpotent and B is nilpotent of class n. If W is n-complete, then A is a p-group (p prime), and if A is abelian then it is cyclic of order p.

PROOF. Proposition 3.3 gives that A is a p-group. Moreover since A is abelian we have that A is cyclic of order p^r for some positive integer r. If $r \neq 1$ we choose an element $z \in \gamma_n(B), z \neq 1$ and define a mapping $\gamma: W \to W$ by $(bf)^{\gamma} = bf[f, z]^p$, which is an automorphism of W belonging to the group $K_n(W)$. (cf. J. PANAGOPOULOS [3], Proposition 4.6). Since r > 1 it is easy to see that γ is an outher automorphism, so W is not n-complete. Hence, r = 1. \Box

The proof of the next proposition is the same as the proof of Proposition 4.7 in J. PANAGOPOULOS [3]. The only change concerns the choice of the element $z \in \gamma_n(B), z \neq 1$.

Proposition 3.5. Let W = AwrB where A is non abelian with A/A', Z(A) of finite order and B nilpotent of class n. If W is n-complete then (|A/A'|, |Z(A)|) = 1. \Box

Now, we see that if A is finite nilpotent, B nilpotent of class n and W = A wr B is n-complete, then A will be abelian. Because, if A is not abelian then $(|A/A'|, |Z(A)|) \neq 1$ which contradicts Proposition 3.5. Hence, we have the following:

Proposition 3.6. If W = AwrB is *n*-complete, A finite nilpotent and B nilpotent of class n, then A is cyclic of prime order. \Box

J. Panagopoulos, E. Raptis and D. Varsos

4. *n*-Complete wreath products

In this section we give examples of non *n*-complete standard wreath products. Constructing outer automorphisms of W = A w r B we use the following conclusion:

An automorphism γ of A^B is extended to an automorphism of W leaving B elementwise fixed if and only if γ is commuted with the inner automorphisms induced by elements of B. (cf. C. HOUGHTON [1]. §3.4).

Proposition 4.1. The wreath product $W = C_p wrC_2$, where p is a prime with p > 3, is not n-complete.

PROOF. It is known that if W = A wr B then W' = B'M, where $M = \{f \in A^B \mid \pi(f) \in A'\}$ (cf. P. NEWMANN [2]. Theorem 4.1). Since $B = C_2$ and $|M| \mid |A|^{|B|} = p^2$ it follows that |M| = p. Thus, $\gamma_n(W) = M$ for all $n \in \mathbb{Z}^+$, $n \geq 2$, because W is not nilpotent. If $A = C_p = \langle a \rangle$, $B = C_2 = \langle b \rangle$ we choose the elements: $f_1 = (a^{p-1}, a^2)$, $f_2 = (a^2, a^{p-1})$, $g_1 = (a, 1)$, $g_2 = (1, a)$. Since $A^B = \langle f_1, f_2 \rangle = \langle g_1, g_2 \rangle$ and A^B is elementary abelian of rank 2 and $p \neq 3$ the mapping $g_1 \to f_1$, $g_2 \to f_2$ can be extended to an automorphism γ of A^B , which commutes with the automorphism of A^B induced by the element $b \in B$. Thus, the automorphism γ can be extended to an automorphism of W, which fixes B elementwise (cf. C. HOUGHTON [1]).

Since $g_1^{\gamma} = (a, 1)^{\gamma} = (a^{p-1}, a^2) = (a, 1)(a^{p-2}, a^2), \ g_2^{\gamma} = (1, a)^{\gamma} = (a^2, a^{p-1}) = (1, a)(a^2, a^{p-2})$ with $(a^{p-2}, a^2), \ (a^2, a^{p-2}) \in M = \gamma_n(W), n \ge 2$, we have that $\gamma \in K_n(W), n \ge 2$ and γ is an outher automorphism. Hence, $W = C_p \text{wr} C_2$ is not *n*-complete. \Box

Proposition 4.2. The wreath product $W = C_p wrB$, where p is a prime with p > 3 and B is finite nilpotent of class n with $k = |B| \ge 3$, is not n-complete.

PROOF. If we put $A = C_p = \langle a \rangle$ then the group A^B will be an elementary abelian *p*-group. Clearly, the set $g_{x_i} \in A^B$ for all $x_i \in B = \{x_1, x_2, \ldots, x_k\}$ with $g_{x_i}(x_i) = a$, $g_{x_i}(x_j) = 1$, $x_j \neq x_i$ is a basis of A^B . We consider the mapping: $g_{x_i} \to f_{x_i} = g_{x_i}[b, g_{x_i}] = g_{x_i}^2(g_{x_i}^{-1})^b$ for all $x_i \in B$, where $b \in \gamma_n(B)$. This mapping is extended to an automorphism $\bar{\gamma}$ of A^B because the set $f_{x_i}, x_i \in B$ is a basis of A^B . In fact, since $C_p \cong \mathbb{Z}_p$ (\mathbb{Z}_p is the ring of integers mod p) and p > 3, the determinant

$$D = \begin{vmatrix} 2 & 0 & \dots & 0 & -1 & 0 & \dots & 0 \\ 0 & 2 & \dots & -1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -1 & 0 & 0 & \dots & 2 \end{vmatrix} \in \mathbf{Z}_p,$$

is not zero, where the element 2 is in the main diagonal and in each row and column we have once the element -1. Since the automorphism $\bar{\gamma}$ of A^B commutes with the automorphisms of A^B which are induced by the elements of the group B, $\bar{\gamma}$ can be extended to an automorphism γ of the group W, which fixes B elementwise. Clearly, the automorphism γ is an outer automorphism with $\gamma \in K_n(W)$. Hence, the group W is not n-complete. \Box

In the following we study the *n*-completeness of W = AwrB with $A = C_2$ and B finite. First we need the following:

Lemma 4.3. If W = AwrB then $f \cdot f^{b^{2^{n-1}k}} \in \gamma_{n+1}(W)$ for all $f \in A^B$, $b \in B, k \in \mathbb{Z}$.

PROOF. By induction. If n = 1 then $[f, b^k] = f \cdot f^{b^k} \in W$ for all $f \in A^B$, $b \in B$. Let $f \cdot f^{b^{2^{n-1}k}} \in \gamma_{n+1}(W)$. Then $[f \cdot f^{b^{2^{n-1}k}}, b^{2^{n-1}k}] = f \cdot f^{b^{2^n}k} \in \gamma_{n+2}(W)$, for all $f \in A^B$, $b \in B$. \Box

Proposition 4.4. The wreath product $W = C_2 \text{ wr} B$ is not *n*-complete, where B is finite abelian with $m = |B| \ge 4$ and m is an odd number.

PROOF. We distinguish the next cases.

a) We assume that there exist two elements $b, c \in B$ of order three with $b \notin \langle c \rangle$. Since $A^B = \prod_{i=1}^m \langle a_i \rangle$, where $A = C_2 = \langle a \rangle$ and $\langle a_i \rangle \cong \langle a \rangle$ for all $i = 1, 2, \ldots, m$ we define an automorphism $\bar{\gamma}$ of A^B by $a_i^{\bar{\gamma}} = a_i a_i^b a_i^c a_i^{b^2 c} a_i^{bc^2}$ for all $i = 1, 2, \ldots, m$. The automorphism $\bar{\gamma}$ is extended to an outer automorphism γ of W, which fixes B elementwise. (cf. J. PANAGOPOULOS [3], Lemma 6.3). For this automorphism γ we have that $\gamma \in K_n(W)$. In fact:

i) If $2^{n-1} \equiv 1 \pmod{3}$ then $b^{2^{n-1}} = b$ and $b^{2^n} = b^2$. Thus $a_i^{\gamma} = a_i a_i^b a_i^c a_i^{b^{2^n}c} a_i^{b^{2^n}c} a_i^{b^{2^n}c} a_i^{b^{2^n}c} \in \gamma_{n+2}(W) \le \gamma_{n+1}(W)$. ii) If $2^{n-1} \equiv 2 \pmod{3}$ then $b^{2^{n-1}} = b^2$. Thus $a_i^{\gamma} = a_i a_i^b a_i^c a_i^{b^{2^n}c} a_i^{b^{2^n}c}$ with

ii) If $2^{n-1} \equiv 2 \pmod{3}$ then $b^{2^{n-1}} = b^2$. Thus $a_i^{\gamma} = a_i a_i^b a_i^c a_i^{b^{2^n}} a_i^{b^{2^n}}$ with $a_i^b a_i^c a_i^{b^{2^n}} a_i^{b^{2^n}} \in \gamma_{n+1}(W)$. b) We assume that *B* contains an element *b* of order *r* not divisible

b) We assume that B contains an element b of order r not divisible by three. We define an automorphism $\bar{\gamma}$ of A^B by $a_i^{\bar{\gamma}} = a_i a_i^b a_i^{b^2}$ for all $i = 1, \ldots, m$. The automorphism $\bar{\gamma}$ is extended to an outher automorphism γ of W. Now, let $k \in \mathbb{Z}$ a solution of the congruence $2^{n-1}x \equiv 1 \pmod{r}$. Then, $a_i^{\gamma} = a_i a_i^b a_i^{bb^{2^{n-1}k}}$ with $a_i^b a_i^{bb^{2^{n-1}k}} \in \gamma_{n+1}(W)$.

c) Let the orders of the elements of B are divisible by 3. If all elements of B have order 3 we are in the case a). On the other hand there is an element $b \in B$ of order 9. We define an automorphism $\bar{\gamma}$ of A^B by $a_i^{\bar{\gamma}} =$ 88 J. Panagopoulos, E. Raptis and D. Varsos : n-Complete standard wreath products

 $a_i a_i^b a_i^{b^3}$ for all i = 1, 2, ..., m. The automorphism $\bar{\gamma}$ is extended to an outer automorphism γ of W. If $k \in Z$ is a solution of the congruence $2^{n-1}x \equiv 2 \pmod{9}$, then $b^2 = b^{2^{n-1}k}$. Thus $a_i^{\gamma} = a_i a_i^b a_i^{bb^{2^{n-1}k}}$ with $a_i^b a_i^{bb^{2^{n-1}k}} \in \gamma_{n+1}(W)$.

Finally, we see that in all cases there exists an outer automorphism in $K_n(W)$, so that the wreath product $W = C_2 \text{wr} B$ is not *n*-complete. \Box

We have assumed up to this point that the subgroup A^B is characteristic in W = A wr B. Now, we study the case of W in which A is a special dihedral group and B is of order 2. At this case A^B is not characteristic in W.

Proposition 4.5. Let $W = D_m \text{wr}C_2$, where $D_m = \langle a, b \mid a^m = 1$, $b^2 = 1$, $(ab)^2 = 1 \rangle$, m = 2k + 1, $k \in \mathbb{N}$ and C_2 is the cyclic group of order 2. Then the group W is n-complete if and only if m = 3.

PROOF. We have for the lower central series of the group D_m : $\gamma_{i+1}(D_m) = \langle a^{2^i} \rangle$, for all $i = 1, 2, \ldots$ Since *m* is an odd number, it follows that

(1)
$$\gamma_2(D_m) = \gamma_3(D_m) = \ldots = \gamma_i(D_m) = \gamma_{i+1}(D_m) = \ldots$$

If the group $W = D_m \text{wr} C_2$ is *n*-complete, then it follows by Proposition 3.1, that the group D_m is at most *n*-complete. This means by (1), that D_m is semicomplete and this is true if and only if m = 3. Since the group $W = D_3 \text{wr} C_2$ is semicomplete, clearly it will be *n*-complete. (cf. J. PANAGOPOULOS [4]). \Box

References

- C. HOUGHTON, On the automorphisms groups of certain wreath products, *Publ. Math. Debrecen* 9 (1963), 307–313.
- [2] P. NEUMANN, On the structure of standard wreath products of groups, Math. Z. 84 (1964), 343–373.
- [3] J. PANAGOPOULOS, Groups of automorphisms of standard wreath products, Arch. Math. 37 (1981), 499-511.
- [4] J. PANAGOPOULOS, A semicomplete standard wreath product, Arch. Math 43 (1984), 301–302.

J. PANAGOPOULOS, E. RAPTIS AND D. VARSOS DEPARTMENT OF MATHEMATICS UNIVERSITY OF ATHENS PANPISTEMIOPOLIS, 15784 ATHENS GREECE

(Received February 20, 1991)