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Further metric results on series expansions

By JÁNOS GALAMBOS (Philadelphia)

Dedicated to my old friends and fellow academicians
Professors Zoltán Daróczy and Imre Kátai on their 60th birthdays

Abstract. The paper investigates the speed of convergence for a large class of
Oppenheim expansion. Both two sided estimates and asymptotic results are established,
the latter being valid for almost all x. A new special case of Oppenheim series is
introduced, which is termed the Daróczy–Kátai–Birthday (DKB) expansion, and it is
shown that the speed of convergence of the new expansion is faster than the best known
classical expansions.

Introduction

In the algorithm of expanding real numbers 0 < x ≤ 1 into infinite
series of rationals we use the following notation and basic assumptions.
Each of the sequences hn(j), n ≥ 1, of functions of the positive integers
j ≥ 1 is assumed to be integer valued with hn(j) ≥ 1 for all n and j. We
set

(1) rn(j) =
hn(j)

j(j − 1)
.

We use the language of probability theory, but probability P always stands
for ‘length’ or Lebesgue measure.
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For a given sequence hn(j), n ≥ 1, of functions, we define our algo-
rithm by the integers, called digits,

(2) dk = dk(x), k ≥ 1 : x = x1,
1
dk

< xk ≤ 1
dk − 1

,

and the remainder terms xk, k ≥ 1,

(3) xk+1 =
(

xk − 1
dk

)
1

rk(dk)
.

Iteration of the algorithm at (2) and (3) leads to the equation

(4) x =
pn

qn
+ r1(d1)r2(d2) · · · rn(dn)xn+1,

where we put, with positive integers pn and qn,

(5)
pn

qn
=

1
d1

+
r1(d1)

d2
+ · · ·+ r1(d1)r2(d2) · · · rn−1(dn−1)

dn
.

By the choice of the inequalities in (2), the expansion at (4) and (5) never
terminates. The recursive formula (3) also entails the inequality

(6) dk+1 > hk(dk),

which in turn, by the assumption on the sequence hn(j), yields that the
infinite series resulting from (4) always converges to x. We thus have

(7) x =
1
d1

+
r1(d1)

d2
+ · · ·+ r1(d1)r2(d2) · · · rn(dn)

dn+1
+ · · ·

The expansion leading to (7) is unique, and any series of the form, satisfy-
ing (6), is obtained by the algorithm (2) and (3). For easier reference we
record four special cases:

(E) Engel series: hn(j) = j − 1 for all n. We get

x =
1
d1

+
1

d1d2
+ · · ·+ 1

d1d2 · · · dn
+ · · ·

(S) Sylvester series: hn(j) = j(j − 1) for all n. The corresponding
series is of the form

x =
1
d1

+
1
d2

+ · · ·+ 1
dn

+ · · ·
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(L) Lüroth expansion or series: hn(j) = 1 for all n. Hence,

x =
1
d1

+
1

d1(d1 − 1)
1
d2

+ · · ·+



n−1∏

j=1

1
dj(dj − 1)


 1

dn
+ · · ·

(DKB) Daróczy–Kátai-Birthday expansion: hn(j) = j2(j − 1). The
resulting series expansion of x takes the form

x =
1
d1

+
d1

d2
+ · · ·+ d1d2 · · · dn

dn+1
+ · · ·

The general algorithm (2) and (3), together with the series representa-
tion (7) under (6), is known as the Oppenheim expansion of real numbers.
The special cases (E), (S), and (L) are classical expansions with extensive
literature covering them; see J. Galambos [1] for details. The case (DKB)
is introduced here for the first time, although quite a few of its properties
can be deduced from the general theory of Oppenheim series, developed
in the just cited monograph of the present author.

Notice that in each of the four special cases above hn(j) is independent
of n and is a polynomial in j with degrees varying from zero to three. It is
also to be observed that each numerator of the fractions in the series rep-
resenting x is one in the three classical expansions, while these numerators
are rapidly growing integers in the (DKB) expansion. Yet, we shall show
in the sequel that the fastest approximation of x among the four recorded
special cases is achieved by the (DKB) expansion. This, and other nice
and superior properties of the (DKB) expansion served as a guide in the
development of the results of the present paper.

Speed of convergence: estimates

After having computed n digits d1, d2, . . . , dn, we approximate x by
the rational number pn/qn of (5) and the error of the approximation is
given by the last term of (4). Hence, by (2),

(8) gn < x− pn

qn
≤ gn

dn+1

dn+1 − 1
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where

(9) gn =
r1(d1)r2(d2) · · · rn(dn)

dn+1

Consequently, if the sequence dj , j ≥ 1, is known to grow rapidly, then gn

of (9) essentially expresses the speed of convergence in (8). In some cases,
such as the Lüroth series, we can only say that dj ≥ 2; in such cases no
better general statement can be made than having the lower and upper
bounds gn and 2gn, respectively, at (8).

The following estimate of gn seems to be uniform for all expansions.
By definition,

(10) gn+1 =
gnrn+1(dn+1)dn+1

dn+2
=

gnhn+1(dn+1)
dn+2(dn+1 − 1)

<
gn

dn+1 − 1
,

where we appealed to (1) and (6). By iteration we get

(11) gn <
1

(d1 − 1)(d2 − 1) · · · (dn − 1)
.

Note that in our estimate (11) we eliminated numerators when they were
present, and we also got rid of dn+1. In addition, (11) is applicable at
every x. Hence, if the expansion of x is done through a computer program,
(11) is a very valuable estimator. One can also see without computers that
for the (DKB) expansion very few steps are needed for a given accuracy.
For example, for any 0 < x < 1

2 , d1 ≥ 3, and then by (6), d2 ≥ 19,
d3 ≥ 6499, and d4 ≥ 64992 × 6498 + 1 > 2.7 × 1011. Hence, no x in
(0, 1

2 ) requires more than 4 iterations of the algorithm in order to get an
approximation accurate up to 14 decimal digits.

While much improvement on (11) cannot be made if we insist on esti-
mates for all x, considerable improvement can be made in the metric sense,
that is, when we consider estimates valid for almost all x or for a large
proportion of the interval (0, 1). For metric results, we utilize a recent
representation of the digits dj , j≥ 1. The present author, Galambos [2],
showed that the probability distribution of the sequence dj , j≥ 1, is iden-
tical to the following sequence Dj , j ≥ 1. Let X1, X2, . . . be independent
unit exponential variables, that is, F (x) = P (Xj ≤ x) = 1 − e−x, x ≥ 0.
Let D1 = [exp(X1)]+1, where [y] signifies the integer part of y, and define

(12) Dj+1 = [hj(Dj) exp(Xj+1] + 1, j ≥ 1.
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Hence

(13) hj(Dj) exp(Xj+1) < Dj+1 ≤ hj(Dj) exp(Xj+1) + 1,

which we use in (10) in the form

hn+1(Dn+1)
Dn+2

< e−Xn+2 .

Upon denoting by Gn the expression at (9) with Dj in place of dj ,
1 ≤ j ≤ n + 1, (10) becomes

(14) Gn+1 <
Gn exp(−Xn+2)

Dn+1 − 1
.

Applying (14) repeatedly we have

(15) Gn ≤
exp

(
−

n∑
j=1

Xj+1

)

(D1 − 1)(D2 − 1) · · · (Dn − 1)
.

The combination of the strong law of large numbers and the iterated log-
arithm theorem (see [3], Sections 2.5 and 6.6) imply that, for almost all x,
as n −→ +∞,

exp


−

n∑

j=1

Xj+1


 ≤ exp

{
−n + (1 + ε)(2n log log n)

1
2

}

with an arbitrary ε > 0, which, in particular, implies that with an arbitrary
ε1 > 0,

exp


−

n∑

j=1

Xj+1


 ≤ exp {−(1− ε1)n} .

Hence, as n → +∞, for almost all x,

(16) Gn <
exp {−(1− ε1)n}

(D1 − 1)(D2 − 1) · · · (Dn − 1)
.

This is the improvement over (11) when we drop the requirement that our
estimate be valid for all x. For statements involving distributions only,
one can write back dj for Dj and gn for Gn.
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Speed of convergence: asymptotic results

In order to allow us to compare the speed of convergence in different
expansions we have to obtain asymptotic values not just one sided inequal-
ities. The tools have already been developed in the preceding section. In
particular, we shall freely turn to the sequence Dj instead of dj since our
development is for ‘almost all x’.

We shall impose a growth requirement on the sequence hn(j), n≥ 1,
in order to guarantee that dn → +∞ with n for almost all x. It has been
demonstrated by the present author (Galambos [2]) that the assumption
hn(j) ≥ j−1 does imply the divergence of dn, so we make this assumption.
This eliminates only the expansion (L) from our special cases. We shall
return to this case, however, at the end of the present section.

Now, when dn → +∞, we have from (8) that the asymptotic speed of
convergence in approximating x by pn/qn of (5) is exactly gn. Arguing as
at (10) we have from (12) that, for metric results,

gn+1

gn
=

hn+1(dn+1)
dn+2(dn+1 − 1)

=
exp(−Xn+2)

dn+1 − 1

{
1 + O

(
1

hn+1(dn+1)

)}
.

Let us take the logarithm. Since log(1 + z) = O(z),

log
(

gn+1

gn

)
= −Xn+2 − log(dn+1 − 1) + O

(
1

hn+1(dn+1)

)

= −Xn+2 − log(dn+1) + O

(
1

dn+1

)

where we utilized the assumption hn+1(dn+1) ≥ dn+1−1. Here, log(dn+1)
dominates the fixed random variable Xn+2, and thus, by Theorem 6.13 of
Galambos [1], we have the limit theorem:

If hn(j) is a polynomial of degree t > 1 for all n, then, for almost
all x, as n −→ +∞,

lim
(

t−n log
(

gn+1

gn

))
= −G(x) < 0

exists and is finite.
We can now make comparisons among the four special Oppenheim

expansions of the Introduction. The limit theorem above is applicable to
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expansions (S) with t = 2 and (DKB) with t = 3. Clearly, the latter has a
much faster speed of convergence than the first one does. For the expansion
(E), Corollary 6.19 of Galambos [1] states that (1/n) log(dn) → 1 for
almost all x. Our preceding computations yield:

For (E), for almost all x,

lim
(

1
n

)
log

(
gn+1

gn

)
= −1.

The speed of convergence is therefore far smaller in magnitude than for
either (S) or (DKB).

Because for expansion (L) our assumption on hn(j) is not satisfied,
a direct computation is required. Note that since hn(j) = 1 for all n

and j, the distributional properties of the sequence dj , j ≥ 1, via (12), are
identical to the independent sequence

Uj = [exp(Xj)] + 1, j ≥ 1

Going back to (4) and writing g∗n = x− pn/qn, then

(17) log
(

g∗n+1

g∗n

)
= log(xn+1)− log(dn+1)− log(dn+1 − 1)− log(xn+2),

where xn+1 and xn+2 are uniform variables (Theorem 6.1 in Galam-

bos [1]) and dn+1 is distributed as Un. Since these random variables
are independent and their distributions do not depend on n, we have that
the left hand side of (17) is a stationary sequence. The implied speed
of convergence is considerably slower than the previously analyzed three
expansions. We add that the statement at (17) could have been deduced
from a recent result of Galambos [4].
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