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On generalized g-multiplicative functions

By J. FEHER

Dedicated to the 60th birthday
of Professors Zoltdn Dardczy and Imre Kdtai

Abstract. The R-multiplicative functions are defined as a generalization of g-
multiplicative functions. Those R-multiplicative functions are investigated for which a
linear recurrence holds.

1. Introduction

The letters N, Ny, R, C denote the sets of the natural numbers,
nonnegative integers, real numbers, complex numbers, respectively. For
A € Ny let |A| be the number of the elements of A.

Definition 1.1. Let Rg,R1,...,... be a sequence of subsets of Ng.
We say that it is an R-system, if the following conditions hold:
a) 0eR;and 1 < |R;| < o0 (1 =0,1,2,...);
b) for (0 £)i < j, the smallest positive element of R; is smaller than the
smallest positive element of R;;
c) each n € Ny can be uniquely written as

S

(1.1) n=> r; (r;eR;, s=0).
§=0
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We say that an R-system is monotonic, if in addition (d), and that it
is bounded if in addition (e) holds, where:

d) for each (0 £)i < j, the largest element of R; is smaller than the
smallest positive element of R;,

e) |R;| is bounded.

Ezamples 1.2. Let k; (i =0,1,...) be a sequence of integers, k; = 2,
furthermore let dy = 1, d; = d;_1k;_1 (Z > 0), M = {O,].,. N 1},
R=d;N; ={0,d;,..., (ki —1)d;} (i=0,1,...). Then R; (:=0,1,...) is
an R-system. Such R-systems are called “britannic number systems” by
N. G. De BrRunn [1].

Especially, if k;, = ¢ =2 2 (i = 0,1,...) then we obtain the g-ary
number system. It is easy to see that the monotonic R-systems are exactly
the “britannic number systems”.

Definition 1.3. The function f : Ny — C is called R-multiplicative
(wich respect to a given R-system), if

(12) f0) =1 and f(n) =[] £(ry)-
j=0
It is clear that f(n) = ¢™ (0 # ¢ € C) is R-multiplicative for every R-

system.

2. R-multiplicative functions with regular behaviour

Let an R-sysytem be given, f : Ng — C be an R-multiplicative func-
tion, P(z) = axz® + -+ + a1z + ap € C[z], and

P(E)f(N) = apf(n+k)+ - +arf(n+1)+aof(n)

Let us consider the following conditions:

(2.1) timint L |P(E) ()| =0,

n<x
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(2.2) S IP(E) f(n)] = ofa) (& — o),
(2.3) P(E)f(n) =0 (Vn € Nyp),
(2.4) timinf 37 ()| =0,

(2.5) S 1f )] = of@) (@ — o).

Theorem 2.1. The following assertions are valid:
a) If (2.1) holds then either (2.3) or (2.4) hold
b) (2.2) is satisfied if and only if either (2.3) or (2.5) holds.
c¢) There exists such an f for which (2.4) holds, and (2.5) does not holds.

d) Assuming that the R-system is monotonic and bounded, the fulfilment
of (2.4) and that of |f(n)| £ 1 (n € Ny) imply (2.5).

PROOF. Assume that the R-system is given: R = {Ro, R1,...}. Let
the sets Ay, 7, be defined as follows: Ag =0, A=RoDPR1 DD Re_1

(s21), 7= URs® - & Rsyy), i.e. Ty consists of those integers n
£=0
which can be written as n = r,+---+7r4y, for some integer ¢, and r; € R;

(J=s,...,5s+10).
It is clear that f(n +m) = f(n)f(m) is satisfied if n € As, m € T
and f is R-multiplicative.

a) Let f be R-multiplicative, assume that (2.1) holds, and that for some
a € Ng P(E)f(a) # 0. Let ig be so large that a + j € A;, for
j=0,1,...,k, where k = deg P. Let A;, = {$1,02,...,84}. Then
for every large z,

26) S IPE)W] = T PE) e L Y i) 20
ém nniez,];oa

The relation (2.1) and (2.6) imply that for an appropriate sequence
yr — oo(t — o0) we get

(2.7) LS =0 (t— o).
Yt ”egy_f
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Furthermore, for large y,

(2.8)

b)

A
Sl =Y G X 1) £ A-H Y (50,

n<y n+B;<y ny
neT;, nETi,

where H = lrgnjang |f(5;)|. Hence, and from (2.7),

ylt S m] =0 (t— oo).

n<y:

Assume that for some R-multiplicative function f (2.2) holds, and
that there exists an a € Ny such that P(F)f(a) # 0. We can choose
¢ to run over the whole set Ny and reason as above.

We shall give an R-system and an R-multiplicative function for which
(2.4) holds and (2.5) does not hold. Let f be a g-multiplicative func-
tion taking on positive values. Let

1 q°—1 s—1 1 q—1 ‘
H(s):=— > fn) =[] |- > fGd)
F — i—o \ 4 j=0
Let s1 < s2 < ... be a rare sequence of integers, let f(jq') = ﬁ if

j=1,2,...,g—1;t € Ny except for j =1, when ¢t € {s1, s2,...}. Let
f(1- qse) = ¢°** + 1. Then obviously,

Se
1 q
—— > f(n)>1,
q£+1n:0

on the other hand

1 qg-—1
-+ — if
1 q—i— % if £ ¢ {s1,52,...}

fid") = 5
75=0 ¢ + PR

q
q 4 qg—1

2q2 <qgm+1 ifEE{Sl,SQ...}.

Thus

Hs) < (;q) [T +n (%),

5,<s
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If we choose s, = 22u, and t, = s,41 — 1, then

H(t,) < (3

t,—1—v
2q) =0 (v — ).

d) To prove it, we may assume that f takes on nonnegative values, 0 <
f(n) £ 1. Let ng be a strictly monotonic sequence of positive integers,
and ny — 1 = Ad;, +n/, where 1 £ A <k;_, 0= n), <d;,. Then

ns—1 ) djs—1
(2.9) LN flmy = %= di > 1
5 m=0 s m=0

Let ns be such a sequence for which the right hand side of (2.9) tends
to zero. Since the sequence k; in the definition of the R-system is
assumed to be bounded, k; < M, therefore

djo 5 4. 1 5 1
Ng = djs+1 kjs = ]\47
consequently from (2.9)
| LTl
(2.10) — fim) =0 (s— )
djs m=0

It is obvious that for every h = 1,

dp—1 h—1
(2.11) thf H( > f(r) ) (h).

=0 ' ter,

Since 0 < 2 > f(r) <1, the sequence A(h) is decreasing monoton-
" teR;
ically, and by (2.10) we obtain that A(h) — 0 (h — o0).

Let n > 1,n—1= Ad;i,y) +1n' (02 A < kyn), 0 =1/ < dyy). Then

1 n—1 1 A di(ny—1
0= = flm) <~ fidi) Y flm) <
(2.12) o = =
< (A4 1) AGin)) < 24((n).

n
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Hence the assertion follows.
The proof of Theorem 2.1 is complete.

Theorem 2.2. Assume that the R-system is monotonic, and that F' :
Ny — R is such an R-multiplicative function for which 0 < F(n) <1
(Vn € Ngy). Then

(2.13) Y F(n)=o(zx) (z— )

nSz

holds if and only if

(2.14) Zki kj— Y F(r)| =o0.
j=0""Y

T‘ERJ‘

PRrROOF. From (2.11), (2.12) it follows that (2.13) holds if and only if

(2.15) H Z (r) | —o.

TER
Since
LS rey=1-L (k-3 P
k; I E
’r‘ERj TERJ'
and
kj— Y F(r)z0,
TER]'

(2.15) holds if and only if (2.14) is satisfied.

3. The R-multiplicative solutions of the recursion

P(E)f(n) = 0

Theorem 3.1. Let Ry, R1,... be such an R-system for which Rg =
{0,1,...,d—1},d = 2. Assume that P(z) € C|z] is of degree k, 1 < k < d,
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and that P(0) # 0. Then the recursion
(3.1) P(E)f(n)=0 (n€Np)

holds for an R-multiplicative function if and only if

S
(3:2) fn) =Y a;pf,
j=1
S
where ) o; =1, and p;j(j = 1,2,...,s) are distinct roots for P for which
j=1
(3.3) pl=ps=-=pl (=0

PrOOF. First we prove that the function f defined by (3.2) is R-
multiplicative. f(0) =3 +---4+as =1. Let N, r € Ny. From (3.2), (3.3)
we obtain that f(Nd+r) = CN(a1pj+- - -+aspt) = CN f(r) = f(Nd) f(r),
from which the R-multiplicativity of f is clear. The fulfilment of (3.1) is
obious.

Assume now that f is an R-multiplicative function and that (3.1)
holds. Then

0= P(E)f(Nd+d— k)
= ax(f((N +1)d) = f(Nd) f(d)) + f(NA)P(E) f(d — k).

Hence, by (3.2) and from aj, # 0 we have that

(3.4) PN + 1)d) = F(Nd)£(d).

From f(d) = 0 it would follow that f(0) = 0, which cannot be. Thus
(3.5) f(Nd)=CN (YN e€Ny), 0#CeC.

The general solution of (3.1) can be written as

(3.6) f(n) =pr(n)pt + - -+ pr(n)ph,

where p; are the roots of P(z) and p; are polynomials.
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(3.5), (3.6) and the R-multiplicativity of f imply that

h
(3.7) Y pi(Nd+r)ol pp = f(r)e =0
i=1
holds for every N € Ny andr =0,1,...,d—1. Hereo; := p;-l (j=1,...,h).
Since f(0) = 1, from (3.7) by r = 0 we obtain that o; = C holds for
at least one 1.

Assume that o1 = -+ =0y, 03,41 = -+ = iy, .., 04y, 41 = -+ =
Oiy Oiyy1 =+ = op = C, and that o;, # 0y, if v # p. Assume that
i1 < h.

Let

QU (N) = pi, A (Nd+7)p], 4+ pi, (Nd+7)p],
(.] = 17"'7t;i0 = O)’

QU (N) = pj,41(Nd+71)p}, 11 + -+ pr(Nd +7)p} — f(r).

By using these notations (3.7) can be rewritten as

3.8) QNN -+ QTN + Q(N)CN =0 (N € Ny).

Consequently the polynomials Qz(-:) (z), Q") (z) are zero identically, i.e.

pij71+1(2)p:j_1+1 + - +p2] (Z)p:J =0

(3.9)
(r:O,l,...,ij—ij_1—1<d)

for z € C, since p;;_, 41, -, pi; are distinct complex numbers, the determi-
nant of the system, being a Vandermonde determinant, is nonzero, hence
pv(2) = 0 identically, and consequently

(3.10) f(n)=aq(n)p} +---+qs(n)ps,

where 1 Ss<h, pl=--=pl=0C, q,...,qs € Clz].
From (3.5) and from the R-multiplicativity of f,

fr)=a(Nd+r)py+---+q(Nd+7)p; (N €No, 0=r <d).

Hence we obtain easily that the coeffitients ¢;(Nd+7) do not depend on N,
consequently ¢;(Nd+r) =co; (j=1,...,s).

Finally, from f(0) = 1 we obtain that ay +---+ a5 = 1. The proof of
Theorem 3.1 is complete.
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4. Remark to the Theorem 3.1

To prove (3.1) the assumption of the condition deg P < d is inportant.
If deg P > d, then in general there exists such an R-multiplicative function
for which (3.1), (3.2) are satisfied, but (3.3) does not hold.
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