Publ. Math. Debrecen 107/1-2 (2025), 155–166 DOI: 10.5486/PMD.2025.10083

Uniform distribution of $\alpha\phi(n)$ and $\alpha\sigma(n)$ modulo 1, for non-Liouville numbers α

By AGBOLADE AKANDE (Athens, GA)

Abstract. There have been results on uniform distribution modulo 1 of sequences of the form $\{\alpha f(n)\}_{n=1}^{\infty}$, where f(n) is an arithmetic function, and α is an irrational number. For example, $\{\alpha n\}_{n=1}^{\infty}$ (Bohl, Sierpiński and Weyl) and $\{\alpha \Omega(n)\}_{n=1}^{\infty}$ (Erdős and Delange) have been shown to be uniformly distributed modulo 1 for all irrational numbers α . De Koninck and Kátai have shown that $\{\alpha \phi(n)\}_{n=1}^{\infty}$ and $\{\alpha \sigma(n)\}_{n=1}^{\infty}$ are uniformly distributed modulo 1 for a subset of irrational numbers α . In this article, we will extend their result by showing that the sequences $\{\alpha \phi(n)\}_{n=1}^{\infty}$ and $\{\alpha \sigma(n)\}_{n=1}^{\infty}$ are uniformly distributed modulo 1 when α is a non-Liouville number. The proof will use Weyl's criterion, upper bounds of exponential functions established by Vinogradov and Vaughan, and the notion of a thin set established by Pollack and Vandehey. There are two corollaries that arise from the result of this article: $\{10^{\alpha\phi(n)}\}_{n=1}^{\infty}$ and $\{10^{\alpha\sigma(n)}\}_{n=1}^{\infty}$ are strong Benford sequences for all non-Liouville numbers α , and the sequences $\{F(n)+\alpha\phi(n)\}_{n=1}^{\infty}$ and $\{F(n)+\alpha\sigma(n)\}_{n=1}^{\infty}$ are uniformly distributed modulo 1 for all non-Liouville numbers α and additive function F.

AGBOLADE AKANDE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF GEORGIA
200 D. W. BROOKS DRIVE
ATHENS, GA 30602
USA

Mathematics Subject Classification: Primary 11J71, 11K06; Secondary: 11A25, 11N64, 11J82. Key words and phrases: uniform distribution modulo 1, arithmetic functions, Liouville number.