A characterization of hypersurfaces of nearly Kähler $\mathbb{S}^3\times\mathbb{S}^3$ with $\mathcal{P}\text{-principal normal}$

By MILOŠ B. DJORIĆ (Belgrade) and MIRJANA DJORIĆ (Belgrade)

Abstract. In this article, we continue the study of hypersurfaces of homogeneous nearly Kähler $\mathbb{S}^3 \times \mathbb{S}^3$ with a \mathcal{P} -principal normal vector field ξ . After proving that the smooth angle function θ , from the defining relation $P\xi = \cos\theta\xi + \sin\theta J\xi$, is constant, with the only possibilities being $\{-\frac{\pi}{3}, \frac{\pi}{3}, \pi\}$, we prove that all such hypersurfaces are Hopf, with either 3 or 5 distinct principal curvatures. The main results are: the complete classification of hypersurfaces of $\mathbb{S}^3 \times \mathbb{S}^3$ with \mathcal{P} -principal normal and with 3 distinct principal curvatures, as well as the general form of the immersion of such hypersurfaces with 5 distinct principal curvatures. If these 5 curvatures are all additionally constant, we give the explicit classification. We also provide new examples of hypersurfaces of $\mathbb{S}^3 \times \mathbb{S}^3$ with \mathcal{P} -principal normal, such that certain of them have constant mean curvature.

MILOŠ B. DJORIĆ &
MIRJANA DJORIĆ
FACULTY OF MATHEMATICS
UNIVERSITY OF BELGRADE
STUDENTSKI TRG 16
11158 BELGRADE
SERBIA

Mathematics Subject Classification: 53B25, 53B35, 53C15, 53C40, 53C42. Key words and phrases: homogeneous nearly Kähler $\mathbb{S}^3 \times \mathbb{S}^3$, Hopf hypersurface, constant mean curvature hypersurface, \mathcal{P} -principal normal vector field.