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On integral representations
for powers of the Riemann zeta-function

By ALEKSANDAR IVIĆ (Beograd)

Dedicated to Professor Imre Kátai
on the occasion of his 60th birthday

Abstract. A new integral representation for ζr(s) is obtained, where r ≥ 3 is a
fixed natural number. The approach is due to A. Guthmann, who obtained the analogue
of the classical Riemann-Siegel formula (for ζ(s)) for several Dirichlet series, including

ζ2(s). The fundamental role is played by the Mellin inverse of π−rs/2Γr(s/2)ζr(s).
The properties of this function are studied in detail and in particular its asymptotic
expansion is given.

1. Introduction

Integral representations of Dirichlet series are a major tool in Analytic
Number Theory. Of special prominence is the classical Riemann-Siegel
formula (see C.L. Siegel [12])

(1.1)

π−s/2Γ
(s

2

)
ζ(s) = π−s/2Γ

(s

2

) ∫

0↙1

eiπx2
x−s

eiπx − e−iπx
dx

+ π(s−1)/2Γ
(

1− s

2

) ∫

0↘1

e−iπx2
xs−1

eiπx − e−iπx
dx.
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This is valid for s not equal to the poles of Γ(s), and 0 ↙ 1 (resp. 0 ↘ 1)
denotes a straight line which starts from infinity in the upper complex half-
plane, has slope equal to 1 (resp. to −1), and cuts the real axis between 0
and 1. The integrals in (1.1) are of a fairly simple nature, and they can be
evaluated asymptotically to provide precise formulas for ζ(s) (see [6], [12],
[13] and (7.9)). Although (1.1) has been known for a long time, its direct
generalization to other Dirichlet series, which possess functional equations
with gamma-factors similar to the functional equation of ζ(s), remained
an open problem. It is only in the early 1980’s that Y. Motohashi [8]–
[10] obtained the asymptotic expansion of ζ2(s). His method, however,
uses some intrinsic properties of the function d(n) (the number of divisors
of n), and cannot be readily generalized. Also due to some unfortunate
circumstances (see the postscript in [10]) a detailed proof of his results was
not appropriately published in due time.

It is only recently that A. Guthmann devised a general approach
for obtaining integral representations for Dirichlet series, which may be
regarded as a generalization of the Riemann-Siegel integral formula (1.1).
In his Habilitation Thesis [2] and in [4] he obtained an analogue of (1.1)
for zeta-functions of holomorphic cusp forms, and in [3] for ζ(s)ζ(s + 1).
In [5] he further developed his ideas to tackle ζ2(s). It is the purpose of
this paper to obtain an analogous integral representation for ζr(s), where
r ≥ 3 is an arbitrary, but fixed natural number. This in turn depends
on properties of the inverse Mellin transform of π−rs/2Γr(s/2)ζr(s). This
function, which we shall denote by ψr(x), appears to be of intrinsic in-
terest and it will be extensively studied in the sequel. Generalizations of
our integral representations for ζr(s) to other Dirichlet series possessing
functional equations with multiple gamma-factors are possible.

Acknowledgement. I wish to thank Dr A. Guthmann for valuable
remarks.

2. The outline of the method

For r ≥ 1 a fixed integer, c > 0 and <e x > 0 let

(2.1) fr(x) =
1

2πi

∫

(c)

Γr
(s

2

)(x

2

)−s

ds,
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where the integral is absolutely convergent and, as usual,

∫

(c)

F (s)ds = lim
T→∞

∫ c+iT

c−iT

F (s)ds.

Then it follows by the Mellin inversion formula (see the Appendix of [6])
that

(2.2) Γr
(s

2

)
2s =

∫ ∞

0

fr(x)xs−1dx (<e s > 0).

If dr(n) is the number of ways in which n (∈ N) may be written as a
product of r fixed factors (d1(n) = 1, d2(n) = d(n)), then for <e s > 1

ζr(s) =
∞∑

n=1

dr(n)n−s.

Consequently by absolute convergence we have, for <e x > 0, c > 1,

(2.3) ψr(x) :=
∞∑

n=1

dr(n)fr

(
2π

r
2 xn

)
=

1
2πi

∫

(c)

π−
rs
2 ζr(s)Γr

(s

2

)
x−sds,

hence by the Mellin inversion formula we have

(2.4) π−
rs
2 ζr(s)Γr

(s

2

)
=

∫ ∞

0

ψr(x)xs−1dx (<e s > 1).

The shape of the left-hand side of (2.4) is such that it remains unchanged
if s is replaced by 1 − s. This follows from the symmetric form of the
functional equation for ζ(s) (see [6] or [13]), namely

(2.5) π−
s
2 Γ

(s

2

)
ζ(s) = π−

(1−s)
2 Γ

(
1− s

2

)
ζ(1− s).

In fact it is precisely the symmetry furnished by (2.5) which is crucial in
deriving integral representations for ζr(s). The function ψr(x) is holomor-
phic for <ex > 0, and it is of exponential decay as x →∞. To see this let
X = πrx2, c > 1. Then from (2.3) we obtain

(2.6) ψr(x) =
1
πi

∫

(c)

ζr(2w)Γr(w)X−wdw.
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Since e−x, Γ(s) is a pair of Mellin transforms, the Parseval identity for
Mellin transforms (see (A.5) of [6]) gives

(2.7)
∫ ∞

0

|Γ(σ + it)|2dt = π2−2σΓ(2σ) (σ > 0).

But for <ew ≥ 2 we have |ζ(w)| ≤ π2

6 , and for x > 0 (see e.g. N.N. Lebe-

dev [7])

(2.8) |Γ(x + iy)| ≤ Γ(x) =
√

2πxx− 1
2 e−x(1 + r(x)), |r(x)| ≤ e

1
12x − 1.

Assume now that r ≥ 2. Since ex ≤ 1 + 2x for 0 ≤ x ≤ 1 we have
|1 + r(x)| ≤ 7/6 for x ≥ 1, hence from (2.6)–(2.8) it follows that, for
x, c ≥ 1 and r ≥ 2,

|ψr(x)| ≤ 2
π

(
π2

6

)r

X−c

∫ ∞

0

|Γ(c + it)|2Γr−2(c)dt

= 2
(

π2

6

)r

X−c2−2cΓ(2c)Γr−2(c)

≤
√

2
(

π2

6

)r(7
6

√
2π

)r−1

exp
(
−c log X+rc log c−rc+

1− r

2
log c

)

=
6

7
√

π

(
7π5/221/2

36

)r

X
1−r
2r exp

(
−rX

1
r

)

with the choice c = X1/r (≥ 1). Therefore we obtain

(2.9) |ψr(x)| ≤ 6
7

(
7π221/2

36

)r

x
1−r

r exp
(
−rπx

2
r

)
(x ≥ 1, r ≥ 2),

and from (3.2) it is seen that (2.9) also holds when r = 1. For an asymp-
totic expansion of ψr(x) when r is fixed, see (5.11). Actually no absolute
value signs are needed in (2.9), since ψr(x) > 0 (and we have ψ′r(x) < 0)
for x > 0. This follows from the series representation (2.3) and the prop-
erties of fr(x) (see (3.11) for the proof that fr(x) > 0, f ′r(x) < 0 when
x > 0).

It will turn out that ψr(x) also satisfies a simple functional equation
which relates its values at the points x and 1/x. This result will be given
as Theorem 4 in Section 6.
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Let now ξ = Reiδ, where R > 0, 0 ≤ δ < π
2 , and eventually we shall

let δ → π
2 . Then in (2.4) we may turn the line of integration by the angle

δ around the origin to obtain

(2.10)

∫ ∞

0

ψr(x)xs−1dx =
∫ eiδ∞

0

=
∫ ξ

0

+
∫ ξ∞

ξ

=
∫ ξ−1∞

ξ−1
ψr

(
1
x

)
x−s−1dx +

∫ ξ∞

ξ

ψr(x)xs−1dx.

Suppose temporarily that <e s > 1. In the integral with ψr(1/x) we use
Theorem 4 (the functional equation for ψr) to obtain

(2.11)
∫ ξ−1∞

ξ−1
ψr

(
1
x

)
x−s−1dx =

∫ ξ−1∞

ξ−1
ψr(x)x−sdx + Hr(s, ξ),

where the function Hr(s, ξ) is defined by (2.17). It can be easily evaluated
in terms of elementary functions, since

(2.12)
∫

xw logk xdx =
dk

dwk

(∫
xwdx

)
=

dk

dwk

(
xw+1

w + 1

)

for k ∈ N and w 6= −1. Hence applying (2.12) we obtain an analytic
continuation of Hr(s, ξ) which is valid for all complex s except s = 0, 1.
For r ≥ 3 we have, turning the line of integration so that it is again parallel
to the real axis,

(2.13)
lim

δ→π
2

∫ ξ∞

ξ

ψr(x)xs−1dx = lim
δ→π

2

∫ ξ+∞

ξ

ψr(x)xs−1dx

=
∫ iR+∞

iR

ψr(x)xs−1dx.

Therefore from (2.4), (2.10) and (2.11) we obtain

(2.14)

π−
rs
2 Γr

(s

2

)
ζr(s) =

∫ iR+∞

iR

ψr(x)xs−1dx

+
∫ 1

iR +∞

1
iR

ψr(x)x−sdx + Hr(s, ξ).
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Hence by analytic continuation we obtain from (2.14) the desired integral
representation for ζr(s). It generalizes the case r = 2 of [5], where R = p/q

was a rational number. The remaining details of the proof will be given in
Section 7, and the result is

Theorem 1. For R > 0, s 6= 0, 1, and r ≥ 3 a fixed integer we have

(2.15) ζr(s) = Tr(s,R) + Xr(s)Tr(1− s,R−1) + π
rs
2 Γ−r

(s

2

)
Hr(s, iR),

where

Xr(s) = πrs− r
2
Γr

(
1−s
2

)

Γr
(

s
2

) ,(2.16)

Tr(s,R) = π
rs
2 Γ−r

(s

2

) ∫ iR+∞

iR

ψr(x)xs−1dx,

Hr(s, ξ) :=
∫ ξ−1∞

ξ−1
(xpr−1(− log x)− pr−1(log x)) x−s−1dx,(2.17)

and the polynomial pr−1(u) of degree r - 1 in u is defined by

pr−1(log x) = Res
s=1

π−
rs
2 ζr(s)Γr

(s

2

)
x1−s.

3. Some properties of fr(x)

It is clear that the study of the function fr(x), defined by (2.1), is
essential for the understanding of the properties of the crucial function
ψr(x), defined by (2.3). The function fr(x) is in fact equal to Er,0(x/2) in
the notation of A. Guthmann [1], where for nonnegative integers λ and
ν such that λ + ν ≥ 1, and x, c > 0 he defined and studied the function

Eλ,ν(x) :=
1

2πi

∫

(c)

Γλ
(s

2

)
Γν(s)x−sds,

with the aim of deriving approximate functional equations for a class of
Dirichlet series.
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We begin the discussion concerning fr(x) with the simplest case r = 1,
when we have

(3.1) f1(x) = 2 · 1
2πi

∫

(c)

Γ(w)
(

x2

4

)−w

dw = 2e−
x2
4 .

Consequently (2.4) becomes

(3.2)

π−
s
2 Γ

(s

2

)
ζ(s) =

∫ ∞

0

ψ1(x)xs−1dx,

ψ1(x) = 2
∞∑

n=1

e−πx2n2
(<e s > 1),

and (3.2) is in fact due already to B. Riemann [11]. Since ψ1 is essentially
a theta-function, the functional equation for the theta-function, namely

(3.3) θ(z) :=
∞∑

n=−∞
e−πn2z = z−

1
2

∞∑
n=−∞

e−πn2z−1
(<e z > 0),

may be applied to yield a classical proof of the functional equation (2.5).
For r = 2 we have

(3.4) f2(x) =
1

2πi

∫

(c)

Γ2
(s

2
)(x

2

)−s

ds = 4K0(x) (c > 0, <e x > 0),

where in standard notation

(3.5) Ks(z) =
1
2

∫ ∞

0

ts−1 exp
(
−z

2

(
t +

1
t

))
dt (<e z > 0)

is the modified Bessel function of the third kind (also called Macdonald’s
function). One can establish the second equality in (3.4) by noting that,
for <e s > 0,

∫ ∞

0

K0(x)xs−1dx =
1
2

∫ ∞

0

xs−1

∫ ∞

0

t−1 exp
(
−x

2

(
t +

1
t

))
dtdx

= Γ(s)2s−1

∫ ∞

0

t−1
(
t +

1
t

)−s

dt = Γ(s)2s−1

∫ ∞

0

ts−1

(t2 + 1)s
dt,
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where the change of the order of integration is justified by absolute con-
vergence. Change of variable x = (t2 + 1)−1 in the last integral gives

(3.6)

∫ ∞

0

K0(x)xs−1dx = Γ(s)2s−2

∫ 1

0

x
s
2−1(1− x)

s
2−1dx

= Γ(s)2s−2B
(s

2
,
s

2

)
= 2s−2Γ2

(s

2

)
,

since the beta-function B(a, b) satisfies

B(a, b) =
∫ 1

0

xa−1(1− x)b−1dx =
Γ(a)Γ(b)
Γ(a + b)

(<e a, <e b > 0).

From (3.6) one obtains (3.4) by Mellin inversion.

Also from the representation K0(z) =
∫∞
1

e−zt(t2−1)−1/2dt (<e z>0)
(see [7], p. 119), we obtain by change of variable t = 1 + x/z that

(3.7)
K0(z) = (2z)−1/2e−z

{∫ ∞

0

e−xx−1/2dx

+
∫ ∞

0

e−xx−1/2

((
1 +

x

2z

)−1/2

− 1
)

dx

}
.

By analytic continuation (3.7) extends to the entire complex plane cut
from 0 to −∞. After some elementary estimations it follows from (3.7)
that, in the complex z-plane cut from 0 to −∞, we have

(3.8) K0(z) =
( π

2z

) 1
2

e−z(1 + H(z)),

where H(z) is holomorphic and the principal branch of the square root is to
be taken. Moreover, for <e z > 0 one has |H(z)| ≤ z, while if additionally
|z| ≥ 1 is assumed, then |H(z)| ≤ 1/|z|. These properties of K0(z) were
used in an essential way by A. Guthmann [5] in his work on the integral
representations for ζ2(s).

When r ≥ 3 the situation becomes much more complicated, since it
does not seem possible to find a simple expression for fr(x) in closed form,
from which one can readily deduce its analytic properties and asymptotic
behaviour as x →∞. However we can obtain a series expansion for fr(x)
if in the defining relation (2.1) we take c = −N−1/2, where N is a natural
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number tending to infinity. In doing this we pass the poles of the integrand

at s = −2n (n = 0, 1, 2, . . . ), which are of order r. We have

Res
s=−2n

Γr
(s

2

)(x

2

)−s

= x2n(a0,r(n) logr−1 x

+ a1,r(n) logr−2 x + · · ·+ ar−1,r(n))

with suitable constants aj,r(n) (j = 0, 1, 2, . . . , r − 1) which may be ex-

plicitly evaluated. We recall Stirling’s formula (asymptotic expansion) for

Γ(z) in the form (see N.N. Lebedev [7])

(3.9)
Γ(z) ∼ e(z− 1

2 ) log z−z+ 1
2 log(2π)

(
1 +

1
12z

+
1

288z2
+ · · ·

)

(z →∞, | arg z| < π)

and use it to obtain that the integral along the line <ew = −N − 1
2 tends

to zero as N → ∞. The meaning of the symbol ∼ in the asymptotic

expansion is, as usual, that if we stop at the n-th term in the series, then

the error that is made is On(|z|−n−1). Hence we obtain by the residue

theorem, for <e x > 0,

(3.10)
fr(x) =

∞∑
n=0

x2n(a0,r(n) logr−1 x

+ a1,r(n) logr−2 x + · · ·+ ar−1,r(n)),

which shows that limx→0+ fr(x) = +∞. More precisely, since a0,r(0) =

(−1)r−12r/(r − 1)! we have

lim
T→∞

fr

(
1
T

)

logr−1 T
=

2r

(r − 1)!
(r = 1, 2, . . . ).

For x > 0 the function fr(x) is positive, monotonically decreasing

and (3.10) gives limx→∞ fr(x) = 0. Namely with the change of variable
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u = xt−1/2 we have, for x > 0,

2
∫ ∞

0

e−
x2

u2 fr(u)
du

u
= 2 · 1

2πi

∫

(c)

Γr
(s

2

)
2s

(∫ ∞

0

e−
x2

u2 u−1−sdu

)
ds

=
1

2πi

∫

(c)

Γr
(s

2

)
2sx−s

∫ ∞

0

e−tt
s
2−1dtds

=
1

2πi

∫

(c)

Γr+1
(s

2

)(x

2

)−s

ds = fr+1(x),

where the interchange of integration is permitted by absolute convergence.
Hence for r ≥ 1 we have

(3.11)
fr+1(x) = 2

∫ ∞

0

e−
x2

u2 fr(u)
du

u
,

f ′r+1(x) = −4x

∫ ∞

0

e−
x2

u2 fr(u)
du

u3
.

In view of (3.1) we easily conclude from (3.11) by induction that fr(x) > 0,
f ′r(x) < 0 for x > 0 and any r ≥ 1.

Since the residue of Γ(s) at s = −n (n = 0, 1, 2, . . . ) is (−1)n/n!, we
easily see that for r = 1 formula (3.10) reduces to

f1(x) = 2
∞∑

n=0

(−1)nx2n

4nn!
= 2e−

x2
4 .

To see explicitly the shape of (3.10) for r = 2 write

(3.12) f2(x) =
2

2πi

∫

(c)

Γ2(w)
(x

2

)−2w

dw,

so that now the integrand has poles of second order at n = 0,−1,−2, . . . .
Near w = −n we have the expansions

z−2w = z2n(1− 2(w + n) log z + (w + n)2 log2 z + · · · ),

Γ(w) =
(−1)n

n!(w + n)
+ c(n) + c1(n)(w + n) + · · · ,

Γ2(w) =
1

(n!)2(w + n)2
+

2(−1)nc(n)
n!(w + n)

+ · · · .
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Note that the constant c(n) satisfies, by l’Hospital’s rule,

c(n) = lim
w→−n

(
Γ(w)− (−1)n

n!(w + n)

)
= lim

w→−n

(w + n)Γ(w)− (−1)n

n!

w + n

= lim
w→−n

(Γ(w)+Γ′(w)(w+n))= lim
w→−n

(w+n)Γ(w)
(

1
w+n

+
Γ′(w)
Γ(w)

)

=
(−1)n

n!
lim

w→−n

(
1

w + n
+ ψ(w)

)
,

where as usual

ψ(w) := (log Γ(w))′ =
Γ′(w)
Γ(w)

.

But from the reflection property Γ(z)Γ(1− z) = π
sin(πz) it follows by loga-

rithmic differentiation that

ψ(z) = ψ(1− z)− π cot(πz),

which gives

c(n) =
(−1)n

n!
ψ(n + 1),

with (see N.N. Lebedev [7])

ψ(n+1) = 1+
1
2

+· · ·+ 1
n
−γ, γ=−Γ′(1)=0.57721 . . . (Euler’s constant).

Therefore we have

Res
w=−n

Γ2(w)z−2w = − 2z2n

(n!)2
(log z − ψ(n + 1)) (n = 0, 1, 2, . . . ),

and from (3.12) we obtain by the residue theorem

(3.13) f2(x) = −4
∞∑

n=0

(x
2 )2n

(n!)2
(log

x

2
− ψ(n + 1)).

On comparing (3.4) and (3.13) we obtain

K0(x) = −
∞∑

n=0

(x
2 )2n

(n!)2
(log

x

2
− ψ(n + 1)),
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which is the well-known series expansion (see N.N. Lebedev [7]) of K0(x).
The analysis that led to (3.10) can be carried further, as was done for

the functions Eλ,ν(x) by Guthmann [1]. In particular, his Lemma 3 gives
that there exist entire functions Hr,j(x) such that, for x in the complex
plane cut form −∞ to 0,

fr(x) =
r−1∑

j=0

Hr,j(x) logj x,

and the coefficients in the power series expansion for Hr,j(x) can be eval-
uated explicitly.

4. The differential equation satisfied by fr(x)

The function fr(x), defined by (2.1), satisfies the differential equations

y′

x
= −1

2
y (r = 1), y′′ +

y′

x
= y (r = 2),

xy′′′ + 3y′′ +
y′

x
= −2y (r = 3),

x2y(4) + 6xy′′′ + 7y′′ +
y′

x
= 4y (r = 4),

x3y(5) + 10x2y(4) + 25xy′′′ + 15y′′ +
y′

x
= −8y (r = 5),

etc. Note that the differential equation for r = 1 trivially follows from
f1(x) = 2e−x2/4, while the one for r = 2 is a consequence of the fact that
the Bessel functions Iν(z) and Kν(z) are (linearly independent) solutions
of the differential equation

y′′ +
y′

x
−

(
1 +

ν2

x2

)
y = 0.

In general, fr(x) satisfies a relatively simple differential equation of order r,
which is linear and homogeneous, and whose special cases are the examples
given above. This fact may provide useful information on the behaviour of
fr(x). Recall that the Stirling numbers S(n, m) of the second kind denote
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the number of ways of partitioning a set of n (≥ m) ≥ 1 elements into m

non-empty subsets. They satisfy the relation

(4.1) xn =
n∑

m=1

S(n,m)x(x− 1) . . . (x−m + 1).

Then we have

Theorem 2. For r ≥ 1 the function y = fr(x) satisfies the differential

equation

(4.2)
r∑

j=1

S(r, j)xj−2y(j) = (−1)r2r−2y.

Proof. Setting x = −s in (4.1) we obtain

(4.3) (−1)nsn =
n∑

m=1

(−1)mS(n,m)s(s + 1) . . . (s + m− 1).

From (2.1) we obtain

y(j) = f (j)
r (x) =

(−1)j

2πi

∫

(c)

Γr
(s

2

)
2ss(s + 1) . . . (s + j − 1)x−s−jds

(c > 0, j = 1, 2, . . . ).

In view of zΓ(z) = Γ(z + 1) we obtain from (4.3) (with n = r), for c > 2,

r∑

j=1

S(r, j)xj−2y(j) =
1

2πi

∫

(c)

Γr
(s

2

)
2sx−s−2

×
r∑

j=1

(−1)jS(r, j)s(s + 1) . . . (s + j − 1)ds

=
(−1)r

2πi

∫

(c)

Γr
(s

2

)
2ssrx−s−2ds

=
(−1)r

2πi
2r−2 ·

∫

(c)

Γr

(
s + 2

2

)
2s+2x−(s+2)ds

= (−1)r2r−2 · 1
2πi

∫

(c−2)

Γr
(w

2

)(x

2

)−w

dw = (−1)r2r−2y.
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Since S(r, 1) = S(r, r) = 1, S(r, r−1) = r
2 (r−1) we easily compute S(r, j)

for 1 ≤ r, j ≤ 5 to obtain from (4.2) the examples stated at the beginning
of this section. Further examples can be obtained by using a table of
Stirling numbers of the second kind.

One can obtain another variant of the differential equation satisfied
by fr(x). Namely, let

(4.4) ϕr(x) := fr(2
√

x),

so that

(4.5) fr(x) = ϕr

(
x2

4

)
.

Then we obtain

(4.6) ϕr(x) =
2

2πi

∫

(c)

Γr(w)x−wdw (c > 0, <e , x > 0).

If ∆ is the differential operator defined by

∆1f(x) = ∆f(x) := xf ′(x), ∆r = ∆(∆r−1) (r ≥ 2),

then from (4.6) and the functional equation zΓ(z) = Γ(z + 1) we obtain
the differential equation satisfied by ϕr(x) in the form

(4.7) ∆r ϕr(x) = (−1)rxϕr(x).

Similarly to (4.2), we can ascertain that (4.7) is a also linear, homogeneous
differential equation of order r. The equation (4.7) is in fact equivalent to
equation (42) of A. Guthmann [1], but the advantage of (4.2) over (4.7)
is that (4.2) gives quite explicitly the shape of the differential equation in
question, whereas (4.7) does not.

5. The asymptotic expansion of fr(x)

It seems of interest to find the asymptotic expansion of fr(x) and
ψr(x) as x → ∞ in terms of elementary functions. Consider first fr(x).



On integral representations for powers of the Riemann zeta-function 483

For r = 1 there is nothing to be done since f1(x) = 2e−x2/4, and for r = 2
we have

(5.1)
f2(x) ∼

(
8π

x

)1/2

e−x

(
1 +

∞∑
n=1

(−1)n[(2n− 1)!!]2

23nn!
x−n

)

(<e x > 0).

The asymptotic expansion (5.1) follows from (3.4) and the corresponding
asymptotic expansion (see (5.11.9) of N.N. Lebedev [7])

Kν(z) ∼
( π

2z

)1/2

e−z
∞∑

n=0

(ν, n)(2z)−n (| arg z| ≤ π − δ),

where 0 < δ < π
2 , (ν, 0) = 1 and for k ≥ 1

(ν, k) =
(4ν2 − 12)(4ν2 − 32) . . . (4ν2 − (2k − 1)2)

22kk!
.

For the general case of fr(x) we could appeal to Lemma 6 of A. Guth-

mann [1], who gave the asymptotic expansion of the function

Eλ,ν(x) =
1

2πi

∫

(c)

Γλ
(s

2

)
Γν(s)x−sds (c > 0),

and use the fact that fr(x) = Er,0(x/2). Guthmann’s proof of the asymp-
totic expansion of Eλ,ν(x) is long and complicated. It uses, among other
things, the convolution property that

∫ ∞

0

f(u)g(
x

u
)
du

u
=

1
2πi

∫

(c)

F (s)G(s)x−sds,

if f, F and g, G are two pairs of Mellin transforms, and certain conditions
are satisfied. We shall obtain here the asymptotic expansion of fr(x) by
another method, which is simpler and can be readily generalized. Namely
if a1, a2, . . . , ar > 0, let us define

(5.2)

H(x) = H(x; a1, . . . , ar)

=
1

2πi

∫

(c)

Γ(a1w)Γ(a2w) · · ·Γ(arw)x−wdw (c > 0).
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Then for a1 = . . . = ar = 1/2 we obtain H(x) = fr(2x), and for a1 = . . . =
aλ = 1/2, aλ+1 = . . . = ar = 1 (r = λ + ν) we obtain H(x) = Eλ,ν(x). We
have

Theorem 3. Let x →∞ and

(5.3)

B =
(2π)

r−1
2√

a1 · · · ar(a1 + · · ·+ ar)

(
aa1
1 · · · aar

r

) r−1
2(a1+···+ar)

,

D =
a1 + · · ·+ ar(

aa1
1 · · · aar

r

) 1
a1+···+ar

, X = Dx
1

a1+···+ar .

Then there exist constants e1, e2, . . . , which can be explicitly evaluated

and which depend on a1, . . . , ar, such that

(5.4) H(x) ∼ Bx
1−r

2(a1+···+ar) e−X
(
1 +

e1

X
+

e2

X2
+ · · ·

)
.

Proof. The basic tool in the proof is Stirling’s formula (3.9), which
for a > 0 gives, with | arg z| < π and some constants c1, c2, . . . depending
on a and b,

(5.5) Γ(az + b) ∼
√

2πe−az(az)az+b−1/2
(
1 +

c1

z
+

c2

z2
+ · · ·

)
.

Using (5.5) we obtain, for some constants d1, d2, . . . which depend on
a1, . . . , ar,

(5.6)

Γ(a1w) · · ·Γ(arw)

Γ
(
(a1 + · · ·+ ar)w + 1−r

2

) ∼
(

1 +
d1

w
+

d2

w2
+ · · ·

)

× (2π)
r−1
2 exp

{
w

(
a1 log a1 + . . . + ar log ar

− (a1 + . . . + ar) log(a1 + . . . + ar)
)

− 1
2

log a1 − . . .− 1
2

log ar +
r

2
log(a1 + . . . + ar)

}
.

The transformation formula (5.6) is the crucial step in deriving (5.4). Now
we take c(a1 + · · · ar) > N + 1 in (5.2), where N ≥ 1 is any fixed integer,
insert (5.6) and make the change of variable (a1 + · · · ar)w + 1−r

2 = s. If
B and D are given by (5.3), we obtain, for a suitable constant C > N +1,
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suitable constants ej (which depend on a1, a2, . . . and may be evaluated

explicitly) and a function hN (s) which is regular and ¿ 1 for <e s ≥ N +1,

(5.7)

H(x) =
B

2πi

∫

(c)

Γ(s)D−sx
1−r−2s

2(a1+···+ar)

×
(
1 +

e1

s− 1
+ . . . +

eN

(s− 1)(s− 2) · · · (s−N)

+
hN (s)

(s− 1)(s− 2) · · · (s−N − 1)

)
ds.

If we use

zΓ(z) = Γ(z + 1), e−x =
1

2πi

∫

(c)

Γ(s)x−sds (c > 0,<e x > 0),

then we obtain from (5.7)

(5.8)

H(x) = Bx
1−r

2(a1+···+ar)

{
e−X

(
1 +

e1

X
+ · · ·+ eN

XN

)

+ ON

(∣∣∣
∫

(C)

Γ(s−N − 1)hN (s)X−sds
∣∣∣
)}

(C > N + 1),

where X = Dx1/(a1+···+ar). Hence (5.4) will follow if we can show that,

for C > N + 1 and Y →∞,

(5.9) IC(Y ) :=
1

2πi

∫

(C)

Γ(s−N − 1)hN (s)Y −sds ¿ Y −N−1e−Y .

To obtain (5.9) let s = N +1+w and use the duplication formula for Γ(s)

in the form

Γ(s) = Γ
(s

2

)
Γ

(
s

2
+

1
2

)
2s−1π−1/2.

Then by the Cauchy–Schwarz inequality for integrals and (2.7)–(2.8) we
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obtain (changing C −N − 1 to C)

IC(Y ) =
Y −N−1

2πi

∫

(C)

Γ(w)hN (N + 1 + w)Y −wdw

¿ Y −N−1−C

∫ ∞

0

|Γ(C + iv)|dv

¿ 2CY −N−1−C

∫ ∞

0

∣∣∣∣Γ
(

C

2
+

iv

2

)
Γ

(
C + 1

2
+

iv

2

)∣∣∣∣ dv

¿ 2CY −N−1−C
(∫ ∞

0

∣∣∣∣Γ
(

C

2
+

iv

2

)∣∣∣∣
2

dv

×
∫ ∞

0

∣∣∣∣Γ
(

C + 1
2

+
iy

2

)∣∣∣∣
2

dy
)1/2

¿
(
Γ(C)Γ(C + 1)

)1/2

Y −N−1−C = C1/2Γ(C)Y −N−1−C

¿ eC log C−C−C log Y Y −N−1 ¿ e−Y Y −N−1

with the choice C = Y . Thus (5.4) follows from (5.8) and (5.9), since N

may be arbitrary.
From (5.3) we obtain the asymptotic expansion of fr(x) = H(x/2) for

a1 = · · · = ar = 1. In this case we can calculate explicitly without much
trouble the first few coefficients ej . The result is

Corollary 1. If r ≥ 1, <e x > 0 and x →∞, then we have

(5.10)
fr(x) ∼ 2r−

1
2 (2π)

r−1
2 2

r−1
r x

1−r
r e−r( x

2 )
2
r

×
(
c0,r + c1,rx

− 2
r + c2,rx

− 4
r + . . .

)
,

where c0,r = 1, c1,r = 22/r(1 − r2)/(24r), and the other cj,r’s are also

effectively computable. Note that the range of validity of the asymptotic

expansion in Theorem 3 can be extended to | arg x| < π
2 (a1 + . . .+ar) and

in Corollary 1 to | arg x| < πr
4 .

Setting r = 2 in (5.10) we obtain

f2(x) =
(

8π

x

)1/2

e−x

(
1− 1

8x
+ O

(
1
|x|2

))
,
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which is in accordance with (5.1). Also we may note that by the method of
proof of (5.10) we may similarly obtain an asymptotic expansion of ψr(x),
starting from (2.3) and noting that

ζr(s) = 1 + Or

(
1
2σ

)
(σ = <e s →∞).

We shall obtain

Corollary 2. For r ≥ 1, <ex > 0 and x →∞

(5.11) ψr(x) ∼ x
1−r

r e−πrx
2
r

(
b0,r + b1,rx

− 2
r + b2,rx

− 4
r + . . .

)

with suitable coefficients bj,r (j = 0, 1, 2, . . . ), which may be explicitly
evaluated.

If in (2.1) we take 0 < c < 1, replace s by w then by absolute conver-
gence for <e s > 0 we may change the order of integration to obtain

(5.12)

∫ ∞

0

fr(x)e−sxdx =
1

2πi

∫

(c)

Γr
(w

2

)
2w

∫ ∞

0

x−we−sxdxdw

=
1

2πi

∫

(c)

Γr
(w

2

)
2wΓ(1− w)sw−1dw.

Now we take s = 1/T , T → ∞, c = 1/2 and make the substitution
1− w = z. We obtain from (5.12)

∫ ∞

0

fr(x)e−x/T dx =
1

2πi

∫

(c)

Γr

(
1− z

2

)
21−zΓ(z)T zdz.

Shifting the line of integration in the last integral to −∞ and applying the
residue theorem we obtain

∫ ∞

0

fr(x)e−x/T dx ∼
∞∑

n=0

Γr
(n + 1

2
)2n+1

n!
·
(−1

T

)n

(T →∞),

which is the asymptotic expansion of the Laplace transform of fr(x) as
s = 1/T → 0+.

Note also that the Parseval formula for Mellin transforms gives the
identity

∫ ∞

0

f2
r (x)x2σ−1dx =

21+2σ

π

∫ ∞

0

∣∣∣Γ
(σ

2
+ ix

)∣∣∣
2r

dx (σ > 0),
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which for r = 1 reduces to (2.7).

6. The functional equation for ψr(x)

As mentioned in Section 2, the function ψr(x) satisfies a simple func-
tional equation relating its values at the points x and 1/x. This result,
which is an essential ingredient in the proof of the integral representation
for ζr(s) furnished by Theorem 1, may be obtained as follows. From (2.3)
we have by the residue theorem

(6.1)
ψr(x) = Res

s=1
π−

rs
2 ζr(s)Γr

(s

2

)
x−s

+
1

2πi

∫

( 1
2 )

π−
rs
2 ζr(s)Γr

(s

2

)
x−sds.

Setting

gr(x) :=
1

2πi

∫

( 1
2 )

π−
rs
2 ζr(s)Γr

(s

2

)
x−sds (<e x > 0)

we have, by the functional equation (2.5) (raised to the r-th power) and
the change of variable 1− s = w,

gr(
1
x

) =
1

2πi

∫

( 1
2 )

π−
rs
2 ζr(s)Γr

(s

2

)
xsds

=
1

2πi

∫

( 1
2 )

π−
r(1−s)

2 ζr(1− s)Γr
(1− s

2

)
xsds

=
1

2πi

∫

( 1
2 )

π−
rw
2 ζr(w)Γr

(w

2

)
x1−wdw = xgr(x),

hence

(6.3) gr(x) =
1
x

gr

(
1
x

)
(<e x > 0).

Since ζr(s) has at s = 1 a pole of order r, it follows that

(6.4) Res
s=1

π−
rs
2 ζr(s)Γr

(s

2

)
x−s =

1
x

pr−1(log x),
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where pr−1(u) is a polynomial of degree r−1 in u whose coefficients, which
depend on r, may be effectively evaluated, since the Laurent expansions
at s = 1 of ζ(s) and Γ(s) are well-known. From (6.1), (6.2) and (6.4) it
follows that

gr(x) = ψr(x)− 1
x

pr−1(log x),

and (6.3) yields then

1
x

ψr

(
1
x

)
− pr−1(− log x) =

1
x

gr

(
1
x

)
= gr(x) = ψr(x)− 1

x
pr−1(log x).

This means that we have proved

Theorem 4. If ψr(x) is defined by (2.3) and pr−1(log x) by (6.4), then

for r ≥ 1 and <e x > 0 we have

(6.5) ψr

(
1
x

)
= xψr(x)− pr−1(log x) + xpr−1(− log x).

The functional equation (6.5) shows that ψr(x) ³ x−1 logr−1 x as
x → 0+. In particular we have

p0(log x) = Res
s=1

π−
s
2 ζ(s)Γ

(s

2

)
= 1,

since Γ( 1
2 ) =

√
π and lims→1 ζ(s)(s− 1) = 1. Hence

ψ1

(
1
x

)
= xψ1(x) + x− 1,

which also follows from (3.3), since ψ1(x) = θ(x2)− 1. We also have

(6.6) p1(u) = γ − 2 log 2− log π − u,

where γ is Euler’s constant as before. Namely near s = 1 we have

ζ2(s) =
1

(s− 1)2
+

2γ

s− 1
+ a + . . . ,

(πx)−(s−1) = 1− (s− 1) log(πx) + . . . ,

Γ(
s

2
) = Γ

(
1
2

)
+

1
2
Γ′

(
1
2

)
(s− 1) + . . . .
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But in view of Γ( 1
2 ) =

√
π and (see N.N. Lebedev [7]) ψ( 1

2 ) = Γ′
Γ ( 1

2 ) =

−γ − 2 log 2, we have

Γ′
(

1
2

)
= −√π(γ + 2 log 2),

Γ2
(s

2

)
= π − π(γ + 2 log 2)(s− 1) + · · · .

We obtain

p1(log x) =
1
π

Res
s=1

(πx)−(s−1)ζ2(s)Γ2
(s

2

)
= γ − 2 log 2− log π − log x,

so that (6.6) follows. By more cumbersome calculations we may evaluate

pr−1 for r ≥ 3.

7. Integral representations of ζr(s)

In this section we shall complete the proof of Theorem 1, outlined in

Section 2, and then furnish yet another integral representation of ζr(s).

To complete the proof of Theorem 1 we need to show that (2.9) holds, and

that (2.11)–(2.13) follows from (2.10). To prove (2.9) it is enough to show

that

(7.1)
lim

δ→π
2

∫ ξ+1

ξ

ψr(x)xs−1dx =
∫ iR+1

iR

ψr(x)xs−1dx

(
ξ = Reiδ, R > 0, r ≥ 3, 0 ≤ δ <

π

2

)
,

since ψr(x) decays exponentially at ∞ by Theorem 3. If r ≥ 3, <ex > 0,

c > 1 is fixed, then from (2.3) and (3.9) we obtain (since | arg x
2 | ≤ π

2 )

(7.2) ψr(x) ¿
∣∣∣x
2

∣∣∣
−c (

1 +
∫ ∞

t0

et| arg x
2 |t

r(c−1)
2 e−

πrt
4 dt

)
¿ |x|−c,
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and a bound analogous to (7.2) will also hold for ψ′r(x). Hence from (7.2)

we obtain (ξ = Reiδ)

∫ ξ+1

ξ

ψr(x)xs−1dx−
∫ iR+1

iR

ψr(x)xs−1dx

=
∫ 1

0

(
ψr(Reiδ + u)(Reiδ + u)s−1 − ψr(iR + u)(iR + u)s−1

)
du

=
∫ 1

0

∫ Reiδ

Re
iπ
2

(
ψ′r(v + u)(v + u)s−1 + ψr(v + u)(s− 1)(v + u)s−2

)
dvdu

¿R,s max
0≤u≤1

|eiδ − e
iπ
2 | ¿R,s

∣∣δ − π

2

∣∣

since R ≤ |v + u| ≤ R + 1. Letting δ → π
2 we obtain (7.1).

To complete the proof of Theorem 1, note that (2.10) gives

ζr(s) = Tr(s,R)(7.3)

+ π
rs
2 Γ−r

(s

2

) ∫ 1
iR +∞

1
iR

ψr(x)x−sdx + π
rs
2 Γ−r

(s

2

)
Hr(s, iR),

where Tr(s,R) is given by (2.16) and Hr(s, iR) by (2.17). Since ψr(x) =
ψr(x) and ab = ab, we obtain

Tr(1− s,R−1) = π
r(1−s)

2 Γ−r

(
1− s

2

) ∫ 1
iR +∞

1
iR

ψr(x)x−sdx

= π
r(1−s)

2 Γ−r

(
1− s

2

) ∫ ∞

0

ψr

(
i

R
+ u

) (
i

R
+ u

)−s

du

= π
r(1−s)

2 Γ−r

(
1− s

2

)∫ ∞

0

ψr

(
− i

R
+u

)(
− i

R
+u

)−s

du

= π
r(1−s)

2 Γ−r

(
1− s

2

) ∫ ∞

0

ψr

(
1
iR

+ u

)(
1
iR

+ u

)−s

du

= π
r(1−s)

2 Γ−r

(
1− s

2

) ∫ 1
iR +∞

1
iR

ψr(x)x−sdx.
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Therefore
∫ 1

iR +∞

1
iR

ψr(x)x−sdx = π
r(s−1)

2 Γr

(
1− s

2

)
Tr(1− s,R−1),

and if we insert this expression in (7.3) we obtain (2.15). Although the
value of R is not specified, from the definition of Tr it follows that optimal
symmetry in (2.15) will be attained in the case when R = 1.

Another integral representation for Tr(s,R), which generalizes equa-
tion (3.1) of A. Guthmann [5], is given by

Theorem 5. If Tr(s,R) is given by (2.16) and 0 ≤ ϕ ≤ π
2 , then for

r ≥ 1 fixed we have

(7.4) Tr(s,R) = sinr
(πs

2

)∫ ∞e−iϕ

0

u1−s

(∫ iR+∞

iR

xψr(x)fr(2π
r
2 xu)dx

)
du.

Proof. The result is formulated for r ≥ 1, since it does not depend
on (7.2), like the proof of (2.13) does. For <e s < 2 we have, from (2.2),

(7.5) Γr

(
2− s

2

)
22−s =

∫ ∞

0

fr(x)x1−sdx.

From Γ(z)Γ(1− z) = π/ sin(πz) with z = (2− s)/2 we have

Γr

(
2− s

2

)
=

πr

sinr
(

πs
2

)
Γr

(
s
2

) .

Hence (7.5) yields

(7.6)
1

Γr
(

s
2

) = 2s−2π−r sinr
(πs

2

) ∫ ∞

0

fr(z)z1−sdz.

In (7.6) we turn the line of integration about the origin by the angle ϕ and
make the change of variable z = αu to obtain

(7.7)
1

Γr
(

s
2

) = 2s−2π−r sinr
(πs

2

)
α2−s

∫ ∞e−iϕ

0

fr(αu)u1−sdu.
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Taking α = 2π
r
2 x we obtain then from (7.7)

π
rs
2

Γr
(

s
2

) = sinr
(πs

2

)
x2−s

∫ ∞e−iϕ

0

fr(2π
r
2 xu)u1−sdu.

From this expression and the definition (2.16) of Tr(s,R) we have

(7.8) Tr(s,R) = sinr
(πs

2

) ∫ iR+∞

iR

xψr(x)
∫ ∞e−iϕ

0

u1−sfr(2π
r
2 xu)dudx.

By absolute convergence of the double integral we may change the order
of integration in (7.8), and (7.4) follows.

The integral representations for ζr(s) furnished by Theorem 1 and
Theorem 5 may be regarded as initial steps towards an asymptotic ex-
pansion of ζr(s) (in terms of elementary functions). Namely from (1.1)
it is possible to derive an asymptotic expansion of ζ(s), as was shown by
C.L. Siegel [12]. A variant of this important formula states that

(7.9)
ζ(s) =

N∑
n=1

n−s + χ(s)
N∑

n=1

ns−1

+ (−1)N−1(2π)
s+1
2 Γ−1(s)t

s−1
2 eπis− it

2 −πi
8 S,

where 0 ≤ <e s ≤ 1, t = =ms →∞, N =
[√

t
2π

]
, χ(s) = ζ(s)/ζ(1− s),

S =
ν−1∑

k=0

ak

∑

0≤2r≤k

bkrF
(k−2r)(δ)+O

(
(n/t)ν/6)

)
, δ =

√
t−

(
N +

1
2

)√
2π,

ak, bkr are certain complex constants with ak ¿ t−k/6, ν(≤ 2 · 10−8t) is a
natural number, and

F (z) :=
cos(z2 + 3π

8 )

cos(
√

2πz)
.

The integral representations for ζ2(s) of A. Guthmann [5] have not yielded
yet an asymptotic expansion for ζ2(s) of the desired form

(7.10) ζ2(s) =
∑

n≤ t
2π

d(n)n−s + χ2(s)
∑

n≤ t
2π

d(n)ns−1 + R

(
s,

t

2π

)
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with an explicit expression for R(s, t
2π ) in terms of elementary functions,

of the type obtained by Y. Motohashi [8]–[10]. The latter involve the
function ∆(x), which represents the error term in the Dirichlet divisor
problem and a related function. In the general case one would like to
obtain

(7.11) ζr(s) =
∑

n≤( t
2π )r/2

dr(n)n−s+χr(s)
∑

n≤( t
2π )r/2

dr(n)ns−1+Rr(s,
t

2π
),

where Rr(s, t
2π ) is to be considered as the error term in the approximate

functional equation (7.11). In the most important case s = 1
2 + it some

results on Rr(s, t
2π ) are to be found in Ch. 4 of the author’s monograph

[6]. It would be certainly interesting if one could use the integral repre-
sentations furnished by Theorem 1 or Theorem 5 to improve the bounds
for Rr(s, t

2π ) given in [6].
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