Differences between polynomials and factorials

By ARTŪRAS DUBICKAS (Vilnius) and MANTAS RASINSKAS (Vilnius)

Abstract. Let $A_n, n=1,2,3,\ldots$, be an increasing sequence of positive integers such that for each prime number p, there is an integer s=s(p) for which $p|A_n$ for every $n\geq s$. Such are, for instance, the sequences of factorials $A_n=n!$, least common multiples of the first n positive integers $A_n=\operatorname{LCM}(1,2,\ldots,n)$, and the products of the first n primes $A_n=p_1p_2\cdots p_n$. For any of such sequences $A_n, n=1,2,3,\ldots$, and any polynomial $f\in\mathbb{Z}[x]$ of degree at least 2, we show that the set of positive integers that are not expressible as $f(x)-A_n$ for some $x,n\in\mathbb{N}$ has a positive lower density. We also investigate the case when $f\in\mathbb{Z}[x]$ is linear and a few related problems. It is shown, for instance, that $x^2-ay^2=n!$ has infinitely many integer solutions in $(x,y,n)\in\mathbb{N}^3$, where $n\geq 2$, for each integer a in the range $1\leq a\leq 12$, but has no such solution for a=13.

ARTŪRAS DUBICKAS &
MANTAS RASINSKAS
INSTITUTE OF MATHEMATICS
FACULTY OF MATHEMATICS
AND INFORMATICS
VILNIUS UNIVERSITY
NAUGARDUKO 24
LT-03225 VILNIUS
LITHUANIA