

Classification of abelian finite-dimensional C^* -algebras by orthogonality

By BOJAN KUZMA (Koper) and SUSHIL SINGLA (Bengaluru)

Abstract. The main goal of the article is to prove that if \mathcal{A}_1 and \mathcal{A}_2 are Birkhoff–James isomorphic C^* -algebras over the fields \mathbb{F}_1 and \mathbb{F}_2 , respectively, and if \mathcal{A}_1 is finite-dimensional, abelian of dimension greater than one, then $\mathbb{F}_1 = \mathbb{F}_2$, and \mathcal{A}_1 and \mathcal{A}_2 are (isometrically) $*$ -isomorphic C^* -algebras. Furthermore, it is also proved that for a finite-dimensional C^* -algebra \mathcal{A} , we have $\mathcal{L}_{\mathcal{A}}^\perp$ is the sum of minimal ideals which are not skew-fields, and $\mathcal{L}_{\mathcal{A}}^{\perp\perp}$ is the sum of minimal ideals which are skew-fields, where $\mathcal{L}_{\mathcal{A}}$ denotes the set of all left-symmetric elements in \mathcal{A} , and for any subset $\mathcal{S} \subseteq \mathcal{A}$, the set \mathcal{S}^\perp represents the set of all elements of \mathcal{A} which are Birkhoff–James orthogonal to \mathcal{S} . A procedure to extract the minimal ideals which are (commutative) fields is also given.

BOJAN KUZMA & SUSHIL SINGLA
UNIVERSITY OF PRIMORSKA
GLAGOLJAŠKA 8
SI-6000 KOPER
SLOVENIA
AND
BOJAN KUZMA
INSTITUTE OF MATHEMATICS,
PHYSICS, AND MECHANICS
JADRANSKA 19
SI-1000 LJUBLJANA
SLOVENIA
AND
SUSHIL SINGLA
DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF SCIENCE
BENGALURU 560012
INDIA

Mathematics Subject Classification: Primary: 46L05; Secondary: 46B20, 46B80.

Key words and phrases: real C^* -algebras, finite-dimensional abelian C^* -algebra, Banach space, non-linear classification, projections in von Neumann algebras.