
Publ. Math. Debrecen

52 / 3-4 (1998), 535–546

On equivalence of coefficient conditions
with assumptions of monotonicity

By LÁSZLÓ LEINDLER (Szeged)
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Abstract. Among others we give two different types of sufficient conditions en-
suring the equivalence of the conditions
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where λn ≥ 0, cn ≥ 0 and 0 < p < q.

1. Introduction

Several families of coefficient conditions play a very important role in
analysis and especially in the theory of orthogonal series. Recently some
papers have studied the relations and equivalences of these conditions. For
itemized references regarding the relevant results we refer to [5].

In the same paper we proved the following twin theorems.
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Theorem A. Let 0 < p < q, {λn} and {cn} be sequences of nonneg-

ative numbers, furthermore let Λn :=
∑n

k=1 λk. The condition

(1.1)
∞∑

m=1

λm

( ∞∑
n=m

cq
n

)p/q

< ∞

holds if and only if there exists a nondecreasing sequence {µn} of positive

numbers satisfying the conditions

(1.2)
∞∑

n=1

cq
nµn < ∞

and

(1.3)
∞∑

n=1

λn

(Λn

µn

)p/(q−p)

< ∞.

Theorem B. Let 0 < p < q, {βn} and {cn} be sequences of non-

negative numbers,
∑∞

n=1 βn < ∞, furthermore let Bn :=
∑∞

k=n βk. The

condition

(1.4)
∞∑

m=1

βm

( m∑
n=1

cq
n

)p/q

< ∞

holds if and only if there exists a nonincreasing sequence {µn} of positive

numbers satisfying the conditions (1.2) and

(1.5)
∞∑

n=1

βn

(
Bn

µn

)p/(q−p)

< ∞.

It is also known (see [8], Theorem 3) that the condition (1.1) is equiv-
alent to the condition (1.2) without the additional condition (1.3) if and
only if the three sequences

{µn}, {1/µn} and {Λn}

are bounded. Then all of these conditions claim that

0 <

∞∑
n=1

cq
n < ∞.
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Obviously then the condition (1.3) is also satisfied.
These results show that generally the conditions (1.1) and (1.2) are

not equivalent without additional conditions on {µn} and {λn}. It is also

evident that then these sequences are interrelated. So if e.g. µn := Λ
q
p +ε
n ,

ε > 0, then an easy calculation shows that (1.3) is satisfied, consequently,
by Theorem A, then (1.1) and (1.2) are equivalent. If µn := Λq/p

n then
(1.3) reduces to

(1.6)
∞∑

n=1

λn

Λn
< ∞,

and thus

(1.7)
∞∑

n=1

Λq/p
n cq

n < ∞

is equivalent to (1.1).
However, if (1.6) does not hold true, then we cannot state the equiv-

alence of the conditions (1.1) and (1.7) for every sequence {cn}. It seems
to be natural to ask whether then the equivalence of (1.1) and (1.7) holds
for certain strongly monotone or only “block-monotone” sequences {cn}.

The aim of the present work is to analyze this problem. Among others
we ask: If

∑∞
n=1

λn

Λn
= ∞, or equivalently

∑∞
n=1 λn = ∞, what mono-

tonicity assumptions on the sequence {cn} imply the equivalence of the
conditions (1.1) and (1.7)?

According to the rate of decrease of the “tails” of the sequence {cn} we
can give two different types of sufficient conditions ensuring the equivalence
of (1.1) and (1.7).

Similar problem will be treated in connection with Theorem B.
In the paper K will denote positive constants, not necessarily the

same in their occurances; they may depend on parameters of the problem
concerned, but are independent of the sequence {cn}.
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2. Theorems

We prove the following theorems.

Theorem 1. Let 0 < p < q, ε > 0, 0 ≤ λn ≤ 1,
∑∞

n=1 λn = ∞ and

Λn :=
∑n

k=1 λk, furthermore let s be a positive integer. Denote pm the

smallest natural number such that Λpm ≥ m; furthermore let qm := p2m .

If the sequence {cn} of nonnegative numbers satisfies either

(2.1)
∞∑

k=pm

cq
k ≤ Kmq/p(λm/Λm)

q−p
p Λ−ε

m

pm+s∑

k=pm−s

cq
k

or

(2.2)
( ∞∑

k=qm

cq
k

)p/q

≤ K2m( q
p−1)

qm+s∑
m=qm−s

cq
n

for all m > s, then the conditions (1.1) and (1.7) are equivalent.

We remark that the implication (1.1) ⇒ (1.7) holds without any ad-
ditional assumption on the block-monotonicity of {cn}. The conditions
(2.1) or (2.2) are required only to the proof of (1.7) ⇒ (1.1).

We also mention that in (2.1) the factor (λm/Λm)
q−p

p Λ−ε
m can be re-

placed by any factor ρm satisfying the condition

(2.3)
∞∑

m=1

ρp/(q−p)
m < ∞,

namely in the proof we shall use only this property of the factors, and it
is obvious that

(2.4)
∞∑

m=1

λmΛ
−1− εp

q−p
m < ∞.

Finally we observe that at the proof of (1.7) ⇒ (1.1) the assumption
(2.1) can be replaced by

(2.5)
∞∑

k=qm

cq
k ≤ K2mq/pρm

qm+s∑

k=qm−s

cq
k,
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where {ρm} satisfies (2.3).
The following theorem gives sufficient conditions for the equivalence

of (1.4) and

(2.6)
∞∑

n=1

Bq/p
n cq

n < ∞.

Theorem 2. Let 0 < p < q, ε > 0, βn ≥ 0, Bn :=
∑∞

k=n βk < ∞
and βn ≤ Bn+1, furthermore let s be a positive integer. Denote rm the

largest natural number such that Brm ≥ 2−m. If the sequence {cn} of

nonnegative numbers satisfies either

(2.7)
rm∑

k=1

cq
k ≤ Km1− q

p−ε

rm+s∑

k=rm−s

cq
k

or

(2.8)
( rm∑

k=1

cq
k

)p/q

≤ K2m(1− p
q )

rm+s∑

k=rm−s

cq
k

for all m > s, then the conditions (1.4) and (2.6) are equivalent.

Now we can mention that only the implication (2.6) ⇒ (1.4) requires
the additional assumptions (2.7) or (2.8); furthermore that in (2.7) the
factor m1−ε− q

p can be replaced by any factor ρm satisfying (2.3).
Afterwards we present two applications of our results. First we show

that a general orthogonal series

(2.9)
∞∑

n=0

cnϕn(x),

under certain monotonicity conditions of the coefficients cn, converge for all
orthonormal system {ϕn(x)} almost every in the interval of orthogonality
(a, b) if and only if it is also convergent unconditionally almost everywhere,
i.e. at every arrangement of its terms. These conditions are the following
two ones:

(2.10) cn ≥ cn+1(≥ 0)
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and

(2.11)
∞∑

n=2m

c2
n ≤ Km(log m)−1−ε

2m+s∑

n=2m−s

c2
n.

More precisely we prove the following theorem.

Theorem 3. If ε > 0 and s is a positive integer, furthermore the

conditions (2.10) and (2.11) hold, then the series (2.9) converges for all

orthonormal system {ϕn(x)} in (a, b) almost everywhere if and only if it

also converges unconditionally.

Secondly, among others, we show that the condition

(2.12)
∞∑

n=1

nc2
n < ∞

implies the absolute convergence of (2.9) if the sequence {cn} satisfies an
additional condition of type (2.1).

Namely we prove the following result.

Theorem 4. If 0 ≤ α < 1/2, ε > 0 and s is a positive integer,

furthermore the condition

(2.13)
∞∑

n=m2/(1−2α)

c2
n ≤ Km1−ε

(m+s)2/(1−2α)∑

n=(m−s)2/(1−2α)

c2
n

holds, then the condition

(2.14)
∞∑

n=1

n1−2αc2
n < ∞

implies the absolute |C,α|-summability of (2.9) for all orthonormal system

{ϕn(x)} in (a, b) almost everywhere.

If α = 0 then Theorem 4 conveys our assertion stated above.
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3. Proofs

Proof of Theorem 1. We start with the proof of the implication
(1.1) ⇒ (1.7). In the course of the following consideration first we make
blocks, use the monotonicity of Λn, then, since p < q, can apply the so-
called power-sum inequality (see e.g. [1], p. 28), and in the last steps we
utilize the definition of the numbers qm and its consequences. Thus we
obtain that

(3.1)

( ∞∑
n=q2

Λq/p
n cq

n

)p/q

≤
( ∞∑

m=2

qm+1∑
n=qm

Λq/p
n cq

n

)p/q

≤
( ∞∑

m=2

Λq/p
qm+1

qm+1∑
n=qm

cq
n

)p/q

≤
∞∑

m=2

Λqm+1

( qm+1∑
n=qm

cq
n

)p/q

≤ 8
∞∑

m=2

qm∑

k=qm−1

λk

( ∞∑

n=k

cq
n

)p/q

≤ 8
∞∑

k=q1

λk

( ∞∑

n=k

cq
n

)p/q

.

Hereby we have proved the implication (1.1) ⇒ (1.7) without using
the additional assumptions (2.1) and (2.2).

Secondly we verify the implication (1.7) ⇒ (1.1) assuming (2.1). As
in (3.1) we get

(3.2)

∞∑

k=p1

λk

( ∞∑

n=k

cq
n

)p/q

≤
∞∑

m=1

pm+1∑

k=pm

λk

( ∞∑
n=pm

cq
n

)p/q

≤ 3
∞∑

m=1

( ∞∑
n=pm

cq
n

)p/q

=: S1.

Now utilizing (2.1) we obtain that

S1 ≤ K

∞∑
m=s+1

m(λm/Λm)(q−p)/qΛ−εp/q
m

( pm+s∑

k=pm−s

cq
k

)p/q

.
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Hence, using Hölder’s inequality, we get

(3.3)

S1 ≤ K





∞∑
m=s+1

mq/p

pm+s∑

k=pm−s

cq
k





p/q

×
{ ∞∑

m=1

λmΛ
−1− εp

q−p
m

} p
q

=: KS2 · S3.

By the definition of Λm it is clear that the second factor S3 in (3.3) is
finite, furthermore by the definition of pm

∞∑
m=s+1

mq/p

pm+s∑

k=pm−s

cq
k ≤ K(s)

∞∑
m=1

mq/p

pm+s∑

k=pm

cq
k

≤ K(s)
∞∑

m=1

Λq/p
pm

pm+s∑

k=pm

cq
k ≤ K1(s)

∞∑

k=1

Λq/p
k cq

k,

i.e. the factor S2 in (3.3) by (1.7) is also finite, whence, by (3.2) and (3.3),
the implication (1.7) ⇒ (1.1) follows.

Finally we prove the implication (1.7) ⇒ (1.1) assuming (2.2). Like-
wise as in the previous proof with qm in place of pm we get

∞∑

k=qs+1

λk

( ∞∑

n=k

cq
n

)p/q

≤
∞∑

m=s+1

qm+1∑

k=qm

λk

( ∞∑
n=qm

cq
n

)p/q

≤ 4
∞∑

m=s+1

2m
( ∞∑

n=qm

cq
n

)p/q

=: S4.

By (2.2) we obtain that

S4 ≤ K

∞∑
m=s+1

2m q
p

qm+s∑
n=qm−s

cq
n

≤ K

∞∑
m=s+1

Λq/p
qm

qm+s∑
n=qm−s

cq
n
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≤ K(s)
∞∑

m=1

Λq/p
qm

qm+s∑
n=qm

cq
n

≤ K1(s)
∞∑

n=q1

Λq/p
n cq

n.

These inequalities yield that (1.7) implies (1.1).
The proof is complete.

Proof of Theorem 2. Without loss of generality we can assume that
B1 = 1. On the other hand the assumption βn ≤ Bn+1 implies that
rm+1 ≥ rm + 1 holds for every m.

Now we launch the proof of (1.4) ⇒ (2.6). In our consideration we
make blocks, use the monotonicity of Bn and the definition of rm, further-
more we use again the power-sum inequality. Thus we get

( ∞∑
n=r◦+1

Bq/p
n cq

n

)p/q

=
( ∞∑

m=1

rm∑
n=rm−1+1

Bq/p
n cq

n

)p/q

≤ 2
∞∑

m=1

2−m
( rm∑

n=rm−1+1

cq
n

)p/q

≤ 4
∞∑

m=1

rm+1∑

k=rm

βk

( rm∑
n=1

cq
n

)p/q

≤ 8
∞∑

k=r1

βn

( k∑
n=1

cq
n

)p/q

.

These inequalities plainly prove the implication (1.4) ⇒ (2.6).
Next we turn to the proof of (2.6) ⇒ (1.4) assuming (2.7). Some

elementary calculations give that

(3.4)

∞∑
n=r◦+1

βn

( n∑

k=1

cq
k

)p/q

≤
∞∑

m=1

rm∑
n=rm−1+1

βn

( rm∑

k=1

cq
k

)p/q

≤ 2
∞∑

m=1

2−m
( rm∑

k=1

cq
k

)p/q

.
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Now applying (2.7) and Hölder’s inequality we get

(3.5)

∞∑
m=s+1

2−m
( rm∑

k=1

cq
k

)p/q

≤ K

∞∑
m=s+1

2−m
( rm+s∑

k=rm−s

cq
k

)p/q

m
p
q−1− εp

q

≤ K





∞∑
m=s+1

2−
mq
p

rm+s∑

k=rm−s

cq
k





p/q { ∞∑
m=1

m−1− εq
q−p

}1− p
q

By the definition of rm, for k ≤ rm+s

2−m−s ≤ Bk

holds, thus

(3.6)

∞∑
m=s+1

2−
mq
p

rm+s∑

k=rm−s

cq
k

≤ K(s, p, q)
∞∑

k=1

B
q/p
k cq

k.

The estimations (3.4)–(3.6) yield the implication (2.6) ⇒ (1.4).
The proof of the implication (2.6) ⇒ (1.4) under the assumption (2.8)

is very easy.
Using the estimation given in (3.4) and the assumption (2.8) we have

again that

∞∑
n=r◦+1

βn

( n∑

k=1

cq
k

)p/q

≤ K

∞∑
m=s+1

2−
mp
q

rm+s∑

k=rm−s

cq
k,

whence, by (3.6), the implication (2.6) ⇒ (1.4) follows.
The poof is complete.

Proof of Theorem 3. It is clearly enough to prove that if the se-
ries (2.9) converges for all orthonormal system then it is also convergent
unconditionally, namely the converse is obvious. In order to verify this
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we utilize the special case p = 1, q = 2 and λn = 1
n of Theorem 1 with

assumption (2.10), which states that if (2.11) holds then

(3.7)
∞∑

n=2

c2
n log2 n < ∞

and

(3.8)
∞∑

m=1

1
m

{ ∞∑
n=m

c2
n

}1/2

< ∞

are equivalent.
On the other hand K. Tandori [6] proved that if (2.10) holds, then

the condition (3.7) is not only sufficient but also necessary in order that
the series (2.9) for all orthonormal system should be convergent almost
everywhere in (a,b). Consequently, if the assumptions (2.10) and (2.11)
are fulfilled and the series (2.9) converges for all orthonormal system, then
(3.7) and (3.8) hold simultaneously. However, the condition (3.8) implies
the unconditional convergence of (2.9) by the results of K. Tandori [7]
and L. Leindler [3].

The proof is thus completed.

Proof of Theorem 4. The proof is similar to that of Theorem 3.
By the special case p = 1, q = 2 and λn = n−α− 1

2 of Theorem 1 with
assumption (2.13) the condition (2.14) is equivalent to

(3.9)
∞∑

m=1

m−α−1/2
( ∞∑

n=m

c2
n

)1/2

< ∞,

and by Theorem 2.1 of [4] (see the case (2.4) with γ = −α−1/2, α = β = 0,
ε = 1) the condition (3.9) is equivalent to

∞∑
m=1

2m( 1
2−α)





2m+1∑
n=2m+1

c2
n





1/2

< ∞.

Since, this last condition, by Theorem 2 of [2], implies the absolute |C, α|-
summability of (2.9), thus we have completed the proof of Theorem 4.
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H–6720 SZEGED
HUNGARY

E-mail: leindler@math.u-szeged.hu

(Received August 14, 1997)


