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On a conditional Cauchy functional
equation involving cubes of finite fields I:
the case of characteristic p ≡ 1 (mod 3)
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Abstract. We solve the conditional Cauchy functional equation f(x3 + y3) =
f(x3) + f(y3), for maps from a finite field of characteristic p ≡ 1 (mod 3) into itself.

Introduction

The aim of this paper is to solve the conditional Cauchy functional
equation

(1) f(x3 + y3) = f(x3) + f(y3)

where f stands for a map from the finite field Fq of q elements into itself,
and q = pn is a power prime, with p ≡ 1 (mod 3). A priori we hope
to get as solutions the additive mappings f(x) =

∑n−1
ν=0 aνxpν

(see [3],
Ch. VI §12) as is the case with the similar but simpler functional equation
f(x2 + y2) = f(x2) + f(y2) solved in [1]. However, in our situation, it
turns out that there appear three exceptional cases where there are more
solutions, and which we completely solve. In this paper we stick to the
case p ≡ 1 (mod 3), because of the so many technical difficulties arisen
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concerning a huge system of linear equations (thus, quite elementary in
nature), which require a subtle choosing of suitable equations in order to
overcome the various cases involved. These technical difficulties behave in
quite a different manner for the case p ≡ 2 (mod 3), to be dealt with in
another paper.

1. The functional equation f(x3 + y3) = f(x3) + f(y3) for maps
f : Fq → Fq, with q = pn and p ≡ 1 (mod 3).

To begin with, observe that p ≡ 1 (mod 3) entails that the map x 7→ x3

from Fq into itself is not injective (in fact it is 3 to 1, except for zero). This
is becuase Fq contains the 3 distinct cubic roots of unity (which in fact lie
actually in the prime field Fp) since T 3− 1 = (T − 1)(T 2 + T + 1) and the
discriminant −3 of T 2+T +1 is a square in Fp because the Legendre symbol(
−3
p

)
= +1, as is easily seen by making use of the quadratic reciprocity

law (see [6], Ch. I §3). This observation tells us that (1) is not, a priori ,
equivalent to the Cauchy functional equation.

Now, we recall that any map f : Fq → Fq is induced by a polynomial
(see [3] p. 214, although it is readily seen as an immediate consequence of
Lagrange interpolation formula). As the polynomials T q and T induce the
same map on Fq (see [3], p. 177, p. 245), we can assume that any solution
f of (1) is induced by a (reduced) polynomial of Fq[T ]:

(2) P (T ) = a0 + a1T + a2T
2 + · · ·+ aq−1T

q−1.

Obviously functional equation (1) entails that the reductions via T q ≡
T of the polynomials P (X3 + Y 3) and P (X3) + P (Y 3) must coincide. As
the latter polynomial contains no “mixed” terms (i.e. monomials aXrY s,
with a 6= 0 and both r and s positive) the same must happen to the
reduction of the former polynomial.

In order to study how these mixed terms reduce, we consider the
arithmetic triangle modulo p corresponding to the binomial coefficients
occurring in the binomial power expansions for exponents up to q. Observe
that by assuming p ≡ 1 (mod 3), necessarily q = pn ≡ 1 (mod 3), so that
the arithmetic triangle built up to its (q− 1)st row may be split into three
horizontal strips of equal width k := q−1

3 . By tracing from the vertices of
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Figure 1.

these strips parallel lines to the other sides of the triangle, there appear 3
“inverted” triangles (see Figure 1).

After expanding P (X3 + Y 3) we easily see that either 3 or 6 terms
contribute to the same (mixed) reduction according as to whether or not
these terms (respectively) are associated with the inverted triangles to-
gether with their boundaries (except, of course, lines AB and DD′ in the
figure). After this observation, assuming f is induced by (2), the vanishing
of mixed terms after expansion and subsequent reduction of P (X3 + Y 3)
can easily be expressed by the linear equations (in Fq):

(3) Ej
r = 0, for k < j ≤ 2k, and 0 < r ≤ [j/2],

which the coefficients of P (T ) have to satisfy, where [j/2] denotes the
integral part of j

2 and Ej
r stands for either

(
j

r

)
aj +

[(
j + k

r

)
+

(
j + k

r + k

)]
aj+k = 0

or
(

j − k

r

)
aj−k +

[(
j

r

)
+

(
j

r + k

)]
aj

+
[(

j + k

r

)
+

(
j + k

r + k

)
+

(
j + k

r + 2k

)]
aj+k = 0,

depending, as said earlier, on whether or not
(

j
r

)
lies in the upper inverted

triangle (including its lower boundary). [It will be irrelevant for us the
fact that (3) contains some redundant equations.]
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2. The arithmetic triangle modulo p in connection
with (3), for p ≡ 1 (mod 3)

In this section we will always assume p ≡ 1 (mod 3).
Recall that

(
j
r

)
mod p can easily be computed from the p-adic expan-

sions of both j and r, namely we have (see [5], Section XXI, or [2]):

(4)
(

j

r

)
≡

n−1∏

i=0

(
ji

ri

)
(mod p),

where j =
∑n−1

i=0 jip
i and r =

∑n−1
i=0 rip

i, 0 ≤ ji, ri < p, and where we
assume

(
ji

ri

)
= 0 for ji < ri.

In the same vein as in [1] for the case of squares, we prove

Proposition 1. If a solution (a2, a3, . . . , a3k) ∈ (Fq)3k−1 of system (3)
satisfies ak+1 = · · · = a3k = 0 then, for 2 ≤ t ≤ k, at is arbitrary, if t = pm,

and zero, otherwise.

Proof. Equations (3) have the shape
(

t

r

)
at = 0, t = 2, . . . , k, 0 < r < t.

When t = pm, trivially
(
pm

r

) ≡ 0 (mod p), so that at is arbitrary. Otherwise
we may write t = pm · s, with s > 1 and p - s, but now it follows easily
from (4) that

(
pms
pm

) ≡ s (mod p), so that at = 0. ¤

We will show in this section that the hypothesis of the previous Propo-
sition always holds but first we need a couple of lemmas.

Lemma 2.
(
λk
k

) 6≡ 0 (mod p), for λ ∈ {2, 3}.

Proof. Setting ω := p−1
3 , we have k =

∑n−1
i=0 ωpi, 2k =

∑n−1
i=0 2ωpi

and 3k =
∑n−1

i=0 3ωpi. The result follows from (4). ¤

Lemma 3. For each j, with k < j ≤ 2k, there exists at least an r,

with j − k ≤ r ≤ k, such that

(
j + k

r

)
+

(
j + k

j − r

)
6≡ 0 (mod p).
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Proof. Trivial, by using the additive property
(

r

s

)
+

(
r

s + 1

)
=

(
r + 1
s + 1

)

and bearing in mind that vertex E =
(
3k
k

)
is not congruent to 0 modulo p

by Lemma 2.

From the lemmas we have:

Proposition 4. Let (a2, a3, . . . , a3k) be a solution of system (3). Then:

(i) If for some j, with k < j ≤ 2k, aj+k = 0, then aj = 0.

(ii) If for some j, with k < j ≤ 2k, aj = 0, then aj+k = 0.

Proof. By Lemma 2, vertex C of triangle ABC (see Figure 1) is not
congruent to zero, so that, by the additive property, in each row j of this
little triangle there must exist a binomial coefficient

(
j
s

) 6≡ 0 (mod p); the
corresponding equation Ej

s = 0 yields (i), and for (ii), it suffices to consider
the equation Ej

r = 0 corresponding to the r appearing in Lemma 3. ¤

As the number of equations appearing in (3) is quite large, it seems
that the quickest way to prove that, for each j (with k < j ≤ 2k), either
aj = 0 or aj+k = 0, is by choosing a point inside triangle ABC (whose
corresponding equation involves only the unknowns aj and aj+k) in such
a way that exactly one coefficient is zero. But this is not always possible
(for instance, when j = 2k, both coefficients are nonzero). In these cases
we will look for a couple of equations with nonzero determinant so as to
get just the trivial solution aj = aj+k = 0.

We next distinguish between the case n > 1 and n = 1 and will start
with the former.

Proposition 5. Let q = pn, with n > 1, and let (a2, a3, . . . , a3k) be a

solution of (3). Then for each j, with k < j ≤ 2k, we have either aj = 0
or aj+k = 0.

Proof. When j = 2k, it suffices to consider equations E2k
ω = 0,

E2k
ω+1 = 0 and E2k

ω+2 = 0 (where ω := p−1
3 ); by adding the first two

equations and then the last two, we get a system involving only ak and
a2k with nonvanishing determinant and, consequently, ak = a2k = 0. Now
it is easy to see that a3k = 0.
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For k < j < 2k consider the p-adic expansion of j :
∑n−1

i=0 jip
i. We

shall distinguish 4 cases:

(I) For 0 ≤ i ≤ n− 1, we have ω ≤ ji ≤ 2ω.
(II) For 0 ≤ i ≤ n − 1, we have ji ≤ 2ω but there exists some

jl < ω.
(III) For 0 ≤ i ≤ n − 1, we have ω ≤ ji but there exists some

jm > 2ω.
(IV) There exists some jl < ω and some jm > 2ω.

In case (I) we shall also distinguish two subcases:

(I.1) k < j < 2k − ω

(I.2) 2k − ω ≤ j < 2k.

It is quite easy to show that equation Ej
j−k+ω+1 = 0 yields aj+k = 0

in case (I.1), when j0 < 2ω; and when j0 = 2ω the problem is solved by
considering the system of equations Ej

j−k+ω−1 = 0 and Ej
j−k+ω = 0 and

proceeding as follows:
If the coefficient, say σ, of aj+k in the second equation vanishes, then

aj = 0 since its coefficient (in the 2nd equation) does not vanish. So
assume in what follows that σ 6≡ 0 (mod p), and observe that the sum of
the coefficients of aj+k in the previous two equations vanishes. Then the
determinant of the system becomes

∣∣∣∣∣∣∣

(
j

j − k + ω − 1

)
−σ

(
j

j − k + ω

)
σ

∣∣∣∣∣∣∣
≡ σ

(
j

j − k + ω

)
(2ω + 1) 6≡ 0 (mod p),

so that aj = aj+k = 0.
In case (I.2), j = 2k − t, 0 < t ≤ ω, and we get aj = 0, if in equation

Ej
j−k = 0 the coefficient

(
3k − t

k − t

)
+

(
3k − t

2k − t

)
of aj+k vanishes; otherwise

we consider the system of equations: Ej
j−k = 0 and Ej

j−2k+p = 0, and
proceed as follows:

It is easily seen that the respective coefficients of aj−k, aj and aj+k

in equation Ej
j−2k+p = 0 are

0,

(
2k − t

k + p− t

)
and

(
3k − t

k + p− t

)
+

(
3k − t

2k + p− t

)
,
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so that Ej
j−2k+p = 0 will be seen as involving only aj and aj+k.

By means of

(5)
(

a

b + 1

)
≡

(
a

b

)
a− b

b + 1
(mod p) (with b + 1 6≡ 0 (mod p)),

we have
(

2k − t

k + p− t

)
≡

(
2ω

ω

)
· · ·

(
2ω

ω

) (
2ω

ω + 1

)(
2ω − t

ω − t

)
(mod p)

≡
(

2ω

ω

)
· · ·

(
2ω

ω

) (
2ω

ω

) (
2ω − t

ω − t

)
· ω

ω + 1
(mod p)

≡
(

2k − t

k − t

)
· ω

ω + 1
(mod p)

and, in a similar way, we see that
(

3k − t

k + p− t

)
≡ −

(
3k − t

k − t

)
and

(
3k − t

2k + p− t

)
≡ −

(
3k − t

2k − t

)
(mod p),

so that the determinant of the system Ej
j−k = 0 and Ej

j−2k+p = 0 of linear
equations in aj and aj+k is

∣∣∣∣∣∣∣

(
2k − t

k − t

) (
3k − t

k − t

)
+

(
3k − t

2k − t

)

(
2k − t

k + p− t

) (
3k − t

k + p− t

)
+

(
3k − t

2k + p− t

)

∣∣∣∣∣∣∣

≡
(

2k − t

k − t

)[ (
3k − t

k − t

)
+

(
3k − t

2k − t

)]
·
∣∣∣∣

1 1
ω

ω+1 −1

∣∣∣∣

≡ −
(

2k − t

k − t

)[(
3k − t

k − t

)
+

(
3k − t

2k − t

)]
· 2ω + 1

ω + 1
6≡ 0 (mod p)

and, consequently, aj = aj+k = 0.
For the next two cases, equation Ej

k = 0 yields aj+k = 0 in case (II)
and aj = 0 in (III).

Finally, in case (IV) we choose r =
∑n−1

i=0 rip
i such that:

ri =





ji if ji < ω

ω if ji ≥ ω

0 otherwise
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and consider the system of equations Ej
r = Ej

r+1 = 0. Paying attention to
the lth place in the p-adic expansions, where l is the least nonnegative inte-
ger such that jl < ω, we see that

(
j

r+k

) ≡ (
j+k
r+2k

) ≡ (
j

r+1+k

) ≡ (
j+k

r+1+2k

) ≡ 0
(mod p), and doing the same for the least m such that jm > 2ω, we obtain(
j+k

r

) ≡ (
j+k
r+k

) ≡ (
j+k
r+1

) ≡ (
j+k

r+1+k

) ≡ 0 (mod p), so that the preceding
system reduces to

(
j − k

r

)
aj−k +

(
j

r

)
aj = 0

(
j − k

r + 1

)
aj−k +

(
j

r + 1

)
aj = 0





with
(

j
r

) 6≡ 0 (mod p). Now, if
(
j−k

r

) ≡ 0 (mod p), then aj = 0 and we are
done. Otherwise, i.e. if

(
j−k

r

) 6≡ 0 (mod p), by means of (5), we see that
the determinant of the above system is

(
j − k

r

)(
j

r

) ∣∣∣∣
1 1

j−k−r
r+1

j−r
r+1

∣∣∣∣ ≡
(

j − k

r

)(
j

r

)
k

r + 1
6≡ 0 (mod p),

and the proof is complete. ¤

When n = 1 (and consequently q = p), we obtain the same result as
that in Proposition 5, but with 3 exceptional cases, as a consequence of
the following lemmas.

Lemma 6. If (a2, a3, . . . , a3k) is a solution of (3) when q = p, then

we have aj = aj+k = 0, for each j such that k < j < 2k − 1.

Proof. Consider the equations Ej
t−1 = 0 and Ej

t = 0, with t =
[

j
2

]
,

and use (5). Although the cases j odd and j even have to be dealt with
separately, we eventually get a nonvanishing determinant and consequently
aj = aj+k = 0. ¤

Lemma 7. Any solution (a2, a3, . . . , a3k) of (3), for q = p > 13, satis-

fies ak = a2k = a3k = 0.

Proof. As q > 13 entails k = p−1
3 > 4, we see that the numbers(

2k
i

)
, for 1 ≤ i ≤ 4, lie outside triangle ABC. By considering first the

equations associated to these four numbers, adding then the 3 pairs of
consecutive equations, and taking into account that the q-th row consists
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of zeros, if we discard both ends (which are ones), we get the following
system of equations:

E2k
i + E2k

i+1 =
(

k + 1
i + 1

)
ak +

[(
2k + 1
i + 1

)
+

(
2k + 1

i + 1 + k

)]
a2k = 0, i = 1, 2, 3.

Now it is a trivial matter to check that the determinant of the first
two equations above does not vanish when

(
2k+1

2

) − (
2k+1
3+k

) 6≡ 0 (mod p).
Otherwise the last two equations have nonzero determinant. Thus in either
case we get ak = a2k = 0. Now, from E2k

1 = 0, we see that a3k = 0. ¤
Lemma 8. Any solution (a2, a3, . . . , a3k) of (3), for q = p > 19 satis-

fies ak−1 = a2k−1 = a3k−1 = 0.

Proof. In this situation k > 6, since p > 19, and thus the numbers(
2k−1

i

)
, for 1 ≤ i ≤ 5, lie outside triangle ABC. Consider the system of

equations
γi := E2k−1

i + E2k−1
i+1 = 0, for i = 1, 2, 3, 4.

As the 3k-th row of the arithmetic triangle modulo p is

1, −1, 1, −1, , . . . , −1, 1

and k is necessarily even, the coefficient of a3k−1 in the above 4 equations
is +3, when i is odd, and −3, when i is even. Thus the system

γ1 + γ2 = 0
γ2 + γ3 = 0

}

involves just the unknowns ak−1 and a2k−1, and has nonzero determinant
if

(
2k+1

3

)− (
2k+1
4+k

) 6≡ 0 (mod p); otherwise, the determinant of

γ2 + γ3 = 0
γ3 + γ4 = 0

}

is nonzero. Consequently ak−1 = a2k−1 = 0, and coming back to γ1 = 0,
we also get a3k−1 = 0. ¤

From these lemmas we can state

Proposition 9. Any solution (a2, a3, . . . , a3k) of (3), for q = p > 19,

satisfies aj = aj+k = 0, for k < j ≤ 2k.

Finally we cover the cases q = p = 7, 13, 19.
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Proposition 10. For q = p = 7, 13, 19, the solutions (a2, a3, . . . , ap−1)
of (3) are given by

(i) Case p = 7: a4 = 4a2, a5 = 4a3 and a6 = 2a2, with both a2

and a3 arbitrary;

(ii) Case p = 13: a7 = 11a3 and a11 = 5a3, with a3 arbitrary,

and the remaining a’s being zero;

(iii) Case p = 19: a11 = 9a5 and a17 = 3a5, with a5 arbitrary,

and the remaining a’s being zero.

Proof. (i) By just solving (3), which in this case reads

2a2 + a4 + 4a6 = 0

3a3 + a5 = 0

6a4 + 2a6 = 0





(ii) By Lemma 6, a2 = a5 = a6 = a9 = a10 = 0, and then (3) reduces to

3a3 + 2a7 + 8a11 = 0

9a7 + a11 = 0

4a4 + 12a8 + 10a12 = 0

6a4 + 4a8 + 3a12 = 0

5a8 + 2a12 = 0





(iii) By Proposition 1 and Lemmas 6 and 7, there remains to see what
happens for j = 2k − 1: all a’s are zero except for a5, a11 and a17, which
are required to satisfy the system (of rank 2)

5a5 + 18a11 + 14a17 = 0

10a5 + 11a11 + 8a17 = 0

6a11 + a17 = 0





. ¤

3. Solutions of (1) in case p ≡ 1 (mod 3)

Theorem 11. If p ≡ 1 (mod 3), for q = pn, other than 7, 13 or 19,

functional equation (1) has qn solutions f : Fq → Fq, namely the maps

f(x) = a1x + apx
p + ap2xp2

+ · · ·+ apn−1xpn−1
, with api ∈ Fq.
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Proof. By Propositions 1, 4 and 5, P (T ) has to be of the shape

a0 + a1T + apT
p + ap2T p2

+ · · ·+ apn−1T pn−1
.

Now, by equating P (X3 +Y 3) and P (X3)+P (Y 3) we get the supplemen-
tary condition a0 = 2a0, whence a0 = 0. The rest is obvious. ¤

Corollary. For the cases considered in Theorem 11, functional equa-
tion (1) is equivalent to the Cauchy functional equation.

Proof. f : Fq → Fq satisfies the Cauchy functional equation if and
only if f is Fp-linear. But Fq has rank n over Fp, so that exactly qn maps
satisfy Cauchy. The rest is trivial. ¤

The reasoning in the remaining cases, i.e. q = 7, 13, 19, follows the
same pattern as in Theorem 11 but the shape of P (T ) is now given by
Proposition 10. The result is the following.

Theorem 12. For p = 7, 13, 19, there are (respectively) 73, 132, 192

solutions f : Fp → Fp of functional equation (1), which are given (respec-
tively) by

f(x) = a1x + a2x
2 + a3x

3 + 4a2x
4 + 4a3x

5 + 2a2x
6, with a1, a2, a3 ∈ F7,

f(x) = a1x + a3x
3 + 11a3x

7 + 5a3x
11, with a1, a3 ∈ F13,

f(x) = a1x + a5x
5 + 9a5x

11 + 3a5x
17, with a1, a5 ∈ F19.

Remark 1. The cases of higher powers of 7, 13 and 19 are covered by
Theorem 11.

Remark 2. The solutions in Theorem 12 are, in fact, easily checked to
satisfy (1). The 3 exceptional cases appearing in (1) are in contrast with
the fact that, except for F7, in all fields Fpn , p ≡ 1 (mod 3), each element
is a sum of 2 cubes (cf. [4], p. 327). By the way, a direct computation for
p = 7 shows that any solution of (1) is determined by f(1) and the values
of f on 3 and 4 (the only two elements which are not sums of two cubes).

Remark 3. If q = 3n, the functional equation (1), for f : Fq → Fq,
is just the Cauchy functional equation (since x 7→ x3 is the Frobenius
automorphism). On the lines of the proof of the above Corollary we see
that in this case the solutions of the Cauchy functional equation are also
given as in Theorem 11.
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