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On some subsets of the set of shifted primes

By KARL-HEINZ INDLEKOFER! (Paderborn)
and NIKOLAI M. TIMOFEEV? (Vladimir)

Dedicated to Professor Zoltdn Dardczy and Professor Imre Kdtasi
on their 60th birthday

Abstract. Let p run through the set of primes, and let a be a non-zero integer.
For some subsets W, W* of the set of natural numbers we prove (see Theorem 1) that

1 lo
—Hp:p+a<zptacW} < Y
m(z) x

Hn:n<z,neW* (n—a,P(y)) =1}

3
er_fls n (loglog 10x)

)

logz

where |a| < y < (logz)?, P(y) = [I,<, P
As an application of this main result we deduce corresponding estimates in the
case (see Theorem 2, 3)

W=W*"={n:gi(n)=b;,i=1,... ,m}
and in the case (see Theorem 5, 6)
W={n:gm)€bb+h)}, W ={n:gn)ebl—ec) (b+h)(1+e)}
where g;, g are additive or multiplicative functions.

In particular we prove
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Theorem 4. Let fi1,...,fr be multiplicative functions satisfying the following
conditions:
(i) there are natural numbers m; such that f{"' =1,i=1,... ,k,
(ii) forany 1 < 41 < ig < ... <is < k, 0 <r; <my,i=1,...,k and for any

Dirichlet-character x4 (mod d)

_ T7‘1 Tis —
Jim_— Z Filt o £ xa(n) = 0.
n<z

Then

11msupﬁ|{p p<If1(P+1) 51""’fk(p+1):£k}|sm7

where £]"t = = {mk =

1. Introduction and main results

Assume that g is a real-valued additive or multiplicative function.
There are many results about the behaviour of the means

1 1
E\{n:ngx,g(n):b}], E\{n:ngx,bgg(n)<b+h}\

as ¢ — oo where |A| denotes the number of elements in the set A.
Typical results in this connection are the following theorems of Halasz
and Ruzsa.

Haldsz’s Theorem ([1]). Let g be a real-valued additive function.

Then

sup ]{n n<z,9(n)=0b} <

1
VE()

where

p<x,g(p)#0 p

We write G(z) < F(z) if the functions F', G satisfy |G(x)| < C|F(z)|

for some absolute constant C' and all values x being considered.
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Ruzsa’s Theorem ([2]). There exists a constant C such that for any
real-valued additive function g the estimate

sup{n:n<z,b<gn)<b+1}| <C
b

1
VD(z)’

holds, where

D(z) = m)%n </\2 + Z ; min(1, (g(p) — )\logp)z)).

p<z

These results are general and convenient for studying the behaviour of
additive and multiplicative functions. But for some functions and for some
b there are more exact estimates.

Suppose that p ranges over the set of primes and a is a non-zero
integer. The main purpose of the present paper is to prove an inequality
of the kind

1 1 .

ml{p p<aglpta) e A< —[{nin<az,g(n) € A} + R(z),
where g is additive or multiplicative, A and A* are some subsets of C and
R(z) — 0 as ¢ — oo and where the right hand side can be estimated, for
example, by wellknown methods.

Some results of this kind are already known. For example, in [3] N.
M. TIMOFEEV proved that for any real-valued additive function g

Sgp@!{p:psw,bﬁg(wl)<b+1}\ < W.

This result is an analogue of Ruzsa’s Theorem. In [4] P.D.T.A. ELLIOTT
proved this inequality without the factor log®(D(z) + 2). In [3], [4] an
analogue of Halasz’s result has been proved, too (see also [6], [7]). Here
we consider much more general situations and get the mentioned results
as corollaries.

Let P(t) = J] p and P(v,u) = ][] p. For each natural number n

p<t v<p<u

let p(n) and g(n) denote the largest and the smallest prime divisor of n,
respectively. If n =1 put p(1) = ¢(1) = 1.

For the description of the above mentioned sets W we need the fol-
lowing definitions.
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Definition 1. Let
C C{((Ui,Vi))ien, Ui, V; CN, i=1,2,...}

denote the class of sequences ((U;,V;))ien of pairs of subsets of N such
that

i) U,NnU; =0 ifi#j,
(i) for every ((U;, Vi))ien of C there exists s € N such that for any
i1 <9 < ...<is the condition V;; NV;, N...... NV;, = 0 holds.
Next we define a class W of subsets of N.
Definition 2. W € W if the following holds:
For any t > 2 there exists a sequence ((U;, V;))ien € C such that

(i) for s in Definition 1 the condition s = s(t) < clogt holds with some
constant c,

(i) if n € U;, m € V; then p(n) <t, g(m) >t orm =1,

(iii) for every n € W with n = n’'n”, where p(n’) < t and ¢(n”) > t or
n' =1, there exists ¢ € N such that n’ € U; and n” € V.

Let W € W. For t > 2 let ((U;,V;))ien be a corresponding sequence
according to the definition of WW. Then we define W (t) by

W (1) i= Wi, vipyient) = | J{n =n'n", 0’ € Ui, n" € Vi}.
1€EN

Obviously W € W (t) and m'm” # n'n’” if (n’,n”") € U; xV; and (m’,m") €
U; x V; with i # j.

In the following we restrict our attention to a subclass Wy of W.

Definition 3. W € Wy in case for any t > 2, together with a corre-
sponding ((U;, V;))ien from Definition 2, the set W (t) = W, vi))icx(t)
belongs to Wy, too.

We use the notations

W(t1,t) == (W(t1)) (i vi))ien ()

and W(tl,tg, e ,tk) = W(tl, e ,tk:—l)(tk)'
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Remark 1. Let g : N — C be a complex-valued additive or multiplica-
tive function. We put

W:={n:g(n)=>5b}

(if g is multiplicative we assume that b # 0). For ¢ > 2 we choose

Ny :={neN:p(n) <t}
No:={neN:qn)>t}uU{l}.

Now, let {by,ba, ...} be a set of complex numbers which contains all values
g(n) (n € N) of g, such that b, # b; if i # j (and all b; # 0 if g is
multiplicative). Then we define, for each i = 1,2,...,

Ui:={neNy:g(n) =05}
Vii={neNy:g(n)=0bxb;}

where b b; = b — b; if ¢ is additive and b x b; = b/b; if ¢ is multiplicative.
Then obviously s = s(t) = 2, W(t) = W and thus W € W,.

For sets of this type we prove the following theorem.

Theorem 1. Let a be a non-zero integer such that |a| < y < log? x
with A = 6100. Then, if W € W,

1 1\ ¢
7T(gc)\{101]9§$,1?+6LEW}|§4-pl:[y(1—p> x M(x)

1
X ;\{n:ngx,né W(to,t1,... ,tk),(n —a, P(y)) = 1}|

+0 (y_1/48 + (log log 10z)*(log a:)_l) ,

where to = exp ((2loglog 10z) ! - (log z)),

logt; = min (uf‘ log® u, 4,4%2@%)’ M(z) = (1 +O(log” ¥ z)), A = L
and U; = y2k7i7 1= 17 ,]{3 Wlth ]{} = [10g2t%] + 1.
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Using Remark 1 we deduce from Theorem 1

Theorem 2. For any additive or multiplicative function g we have

@r{p:ps:c,g@m:bﬂ

=1 (1‘119>_ XM (2)x 3 [{n: n, g(n)=b, ((n—a, P(y)) =1}

L0 (y_1/48 N (log log 10x)3) ’
log

where y > |a|, M(z) = 1+ O(log_T15 x) and b is a complex number and
b #£ 0 if g is multiplicative.

In the same way we prove

Theorem 3. Let g1, ... , gn be complex-valued additive or multiplica-
tive functions and let by, ... ,b,, be complex numbers where b; # 0 if g; is
multiplicative. Then we have

1

W(x)l{p:pS:c, gilp+a)=b;, i=1,.... m} <4]] (1_;>_

p<y

1
x—H{n:n<z g(n)=0b, i=1,... ,m,((n—a,P(y)) =1}
x
+0 (y_1/48 + (log log 10z)?(log :1;)_1) ,

where y > |a| and M(x) =1+ O(log_l% z).

Remark 2. Observe that we obtain an estimate for any {b1,... ,b,,} €
C™ and not only for the supremum over {by,...,b,,} as it was proved in
[3], [4] (for m =1).

Put

—48
1 1
y := min <<\{n :n<wz,g;(n) =bj,i=1,... ,m}]—l—) +2al,log™ x) .
T x
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Using the inequality
1\ !
[M(r==)] <eclogy,
p<y p
we obtain from Theorem 3 the following

Corollary 1. Let g, ..., b, be complex-valued additive or multiplica-
tive functions and by, ... b, € C. Put

1
E(z,b1,...,bp)=—|{n <=z, gi(n)=0b;, i=1,...,m}| + (logz)"*.
x

Then
L‘{ p<w, gilpta)=b;, i=1 m}|
() PP =T gip =b,1=1,...,
log log 10z)?
< log (2B (@, by, .. b)) - B, by, ... bm) + (Oglixxﬁ

where b; € C, and b; # 0 if g; is multiplicative.

2. Application to multiplicative functions I

Theorem 4. Let f1,..., fr be multiplicative functions satisfying the
following conditions:
(i) there are natural numbers m; such that f/"" =1,i=1,... ,k,
(ii) forany 1 <i3 <ig <...<is<k,0<r;<m;,t=1,... %k and for

any Dirichlet-character x4 (mod d)
.1 : ri
Jim 2D S fxaln) = 0.
n<zx

Then

hmsupﬂ(lx) pip<a i+ 1) =6 filp +1) = &)

r— 00
4

Si
myq... Mg

Y

where &1,...,&, € Cwith ™ = ... =& =1.
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PRrROOF. An application of Theorem 3 gives

L\{ p<ua filp+1) =&, i=1 k}‘<4}1—[ 1_1>—1
pip>x, Ji\D i ey =4 ,

7T<x) P<y

X{n:n<z, fi(n)=¢&,i=1,... ,k,((n—a,P(y)) =1}

1
. vo(t)
where 1 < y <logz. In terms of the M&bius function we have
1 )
1
=) p(d)=—[{n:n <, filn) =& i=1,....k,n=1 (mod d)}|

()

d|P(y)
d|P(y)

d>Q
Next, we make use of the following result.
Lemma 1. For any y, any u > €3, and 2 < v < u we have

1 log u 4 logy
Z - exp | — .
n log v log u

pln=>v<p<u
n>y

PROOF of Lemma 1. Applying Rankin’s method gives

Z l g y_ﬁ . Z n_1+$
n

pln=v<p<u pIn=v<p<u
n>y
1 1 1 1 1
<Lexp | — ogy+ Z exp<0gp> < exp ( Ogy+elog ogu)
logu vl P logu logu log v

which proves Lemma 1.
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Returning to (2) we see that the second sum is
1
< log4yexp <— ogQ> .
logy
Let @ = €Y. Then the representation
1 .
—H{n:n<z filn)=¢&,i=1,... ,k,n=1 (mod d)}|
x
1 I
- @ - 1 '—1 . ‘_1 . mi—l
ey ;1;[1 (L4 (& filn) + o+ (T filn))™ )
< g )
— Xda(n
p(d) 4=
holds and condition (ii) shows that this sum equals
1 1
1 )= ——— 1).
xp(d)my ... myg Z +o(1) dml...mk+0()
n<zx
(nad_)::L
Thus for any fixed y > 1 we have
1 .
; ‘{TL in < xmfl(n) :giaZ: 17-" >k7 (n_ 17P(y)) = 1}’
1 1 1
1.-- k <y y
By (1) we obtain Theorem 4.
Remark 3. Let us suppose that the functions fy,... , fi satisfy con-

dition (i) of Theorem 4 for any 1 <i; < ... <is <k, 0<r; <m; and
that for any Dirichlet-character x4 (mod d) such that x7(n) = xo(n) with

r =1my ... my, the series

S (1=Ref " (p). £ (P)xa(p))

P

AR
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diverges. Then, using the theorem of G. HALASZ [5] we conclude that for
any g (mod d)

Jim =3 a5 ) F ) =

Hence the function fi, ..., fi satisfy condition (ii) of Theorem 4, too.
We need the following two results.

Lemma 2 (Theorem 3 [6]). Assume that a is a non-zero integer and
f is a multiplicative function with |f(n)| < 1. Further, assume that there
exists a primitive Dirichlet-character x4 (mod d) and a real number tg
such that |
—itg | 108D
> 11— xalp)f(p)p~*"] — = e(x)logz,

p<z

where e(x) decreases and tends to zero but £(x)+/logz tends to infinity as
x — oo. Then

1 d) ito o . .

pse p\a r=1
pF#2
<1l (1 30 o (a0 = x5 "'”‘””))
p<z r=1
ptad
+0 (7 (),

where 8 = B(d) > 0, y = V@) and the constant implied in O(...)
depends only on a.

Lemma 3. Let f be a multiplicative function with f™(n) = 1, and,
for any 1 < j < m — 1, let the series

(3) > (1=Refi(p))

p

"=

diverge. If there exists a primitive Dirichlet-character xs (mod &) such
that the series

(4) > (1= Re fp)xs(o)

p
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converges, then

pip <o fot1) =g <L

lim sup
00 ( )

PRrROOF. For any z with |z| =1 it follows that

1-Rez" =Re(l—-2)(1+z+...+2"7")
:nRe(l—z)—i—Re(l—z)((2_1)_’__“_,_(271—1_1))

<7’LRe(1—z)—|—|z—1|2 <2n (1 — Rez).

Since the series (4) converges we conclude that the series

S (1= Re(f(p)xs(p)) =

> p

converges, too. Now, the series (3) diverge. Hence we obtain that for
1<j<m-1, xj} is not principal. Let x;(;) be a primitive character
which generates (). We have

S = (F0) xs,, ()] 222

p<z g
1 1
1 1)’ log p 2
) ,
< (4> =E 42108y (1-Re(F0)) - | [ D2 -
<y p P>y i pe !

as v — oo if y = y(z) — oo as * — oo such that logy(x)/logx — 0. We
see that f7 satisfies the conditions of Lemma 2 and therefore

2 (5(9) f(p ) (@)

J o
ﬂ)%““‘ woy Lt *Z Tl < Ty T
holds for any 1 < j < m — 1. Hence

1 m—1 ' ‘
) [ Pips e i) =8l= E9Y Plo+1)
Jj=0 p<w
1 1¢ 1M2(5(j
St 2 oy oW

Jj=1
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Since §(j) > 3 this completes the proof of Lemma 3.

Corollary 2. Suppose that f1, fo, ..., fr are multiplicative functions
with f"*(n) =1 and that, for any 1 < iy < ... <is <k, 1<r; <m; —1,
i =1,...,k the series

T i 1
(5) Y (1=Refi*(p)..- fi" () ,
p
diverges. Then
A&,y ..., &)
= limsupL H{p:p <z filp+1)=&,..., frlp+1) =&}

<max| ——,— | .
my...mg 4

PROOF. Suppose that for any ys and for any 1 < i1 < ... <15 <k,
1<r;,<m;—1,i=1,...,k the series

(6) S (1 - Re £(p)xs () ;

p

diverges where f(p) = f.'*(p)... f, " (p). We show that for any t # 0 the

21 s
series

(7) Y (L=Ref(p)xs(p)-p ™)

p

"=

diverges, too. For, if this series converges then the series with 1 —

Re f(p)xs(p)p~" replaced by 1—Re(f(p)xs(p)p~*)™ converges, too. Sup-
pose m = mj ... m,. Then, we obtain that the series

> (1 =Rexy (p)p ™)

1
> b

converges for t # 0. But this series diverges, and the contradiction shows
that the series (7) diverges, too.
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Using HALASZ’s theorem [5] we conclude that the conditions of The-
orem 4 are satisfied. Therefore we have A < 4/mq ... my.

Now suppose that there exist 1 < i1 < ... < iy < k, 1 < r; <
m; —1,47=1,... ,k and a primitive character xs such that the series (6)
converges. Put f = f:l” f;“ and let m be the least common multiple
of the numbers m;, - (m;,,ri,) "%, ... ,my, - (m;_,r;. )"t Forany 1 <l <m
we have

Fln) = f7 ). fT () = fIH(n) . f7 ()

where 0 < 713 < my,,...,0 < js <my,. If 51 =ja=...=js =0 then
m|l where 1 <[ < m. Hence j; # 0 and it follows that the hypothesis of
Lemma 3 for f is satisfied. Using Lemma 3 we get

A&y, &) < 1irrisup7r(1@ fp:p<a, flp+1)=¢" ...}

Thus Corollary 2 is proved.
In particular we have

Corollary 3. Assume that fi(n) =1, fi*(n) = 1, m > 2. If for any
1<i<m—1,0< 75 <2 the series

1 j i 1
S 0-Refip) . Y (1-Reff0)Aiw)

p p

diverges then

e~ w

r— 00

limsupﬂ_(lx)rrgz%XHp:p <z filp+1)=¢ falp+1) =n} <

Remark 4. It is not difficult to show that under the conditions of
Corollary 2 the inequality

lim su
1‘—>oop 71—(1') E1y€k

holds.

Using Corollary 3 we prove
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Corollary 4. Suppose that the functions fi, fy satisfy the conditions
of Corollary 3 and

o VT
(8) iminf 5 pzq filp+1)) 26> 7
Then
lim sup —— g folp+1)| <o
el ﬂ-( ) p<z

where 0 =1 — (% %@2—%—21!0 (1 —cos 75)-

PROOF. Let & be a complex third root of unity and

ax(s,1) = F(lx) p:p<a filpr1) =&}

Then we have
1 2
—Z (p+1)=>_ &a(a,i).
’/T( p<z 1=0

Now suppose that o = ug 4+ u1& 4+ u2€?, where u; € R. Then
|a? = ud 4+ ul + u3 — uouy — ugus — Ui Us.

It is easy to prove that the maximum of |a|? taken over all (ug,ur,us)
suchthatOSuoga,OgulSa,OSuZS(z,a>%,uo+u1+u2:1
equals 14+ 3a(a— 1) and is achieved at the points: (a,1—a,0), (1—a,a,0),
(a,0,1—a), (0,a,1—a), (1—a,0,a), (0,1—a,a). Let ¢ be a solution of the
equation 1+ 3c(c — 1) = ©2, ¢ = %(1 + \/%@2 — %) From (8) it follows

that

9) liminf max a;(x,7) > c.

x—oo 1=0,1,

Now suppose that

m—1
Zf2p+1 = as(x,

p<x =0
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where

aﬂ%@zﬂ&ﬂﬂwpéah@+n=n@W

Using Corollary 3 and (9) we obtain

@uw>—§j'?\ﬂ)p<xfmp+n &, Lp+1) =1}
(10) =0
§Z+(1—c)+o(1):b+o(1),

where b = 25[ — f\/ d92 Ll rro> % then b < 1. Let w be a complex
number of modulus 1 such that

m—1
w - Zaga:zn > 0.
=0

Then
1 m—1
—mz p—l—l ZCLQ 1—Rew17)
p<z 1=0

Since the inequality 1 — Rewn’ < 1 — cos = holds for only one i among
the values considered, the right-hand side is greater than or equal to

3
L

Z as(x,1) (1—COS %) —mfxxag(:n,i) (1—COS %) >(1- b)(l—cos %) .
Hence

lim sup ——
rne (@)

> falp+1)

p<zx

gl—(l—b)(l—cos%>,

and this proves Corollary 4.

From Corollary 2 we deduce
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Corollary 5. Let fi(n) = 1, fi(n) = 1 and fi*(n) = 1. If for
0<i<1,0<5i<1,0<I<m—1,i+j+1+#0 the series

Zp: (1- AP A @ Re fi()) 11)
diverges then

1 3
li — p < ; 1)=¢&,1=1,2 < -.
msup s [{pep <o filp 1) =6 =1.2,3)| < §

Tr—r 00
In the same way as before we prove

Corollary 6. Suppose that the functions fi, fo, f3 satisfy the condi-
tions of Corollary 5. Further assume that for ¢ = 1,2

1
lim inf ——
T— 00 7T($)

> 0,

> filp+1)
p<z
where © > %. Then

1
(11) limsup ——

z—oo ()

> fp+1)

p<z

g1—<@—i) (1—005%).

PROOF. Assume, for example, that for ¢ = 1,2

o 1
hznig.}f%z:fi(p—k 1) > 6.

p<z

Since f1-fo=(1—f1)(1 — fo) + f1+ fa — 1 we get

v (a)

1
liminf — " fi(p+ 1) fa(p+1) > 20 — 1.
p<z

Put

“””””:R%Hng%ﬁ@+w=«4ﬂh@+n=«wﬂw
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We have

liminf max aj(x,4,j) > liminf
r—oo 1,j=0,1 r—0o0o T

1 (1+f1(p+1))(1+ f2(p+1))
@ 2 1

p<z
1
In the same way as before (see (10)) we obtain

ag(x,i) < 7+ (1-0) +o(1),

e~ w

and this leads to the inequality (11).

Remark 5. Let f be a multiplicative function such that f™(n) = 1,
and let the series

1 —Re f(p)xa(p)
2

diverge for any Dirichlet-character x4 (mod d). We conjecture that

lim L d flp+1) =0

7(x) =

For example, it has been conjectured that

1
lim —— > pu(p+1)=0

e 7(0) &

where p is the Mobius function. At the present time it has even not been

proved that
Z(_l)ﬂ(p—i-l)

p<z

1
limsup —— <1

o 7 (@)

where Q(n) is the number of all prime divisors of n.
The best results in this direction has been proved by P.D.T.A. ELLI-
OTT (see [7]). He can prove the nontrivial estimate in the case f4(n) = 1.

Remark 6. Let Py be the set of integers n > 2 the number of distinct
prime factors of which is < k, i.e. Py = P, and let Py 41 = Pr + 1.
Let furthermore My be the class of those complex-valued (completely)
multiplicative functions which are nowhere zero.
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In [13] KATAI conjectured that A(p + 1) takes on both the values 1
and —1 infinitely often, if p runs over P. Here A is the Liouville-function.
If the equation p—2¢ = 1 has infinitely many solutions in primes, then the
same is true for p+1 = 2(g+1). Since A(p+1) = AM(2)A(g+1) = —A(¢+1),
the conjecture hence would follow.

By using this simple observation and Chen’s method (see [9]) one can
prove the following assertion: For every a € N there exists an infinite
sequence of pairs of integers PQ(”) +1, Qéy) +1€Pyiq (v=1,2,...),such
that

P +1=a(@QY +1)

holds true.
This implies the following assertion, evidently.

If f € My, then either f(a) =1 identically, or f takes on at least two
distinct values on the set Pa 1 N [t,00) for every t > 0.

Conjecture (KATAI [14]). If f € My and f is not indentically 1, then
f(p+1) (p € P) takes on at least two distinct values.

3. Application to additive functions

We return to Theorem 1 and shall prove results of a different type.
Let g be a real-valued additive function and W = {n : b < g(n) < b+ h}.
For any ¢ > 2 consider U; = {ny : p(n1) < t,ih(t) < g(n1) < (i + 1)h(t)},
Vi = {n2 : (na, P(t)) =1, b— (i + 1)h(t) < g(n2) < b—ih(t) + h},
i=0,%£1,.... Then U;NU; = 0 for i # j, and if s > s(t) = G

have V;, N...NV;, =0 for any i1 < ... < is. If ny € U;, ny € V; then
n=mning € W(t)={n:b—h(t) <g(n) <b+ h(t) + h}. Hence

W(to, - ,tk):{n :b—h to)—- . -—h(tk) < g(n)<b+h+h(to)+. . .—i—h(tk)}
and S(tk) = h+ 2h(t1) "]’;(tk)"i‘ 2h(tk71) . Let h(t) = % By construc-

. _ log x o A 2, 4 log x
tion g = exp <71210g Tog 1093) and logt; = min (ul log” U}, Thice1ons Tog Tog @ where

)\:ﬁ, w; =y ', i=1,... k Hence

k
1 4Alogl 1
s(t;)<logt; (1+2Zbgt-><< k%-ﬁ-Z? logt;< logt;
i=0 ’

€T g
& i>1 4
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and, for = > xg, y > 2|al,

k
1 h
h(to) + ...+ h(ty) < h <Z logt) < gy

i=0
Thus by Theorem 1 we obtain

Theorem 5. Let g be a real-valued additive function. Then

1
— :p < <
@) {p:p<z,b<g(p+a) <b+h}

-1
1 1
<4 (1-=) =
<41l < p> T
1 (loglog 10x)3>

1 1
Ch— < b+h (14 — ) Y M)+o
logy_g(n)< * < +logy>}‘ (@) <y1/48+ log z

where M(z) = 1+ O(log™*/*® z) and 2|a| < y < log” z.
Put

{nin<ain-a.Pe) =1

—48
1 1 1
=—-Hn:n<z,b—he< < b+ h(1 — - .
y=(GHnnabohe<gn) <venaeit ) e (1)
Then we have
Corollary 7. For any real-valued additive function g the estimate

1
— Up:p<zb< b+ h}| <.
7T(x)l{p p<z,b<glp+ta)<b+h} <

(loglog 10z)3

< S(b,h,e,x) -1og2S~ (b, h,e, x) +
log

holds, where

1 1
S(b,h,e,x) := ;\{n:ngx,b—hegg(n) <b+h(1+€)}\+;.

Suppose that A < g(p 4+ a) < B. We divide the interval [A, B) into
intervals [b, b+ 1). For each interval for which

1
R(z,b) := ;|{n:n§x,b—1§g(n)<b—|—2}|750
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we have

1

7T(@!{prpéa:,bgg(zfﬂra) <b+ 1}

(loglog 10z)3

< R(z,b)log 2(R(z,b)) " + ons

Let x1,...,x, be positive numbers such that z; 4+ ...+ z,, = y. Then, by
Jensen’s inequality, we get

1 1 n
z1log—+ ...+ z,log— < ylog —.
r1 Tn Yy

Using this inequality we obtain the following result.

Corollary 8. For any real-valued additive function g we have

1 1
@l{p:péw,ASg(p+a)<B}\<<;|{n:n§x,A*1§g(n)<B+1}|

2. |B—A+1|

(loglog 10z)3

><10g1 1—|—|B—A—|—1|- log z

;~\{n:n§x,A—1§g(n)<B—|—1}H—;

4. Application to multiplicative functions II

In the same way as before we can prove similar results for multiplica-
tive functions.

Let f be a real-valued multiplicative function and b > 0. Then

1

7T(QC>|{p:p§:1c,b§f(p-l—a)<b-H}|

1
= @]{p:pgx,logbg log|f(p+a)| <logb+logH, f(p+ a) > 0}

Let, for any t > 2, Uf = {n =ny :n; € U;, f(n1) > 0}, Vit = {n =ny:
ng € %,f(ng) > 0}, Ui_ = {TL =Mni Ny € Ul,f(TLl) < 0}, V;_ = {n =
)
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log|f(ne2)| < logb+log H —ih(t)}. If b < 0 and H > 1 we have

W(lx)l{p:p <, f(p+a)e€ [bbH)}|

— Lltpp <l flo+al € [l 1), S+ o) < O}

Here we define U;", V;*, U;", V;” in the same way as before but f(n;) -
f(ng) <0 forny € Uii,ng € Vii.

Thus we have

Theorem 6. Let f be a real-valued multiplicative function, b # 0 and

H > 1. Then
1 1 -1
oy |Pip s St a) € [beH)) <] <1_p>

]
1
X; Hn :n <z, (n —a, P(y)) =1,f(n) € [bH_”(y),bHH”(y))H
1 (loglog 10x)3
<M(z) + 0 <y1 s+ ),

where o(y) = loéy’ M(z) =1+ O(log~Y** 2) and 2|a| <y < log z.

Corollary 9. For any real-valued multiplicative function f we have

v < oo < oo 1)) <

(loglog 10x)3

ST Hevw) o (210, Heo) ™) + S50

)

where b # 0, H > 1 and

1
logx

T(b,H,e, x) = % |{n :n<uz f(n) € [bH*67bH1+e)}‘ +
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Corollary 10. For any real-valued multiplicative function f and B >
A > 0 we have

W(ll‘)’{]?ip <z f(p+a) € [A B)}
< §|{n :n<uz f(n) e [Ae_l,Be)}]

eB
2"10gj|

x log I 1
- ’{n :n<uz f(n) e [Ae_l,Be)}’ + .

eB| (loglog10z)®

1
+‘og A log x

5. Examples and remarks

Ezample 1. Let E be an arbitrary nonempty set of primes. Put

Ewy = Y 1

p<z, pEE p

and let w(n, E),Q(n, E) be the number of different prime divisors of n
from E and the number of all prime divisors of n (counted with multiplic-
ities) from F, respectively. HALASZ [10] and NORTON [11] proved that the
inequality

c1(8)zE™(x)

{n:n <900, B) =mi| < Cromi)

holds for m < (2 — §)E(x), where § > 0 and g(n, E) = Q(n, E) (see [10])
or g(n,E) = w(n, E) (see [11]).

If E is the set of all primes then the corresponding functions are either
equal to w or  and

m—1

x  (loglogx)

n< = <

for m < (2 — d)loglog 10z, 6 > 0.
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By Corollary 1 we obtain

x Emt(x) N (loglog 10z)3

p < FE) =
H{p:p<z,g9(p+aE)=m} < logs mlexp(E(x)) og? =

for m < (2 —6)E(z) and

r  (loglog10z)™  (loglog 10x)3

ip <, +a)=m;| K
{pep=aglpta)=mil < e =0 log?

for m < (2 —¢)loglog 10z, > 0.

Let us remark that in this case there are more exact results (see [12]).
Ezample 2. NORTON [11] proved

{n:n < z,7(n) >logz}| < z(logz) =7 (loglog x) /2

where 0 =1 — (1 +loglog2/log2) =0.086... .
By Corollary 10 we have

71_(11:)‘{p:p§3§‘,7'(p+a)210g$}
<L;{p p <, 7(p+a) € logz, log? w}!+ >l

()

log o<u

v/loglog x

< -
log® =
Remark 7. In the papers [3] and [4] the set
W={p:glp+a)e [h,h+1)}

has been considered where g is an additive function. The main idea was
the following. For every real u we have

1 1 \2

/ (1= [t)e™ dt = (“ “)
?U

-1
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and for |u| < 1 this integral is larger than 4/72. Hence

Qn = W(lx)!{p:g(pﬂ%) € [hh+1)}

<23 /(1—yty)eithf(n+a>dt+z

W = (@)
(n, P(u z))=1

where f(n) = exp (itg(n)). TIMOFEEV [3] treats the sum

Z f(n+a)

n<z
(n, P(y,2))=1
by the large sieve and by the dispersion method of Linnik. This was
possible when log z/logx — 0 and logy — o0, as * — oco. ELLIOTT [4]
used the fact that the non-negativity of

1
/(1 et du
el

allows the application of Selberg’s sieve. Hence

R T P a2
< / e Y ke X )i =

d;|P (w z) n<z

d

J

<z n=0 (mod [d1,d2]),
1,2 (n, P(y,z))=1

This idea and the new estimates of multiplicative functions on arithmetic
progressions with small moduli d = [dy, d3] allows ELLIOTT [4] to improve
the bound of TIMOFEEV [3], and he proved results which are best possible.
This method allows to estimate s1}1lp Q.

We do not use here estimates for multiplicative functions. Using only

the properties of the set W we have proved in particular (see Theorem 5
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and Corollaries 7, 8) for any h
L‘{]o:p<av,g(p—|—a)6[h,h—i—l)}‘<41_‘[ 1—1 1
m(x) - T p)x

{n:nSZE,((n—a)aP(y)) =1g(n) € [h—&’“” 1:;2/)}‘

1 log log 10z)?
(o0 b)) o (s v ity
log T log z

Using this we obtain

X

log(D~(z) + 2) .

su <
hp Qn D)

The result is not as good as the estimate of Elliott. The condition
((n —a), P(y)) = 1 may be incorporated into sums of the Mobius function.
Then the problem is reduced to the study of multiplicative functions on
arithmetic progressions with small moduli. Here we have investigated this

problem only in one case (see Corollaries 2-6).

6. Proof of Theorem 1

We observe that the main property of W is the possibility of the

2. 1=2. 2 2!

new 1 n1eU; na€V;

representation

with a small error term.
For the proof of Theorem 1 we need the following preliminary result.

Lemma 4. Let a be a non-zero integer. Let {ay}, {b,} be sequences
of complex numbers, such that, if n < z; or (n,a) # 1 then a, = 0 and
if m < z9 or (m,a) # 1 then b,, = 0. Put r(z,v,u) == {n : n < z,
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(n —a, P(v,u)) =1}, and

ol

M (z) = glgg(y 12( > !akHbm|> )

n<y \km=n
(Ll S 12)
n<t n<y
A(z,d) = Z b, — % Z anbm,.

nméer(z,v,u), nmer(z,v,u)
nm=a (mod d)

Then
R(Q,v,u,2):= Y 3*D|A(z,d)|
a<Q,
d|P(u,z)
x log z 126 log = 123
M /M M. \/1 1 6
< u 1(z) (logv) +x 1(z) Ms(x) (logv> og Q(log u)

1
2x u@Q exp(log? u) s (1 1 1\?
x | log )( +ul | —+— | +— .

( 2122 VT Vzi o Vz Vu
uniformly for 1 < v < uw < z where 16 + |a| < u < exp(?/logm),
Quexp(log® u) < \/z.

Remark 8. The same estimate holds for the sum

> 3WA(z,d).

a<Q
pld=v<p<u

PRrROOF. Applying Cauchy’s inequality gives

NI

l\J\b—l

R(Q,v,u,2) < ( > 9“’(‘”!A<x,d>\> (Ri(Quv,u,2)%,

d<Q,
d|P(u,z)
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where

Ri(Qv,u,2) = Y |Ax,d)].

d<Q,
d|P(u,z)

The first sum does not exceed

> ( > ak!l%!) ( Yoy Y 9w;d>>

n<z \km=n d<Q, d|P(u,z)
d|(P(u,z),n—a)

came((n( £ ) ()

n<x d<Q
d|(P(u,z),n—a)

The number of representations of d as [dy,ds] is less than 73(d). Thus we
obtain that the first sum on the right-hand side is

9w(d1)9w(d2) 81w(d)

log 2 243
<2 Y T 21 ) ——7s(d) < 22 <logu>

dy,ds|P(u,z) d<z
[d1,d2]<z

Therefore we have

122
R(Q,v,u,z) < o/ Mi(x) <logz> VR(Q,v,u, z).

log u

Now we only have to prove that

7 2
R1(Q,v,u,2) K %Ml(w) (bgz) +xlogz(logQ)(logu)2 <1og 2 ) Mo (z)
Yu logv log v 2122
u@ exp(log? u) ud ui 1
2 (o= e )
First, put
1
Al(l',d) = Z anbm — m Z anbm.
nméer(z,v,u), nméer(z,v,u),

nm=a (mod d) (nm,d)=1



456 K.-H. Indlekofer and N. M. Timofeev
Then, since (d, P(u)) = 1 we have

()= X

pld >u,
s|d

and therefore we obtain

Y 1A d) — Az, d)

d<Q,
d|P(u,z)
1 1 d
YD DB DRSSO SENTN] )
d<@ SO(d) >u 6”’”395 d nm<z
d|P(u,z) 5|d (nm,d)>1

Using Cauchy’s inequality again, we conclude that the righthand side is at

most

N

1 1 1
VM (z) (\/52 5(3) Z o(d) T Z d( Z 1) )
S>u d|P(u,z) d|P(u,z) n<tz,
(n,d)>1
1 log z 7(0d)
< le(x)(ulogu 3 J8od
6d|P(u,z),
i>u
x log 2z 4
—M
< Vu 1) (logu)
Thus
x log 2z 4
Rl(vivua Z) < RQ(Q7U1u7 Z) + ﬁMl(x) <logu> ’
where

Ry(Q,v,u,z) = Z |A1(z,d)].

d|P(u,z),
d<Q
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Using Eratosthenes’s sieve yields

R2(Q7 v, U, Z)
1
e S S
5<y,  d<Q, nm<z, 4 nm<a,
6|P(v,u) d|P(u,z) nm=a (mod df)) nm=a (mod §),

p(nm,d)=1

+ R4(Q7 v, U, Z) = R3(Q7 v, U, Z) + R4(Q,U, u, Z),

where

Ry(Q,v,u,2) < Z anbm|< Z Z 1) Eiz
d<Q

nm<z 5>y, ,
5| P(v,u) d|P(u,z),
ddln—a

By applying Cauchy’s inequality we obtain

2 3
R4<Q,v,u,z)<<ﬁM1<x>(Z< > X 1)) iﬁii

n<w 6>y, dd|n—a,
8|P(v,u) d|P(u,z)

T3(6 T3(d % log 2
oo 3 Y > b e
5>y, d|P(u,z)

| P(v,u)

Here we used again the fact that the number of representations of d as
[d1,ds] is less than 75(d). Taking y = exp(In®u) and o = 1/Inu we see
that (see the proof of Lemma 1)

73(6 1 P log u 21
Z 3((5)<<aexp<3 Z ) < (10 v) ”
5>y, y v<p<u p &

S| P(v,u)

and therefore it follows that

1 [logz\"
R4(Q,’U,U, Z) < le(m)ﬁ (10§U>
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Thus we have established the inequality

7
Ri(Q,v,u,2) < R3(Q,v,u,2) + xMy (2 )\1f Gﬁi)

Now we want to make the summation over n, m independent from each
other. For this aim we divide the intervals z; < n < %, zo <m < Z—ml into

intervals of type (N, (1 + ﬁ) N} and (M, <1 + %) M] The number
of such full intervals lying in the interval mn < z, N > z1, M > 2z

2
is bounded by O (u < Z?“ZEQ) > The last intervals for which n € I =

-2 2
<x (1 + ﬁ) , X (1 + ﬁ) ] contribute to R3(Q, v, u, z) not more than

5 |an||bmr( > 1) (1o (i)

mnel d|P(v,2),
d|ln—a,
d‘SQy
3 4
x 73(d) \ " log z x log z
M M
<<\‘yﬂ 1(:13)( Z d > log v <<\4/E (@) logv
d<(Qy)?,
d|P(v,z)

Here we used the condition (Qy)%u < z.
Now we have proved that

27 \° x log 2z ’
Ri1(Q,v,u, 2)K <\/ﬂlog 2122) rAr}ang)(Q M,N) + o M (x )(logv)

where

Rs(Q, M, N):= > > > anbm
d<

5|P(vu)d\P(§z) e(V.(1+ )V m n&gﬂ(ﬁ;ﬁlg]

1
BN nbm
o(d) > > @
ne(N(1432) 8] me (ar, (1445 ) m],
nm=a (mod §),
(nm,d)=1
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and the maximum has been taken over MN < x, M > z5, N > z;. Using
Dirichlet-characters we obtain

BNV T Y Y T

5<y, d<Q, X§ Xd7#X0
S|P (v,u) d|P(u,z)

Z anXds (n)

n~N

Z medé(m) )

mn~ M ’

where n ~ N and m ~ M mean that n € (N, (1—1—%)]\7} and m €

<M , <1 + ﬁ) M ], respectively. Let x; be the primitive character which
generates yg5. We have xq # xo and d|P(u,z), 6|P(v,u) and therefore
k > w and k|P(v, z). Thus

Ry(@ M N) < Y So(ld) 3 (p(lk)ZWN(XZ)\ Far(x),

d|P(v,z) u<k<Qy, X5
k|P(v,z)

where

Sv(xp) = D anxi(n),  Fu(i)= D bmxi(m

n~N, mn~M,
(n,d):l (m,d):l

We divide the interval u < k < Qy into intervals [Q1,2Q1]. Using Cauchy’s
intquality yields

Rs(Q, M, N) < log(Qy)imaxm : >

d<e Q1 Q1 vi30, ¢k )Z|SN(Xk)FM(Xk)|

<<log(Qy)7v d<w Q1 Qll( Z Z| Far(x)] )

k<20, ok

x( Z fk)ZwN(xz)F) .

k<2Q1 X7

Hence by GALLAGHER’s inequality (see [8])

k M+N 2 MAN
sz > o ximan| < (Q+7N) > anl?
kSQSO X; In=M+1 n—M41
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we have

R5(Q, M, N) <<log;(62y)1 os 0 0, %, VM (2)Q ((Ql * 7) (Ql 7%))

(%Jrflf ot ) Ve

and therefore

Rl (Q7 v, u, Z) <

5log z 2z \? Qu exp(log? u) ui ud

T log =z 7
—M
+ 5 ()

Thus we have proved (16), and this gives Lemma 4.
PROOF of Theorem 1. Let n = ning, where (n,a) = 1, p(ny) < 21,
(n1,a) =1 and (ng, P(21)) = 1. For W/x < t < \/x we have
Hp:p<z,p+aec W}
< H{ning < xzyny > 29,n2 > 21,0109 € W, (n1ng — a, P(t)) = 1}|
+ [{ning <z, < 29, (ning — a, P(t)) = 1}

+ {1 <z} +0).

Using Selberg’s sieve (see [9]) we obtain that the second term of the right-
hand side is

< {ning < z,nq < 22, (n2(ning — a), P(z1)) = 1}|

z logzo
< Z ©(n1) log 21 log 21 < log 21 log 21

nis <Z

By Lemma 1 we get

H{ni:np <z} <Vz+x Z <<xexp<
f<n1 1
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1
Let z; = exp (%), 2y = (logx)?, A > 0. Then

(13) Hp:p<az,p+acW}

< H{ning 1 ning < z,ny > 29,m9 > 21, ning € W, (ning —a, P(t)) = 1}|

+0 < xg - (log log 10x)3> .
log” x

By the definition of W we have

[{ning : ning < @,n1 > 29,m2 > 21, M09 € W, (ning — a, P(t)) = 1}
<> 1A
7

where

Ai(t) =

{ninz2 : nine<z,n1 € U;,n2 € Vi, n1>22,n2>21, (n1,a)=1, (n1na—a, P(t)) =1}|.

To estimate |A4;(t)| we apply Selberg’s linear sieve (see Theorem 8.3 [9]).
Let IT = {p : u < p < t}, let n be a multiplicative function such that
n(p) =1 for p > uw and n(p) = 0 for p < u and

X; =

{nin2 : nina<z,ni € U;,n2€V;,n1>22,n2>21, (n1,a) =1, (n1n2 —a, P(u)) = 1}.

For 2 < u < z we have

logp z
—1 —C; < —log — < Cs.
ogu—Ci1 < Y n(p) Sl <G

u<lp<z

Thus the conditions of Theorem 8.3 [9] is satisfied. Therefore

Ai(t)] < l (1 - ;) [Ai(w)] {F (Tf;:) o <(1();;O£g)?/14>}

(14) + Y (@3 D (=, )],

a<e®
d| P (u,t)
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where

1
ni(x,d) = |{ning : ning € A;(u),n1n2 = a (mod d)}| — g\Al(u)\
Now we apply Lemma 4. Let a(n,i) = 1if n = ny € U;, (n1,a) = 1,
ny > zg and b(n,i) = 1if n = ny € V;, ng > 2z; and a(n,i) = b(n,i) =0
otherwise. In the notation used in Lemma 4 we have

ST Inila, d) = RE 1L, u,t).
d<g¢?
d|P(u,t)
Let 52 =Q = 2%7 u = 10gA/43;7 t = £. By definition z; =
u® exp(log” u)

1
exp <%) and zo = logA x. Hence

R(&31,u,t) < x(Ing)l%—g% . (Mu(x) + \/Ml,i(x)\/Mg,i(az)> .

Applying Cauchy’s inequality leads to

%
STy T )

nina <y
n1€U;,n2€V;

(=) (==q)

n1€U; na€V;

It follows from the definition of W that U; NU; = () for i # j and
Vion...nV;, =0if i3 <...<isand s > s(z1). Thus

ZMu(x) < /s(z1) - logz.

In the same way we obtain

Z\/M1,i(m)~\/M2,i(W)<<\/m'<Z Z nilz Z 1’1,12>2

t oni€U; i onpeV;
ni <2z no <2z

[

< v/s(z1) logx.
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By (18) it follows that

S 11 (-}

u<p<t

{F@)+0(or™ )} 371wl + 0 (Valar) - Goga) )
We have (see [9], p. 226) F'(2) = e and

-
H(l—l) i <1+O
D log

p<z

(b;m>)'

Hence, by (17), we obtain

Hp:p<z,p+acW}

+0 (\/@xaog x)m—%) +0 (W) .

log” x

By the definition of W we know that if ny € U; and ny € V;, then n =
ning € W(z1) and further that U; N U; = () means, for i # j, that ningy #
niny if ny € U;, ny € Vi, n} € U;, ny € Vj. Therefore if A > 32127+ 16

we see that

(15) Hp:p<az,pt+acW}

1\ Yy 1
§4H<1—p> <1+O(log 1151’))-@

(logIn 1Ox)3> .
x

Hn:n<z,neW(z),(n—a,Plu)=1)}+0O (1052
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Now we show that for any |a| < v/u < u < log™ x, A > 32127 + 16, the
estimate

Hn <z:neW,(n—a,P(u)) =1}

< 1] <1_1).\{n;ngx,new<23> (n—a,P (V) = 1}]

Vulp<u p

2
+O< /\lx )+O<x.(loglog10$) >

u” logu log

holds, where log z3 = min (u’\ log? u?, 414%3%) with \ = leg

Let p(n1) < z3 and (ng2, P(z3)) = 1. Following the same argument as
before, we deduce

[{nin2 < x,nina € W, (nin2 — a, P(u)) = 1}t

<

x x
{n1n2 <z,ning € W, (ninz —a, P(u)) = 1,24 <n1 < 25, 2 <ng < —H
Z4

+[{ninz :n1 < z4,ning <} + [{ning 1 n1 > z5,n1n2 < x}

+ {nin2 :ny < z5,n2 < *}

The second term is (see Selberg’s sieve [9])

log 24
< < .
Z w(nq log z3 o log 23

ni <Z4

The third term can be estimated by (see Lemma 1)

1 log z
<Lz Z n<<atexp<—1g5>.log423,
1

og z
z5<n1<x &3

and the fourth term does not exceed xz/zs.

Let z4 = u* logzs = min <u>‘ log2 24, 4%11()2%) and logzs =

(log 23) - log(u* In® z3). Obviously

log

1
1 ————— - (M +5)loglog 10z < — log z.
0875 < 4 Aloglog 10x +(A4+5)loglog 10z < 10 08T
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Hence z5 < /10 and

(16) {ning : ning < x, (ning —a, P(u)) = 1,n1ne € W}
x (loglog 10x)? )
< Ai(u, 23,24, 25,1) + O +0 |z 22—
< Yt 1) (o) w0 (o P22
where

Ai(u, 23, 24, 25,d)
= {nan ining <x,ny € Uj,ng €V, (nlaa) =1, (n1n2 - aaP(U))a

T T
24 <ny < 25, — <ng < —,ning =a (mod d)}
Z5 zZ4

The condition (n1n2 —a, P(u)) = 1 can be expressed by a sum over the
Mobius function. This leads to

ZAz‘(U, 23,24, 25,1) < H (1 - 1> ZAi(\/ﬂv 23,24, 25, 1)
i pJ =

Vulp<u

1
+Z Z ‘Ai(U,Z3,Z47257d)—dAi(u723,Z4,Z571)‘

i d<Q
d|P(\/u,u)
X
1 —.
(17) +s(z) D 3
d>Q
d|P(u)

Using Lemma 1 we see that the third sum has an upper bound

log Q

> . log4 u <K
log u

<<8(23)'$6Xp <— m

if logQ = (logu)log(u**(logu)”). The second sum will be estimated by

Lemma 4. Put z; := 24, u := Vu, 2 = u, 25 := % > 2% so that
5
Q@ = exp ((logu) log(u?* log” u)) < 2. Let a(n,i) = 1if n = ny € U,

zg < ny < z5, (n1,a) = 1 and a(n,i) = 0 otherwise, and further b(n,i) =1
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ifn=mny eV, L <ny < z% and b(n,i) = 0 otherwise. Using Lemma 4
z

5
we conclude that the second sum is bounded by
1 2
< 1{;& (log “)126 21: M, i(z) + z(log u)mg\/logTu 0%5 Zi:\ | My ;(x).

We have log z5 = log z3 - log(u* log® z3) < v - log® u with A < % From
this we conclude that the second sum on the right-hand side of (17) is

< % (Z Myi()+ ) \/Ml,i(:c)\/]\/[gi(x))

b @ (£250) (5(5)

i
“v/8(z3) - Inz <<— w3 n3 U K
3) > V/u u1/4810gu

if A < 8 Here we used s(z3) < Inzs. By (17) and (16) we have

(18) Hn:n<z,(n—a,Pu)=1nec W}
< H (1—;)‘{n:ngx,(n—a,P(\/ﬁ))zl,nEW(z;),)}‘

Vup<u
log log 10z)?
+0 )\az +m'(ogog z) .
u”logu log =

k—1

Put uq :yzk, us =y* ..., upr =y, L=1logxz, | =loglog 10z, M(z) =

A
<1 + O(log™ /15 :c)), k = [log2 logﬁ)(;g;:)} + 1, and let |a|] < y < LA,

A=32-127+16, A = j5. Using (15) and (18) we obtain
Hp:p<z,p+acW}

—1 T 3
<1 ] (1—1) ML()|{n;ngx,neW(to),(n—a,p(ul)):1}|+o(z.22)

p<ui p
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<i 1 (1-3) 2 Mnsn <o € Wito.t), (0 - o, Pluz)) = 1}

tol-= . 121 N ?
o loouy L
by 72 g U1 12

U1
A M
§4H (1—7) {n:n<z,neW(o,... ,tk),(n—a,P(y)):1}|ﬁ
p L
Py
x —a2i 12 i 13
+0 ZZy +m~?2210gy+m-ﬁ ,

i>0 i<k

_ __logx = min (u) log? ut, —legz
Where to = exp (yoglogtor ) losti = min (ulog? uf, itz ).

i=1,... .,k \= leg This ends the proof of Theorem 1.
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