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The solution of a system of functional
equations related to selection probabilities

By GY. MAKSA (Debrecen)

Dedicated to Professors Z. Daróczy and I. Kátai
on the occasion of their sixtieth birthdays

Abstract. In this note we solve a system of functional equations related to se-
lection probabilities containing several unknown functions.

1. Introduction

The following notions have been introduced in Aczél–Maksa–

Marley–Moszner [1]. A selection model is a pair (R, P ) where R is a
nonempty set, S is the set of its finite nonempty subsets and P : R×S →
[0, 1]. The number P (e,E) (e ∈ R, E ∈ S) is called selection probability.
It is convenient to think of the e as options, of E as a subset of options,
R the set of all options and P (e,E) the probability that the option e is
chosen from E. If there exists a function v : R → ]0, +∞[ such that

P (e,E) =
v(e)∑

d∈E

v(d)

when e ∈ E, while P (e,E) = 0 if e /∈ E, we have a prominent example, so-
called Luce’s choice model (Luce [2], [3]). In [1], under natural and quite
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weak technical suppositions a wide family of selection models is described
and then, making the conditions more restrictive, Luce’s choice model is
characterized. The functional equation technique used there leads to the
following system of equations and inequalities.

m∏
j=1

xaj
jk

n∑
`=1

m∏
j=1

xaj
j`

=
Φ

(
Fk(x11, . . . , x1n), . . . , Fk(xm1, . . . , xmn)

)
n∑

`=1

Φ
(
F`(x11, . . . , x1n), . . . , F`(xm1, . . . , xmn)

) ,(1)

0 < Fk(z1, . . . , zn), k = 1, . . . , n(2)

and

1 =
n∑

`=1

F`(z1, . . . , zn).(3)

Here 2 ≤ m, 2 ≤ n are fixed integers, aj ∈ R (the set of all real num-
bers) is fixed, j = 1, . . . ,m, Fk : ]0,+∞[ n → R, k = 1, . . . , n and
Φ : ]0, 1[m → ]0,+∞[ are unknown functions and (1), (2), and (3) hold for
all xjk ∈ ]0,+∞[ (j = 1, . . . , m, k = 1, . . . , n) and z1, . . . , zn ∈ ]0, +∞[ ,
respectively. Under some conditions on the diagonalization of Φ (i.e. on
the function y → Φ(y, . . . , y), y ∈ ]0, 1[) the system (1)–(2)–(3) has been
solved recently in the following two cases

(a)
m∑

j=1

aj 6= 0 and

(b)
m∑

j=1

aj = 0, ap 6= 0 for some 1 ≤ p ≤ m and

Φ(y1, . . . , ym) = b
m∏

j=1

y
aj

j (b > 0 constant).

(See Theorem 1, Theorem 3 and Appendix B in [1].)
In this note we solve the system (1)–(2)–(3) assuming regularity prop-

erties on Φ and assuming that
m∑

j=1

a2
j > 0.
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2. The main result

For the proof of our main result the following lemma will be needed.

Lemma. Let u, v : ]0, 1[m → R and

(4) u(x1, . . . , xm) = v(y1, . . . , ym)

for all xj , yj , xj + yj ∈ ]0, 1[, j = 1, . . . , m. Then there exists c ∈ R such

that

u(x) = v(y) = c

for all x, y ∈ ]0, 1[m.

Proof. For q ∈ N (the set of all positive integers) define aq =

v

1
^

... m
^(

1
q+1 , . . . , 1

q+1

)
. Since 1

q+1 + 1
2

q
q+1 < 1 and 1

2
q

q+1 + 1
q+2 < 1, apply-

ing (4) two times, we have

aq = v

(
1

q + 1
, . . . ,

1
q + 1

)
= u

(
1
2

q

q + 1
, . . . ,

1
2

q

q + 1

)

= v

(
1

q + 2
, . . . ,

1
q + 2

)
= aq+1

for all q ∈ N. Therefore aq = c for some c ∈ R and for all q ∈ N. On the
other hand let now x = (x1, . . . , xm) ∈ ]0, 1[m be arbitrary. Then there
exists q ∈ N such that xj + 1

q+1 < 1 for all j ∈ {1, . . . ,m}. Thus, by (4),
u(x) = aq = c. Furthermore, if y = (y1, . . . , ym) ∈ ]0, 1[m, then there exists
x = (x1, . . . , xm) ∈ ]0, 1[m such that xj + yj < 1 for all j ∈ {1, . . . , m}.
Therefore, again by (4), v(y) = u(x) = c. ¤

The solutions of system (1)–(2)–(3) strictly depend on the fact whether
n > 2 or n = 2. In the following theorem we deal with the case n > 2.

Theorem 1. Let 2 ≤ m and 2 < n be fixed integers, a1, . . . , am ∈ R,
m∑

j=1

aj = a,
m∑

j=1

a2
j > 0, Φ : ]0, 1[m → ]0, +∞[ and Fk : ]0,+∞[ n → R,

k = 1, . . . , n. Suppose that Φ is continuous and strictly monotonic in each

variable. Then (1), (2) and (3) hold simultaniously if and only if there
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exist a continuous and strictly monotonic function ϕ : ]0, 1[ → ]0,+∞[
and c, c1, . . . , cm ∈ ]0, +∞[ such that

Φ(y1, . . . , ym) = c

m∏

j=1

ϕ(yj)aj , (y1, . . . , ym) ∈ ]0, 1[m,(5)

ca
r = 1, r = 1, . . . , n,(6)

furthermore, for all (x1, . . . , xn) ∈ ]0,+∞[ n there exits the unique solution

x = L(x1, . . . , xn) ∈ ]0, +∞[ of the equation

(7)
n∑

k=1

ϕ−1(ckxkx) = 1

with the property

ϕ−1
(
ckxkL(x1, . . . , xn)

)
> 0, k = 1, . . . , n(8)

and

Fk(x1, . . . , xn) = ϕ−1
(
ckxkL(x1, . . . , xn)

)
, k = 1, . . . , n.(9)

Proof. First suppose that (1), (2) and (3) hold. Since
m∑

j=1

a2
j > 0,

there exists p ∈ {1, . . . ,m} such that ap 6= 0. For k ∈ {1, . . . , n} define the
function ϕk on ]0, 1[ by

(10) ϕk(t) = Φ
(
Fk

1
^

(1, . . . , 1), . . . ,
p
^

t , . . . , Fk

m
^

(1, . . . , 1)
) 1

ap .

Then ϕk : ]0, 1[ → ]0, +∞[ is continuous and strictly monotonic for all
k ∈ {1, . . . , n}. On the other hand let x1, . . . , xn ∈ ]0,+∞[ and xjk = 1 if
j 6= p and xpk = xk in (1) (k = 1, . . . , n, j = 1, . . . ,m). Then, by (10), we
get

(11)
x

ap

k
n∑

`=1

x
ap

`

=
ϕk

(
Fk(x1, . . . , xn)

)ap

n∑
`=1

ϕ`(F`(x1, . . . , xn))ap

, k = 1, . . . , n.
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Introducing the function L by

L(x1, . . . , xn) =




n∑
`=1

ϕ`

(
F`(x1, . . . , xn)

)ap

n∑
`=1

xap
`




1
ap

, (x1, . . . , xn) ∈ ]0, +∞[ n,

(11) implies that

ϕk

(
Fk(x1, . . . , xn)

)
= xkL(x1, . . . , xn),

that is,

(12) Fk(x1, . . . , xn) = ϕ−1
k

(
xkL(x1, . . . , xn)

)

for all (x1, . . . , xn) ∈ ]0,+∞[ n and k ∈ {1, . . . , n}. It follows from (12),

(3), (2) and the strict monotonicity of the function x →
n∑

k=1

ϕ−1
k (xkx),

x ∈ ]0, +∞[ (x1, . . . , xn are fixed positive numbers) that x = L(x1, . . . , xn)
is the unique solution of the equation

(13)
n∑

k=1

ϕ−1
k (xkx) = 1

and this solution has the property

(14) ϕ−1
k

(
xkL(x1, . . . , xn)

)
> 0, k = 1, . . . , n.

Let now yjk ∈ ]0, +∞[ with
n∑

k=1

yjk = 1 (j = 1, . . . ,m, k = 1, . . . , n).

Then

1 =
n∑

k=1

yjk =
n∑

k=1

ϕ−1
k

(
ϕk(yjk) · 1)

.

Therefore 1 is the unique solution of (13) with fixed 1 ≤ j ≤ m and
xk = ϕk(yjk). Thus L(ϕ1(yj1), . . . , ϕn(yjn)) = 1 and, by (12),

Fk

(
ϕ1(yj1), . . . , ϕn(yjn)

)
= ϕ−1

k

(
ϕk(yjk)

)
= yjk
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for all j ∈ {1, . . . , m} and k ∈ {1, . . . , n}. Taking this equality into con-
sideration, equation (1) with xik = ϕk(yik), implies that

(15)

m∏
j=1

ϕk(yjk)aj

n∑
`=1

m∏
j=1

ϕ`(yj`)aj

=
Φ(y1k, . . . , ymk)
n∑

`=1

Φ(y1`, . . . , ym`)

holds for all yjk ∈ ]0, +∞[ with
n∑

k=1

yjk = 1 (j = 1, . . . , m, k = 1, . . . , n).

Let 1 < r ≤ n be fixed, (x1, . . . , xm), (y1, . . . , ym) ∈ ]0,+∞[ m such
that xj + yj < 1 for all 1 ≤ j ≤ m and

yjr = yj , yj1 = xj and yjk =
1− xj − yj

n− 2
if 1 < k ≤ n, k 6= r.

Then yjk ∈ ]0, +∞[ and
n∑

k=1

yjk = 1. (This is the first step in the proof

when the condition n > 2 is used). Thus (15), with k = r and next with
k = 1, implies

m∏
j=1

ϕr(yj)aj

n∑
`=1

m∏
j=1

ϕ`(yj`)aj

=
Φ(y1, . . . , ym)

n∑
`=1

Φ(y1`, . . . , ym`)

and

m∏
j=1

ϕ1(xj)aj

n∑
`=1

m∏
j=1

ϕ`(yj`)aj

=
Φ(x1, . . . , xm)

n∑
`=1

Φ(y1`, . . . , ym`)
,

respectively. Dividing the first equation by the second one we have that

m∏
j=1

ϕr(yj)aj

m∏
j=1

ϕ1(xj)aj

=
Φ(y1, . . . , ym)
Φ(x1, . . . , xm)

,
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that is,

(16)
Φ(y1, . . . , ym)

m∏
j=1

ϕr(yj)aj

=
Φ(x1, . . . , xm)

m∏
j=1

ϕ1(xj)aj

.

Applying our Lemma we obtain that

(17) Φ(x1, . . . , xm) = c

m∏

j=1

ϕ1(xj)aj

with some c > 0 and for all (x1, . . . , xm) ∈ ]0, 1[m. It follows from (16)
and (17) that

(18)
m∏

j=1

ϕ1(yj)aj =
m∏

j=1

ϕr(yj)aj

for all (y1, . . . , ym) ∈ ]0, 1[m and r ∈ {1, . . . , n}. Let t ∈ ]0, 1[, yj = 1
2

if j ∈ {1, . . . , m} \ {p} and yp = t. Then, by (18), ϕr(t)apϕr

(
1
2

)a−ap =
ϕ1(t)apϕ1

(
1
2

)a−ap , that is,

(19) crϕr(t) = ϕ1(t)

where cr =
(

ϕr( 1
2 )

ϕ1( 1
2 )

) a−ap
ap

> 0, r = 1, . . . , n.

Finally, let ϕ = ϕ1. Then ϕ : ]0, 1[ → ]0, +∞[ is continuous strictly
monotonic and (5) and (6) follow from (17) and (18), (19), respectively.
Furthermore, by (13) and (19), the equation

1 =
n∑

k=1

ϕ−1
k (xkx) =

n∑

k=1

ϕ−1(ckxkx)

has the unique solution x = L(x1, . . . , xn) for all (x1, . . . , xn) ∈ ]0, +∞[ n,
i.e. (7) is satisfied. Moreover, since ϕ : ]0, 1[ → ]0,+∞[ , (8) holds, too.
(9) is a simple consequence of (12) and (19).

The converse is a simple computation and it is valid also for n = 2.
¤

In the following theorem we cover the case n = 2.
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Theorem 2. Let 2 ≤ m be fixed integer, a1, . . . , am ∈ R,
m∑

j=1

aj = a,

m∑
j=1

a2
j > 0, Φ : ]0, 1[m → ]0, +∞[ , F1, F2 : ]0, +∞[ 2 → R. Suppose that

Φ is continuous and strictly monotonic in each variable. Then (1), (2)
and (3) hold simultaniously with n = 2 if and only if there exist a con-
tinuous function T : ]0, 1[m → ]0, +∞[ , continuous and strictly monotonic
functions ϕ1, ϕ2 : ]0, 1[ → ]0, +∞[ and α > 0 such that

T (y1, . . . , ym) = T (1− y1, . . . , 1− ym), (y1, . . . , ym) ∈ ]0, 1[m,(20)

ϕ1(1− y)ϕ1(y) = αϕ2(1− y)ϕ2(y), y ∈ ]0, 1[,(21)

αa = 1,(22)

Φ(y1, . . . , ym) = T (y1, . . . , ym)

√√√√
m∏

j=1

ϕ1(yj)aj ϕ2(yj)aj(23)

for all (y1, . . . , ym) ∈ ]0, 1[m. Furthermore, for all x1, x2 ∈ ]0, +∞[ there
exists the unique solution x = L(x1, x2) ∈ ]0, +∞[ of the equation

ϕ−1
1 (x1x) + ϕ−1

2 (x2x) = 1(24)

with the property

ϕ−1
k

(
xkL(x1, x2)

)
> 0, k = 1, 2(25)

and

Fk(x1, x2) = ϕ−1
k

(
xkL(x1, x2)

)
, k = 1, 2.(26)

Proof. First we suppose that (1), (2) and (3) hold for n = 2. Every-
thing goes as in the proof of Theorem 1 until (15) which is still valid. Let
now yj ∈ ]0, 1[ and yj1 = yj , yj2 = 1 − yj , j = 1, . . . , m. Then applying
(15) first to k = 1 and next to k = 2 we obtain

m∏
j=1

ϕ1(yj)aj

m∏
j=1

ϕ1(yj)aj +
m∏

j=1

ϕ2(1− yj)aj

=
Φ(y1, . . . , ym)

Φ(y1, . . . , ym) + Φ(1− y1, . . . , 1− ym)
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and

m∏
j=1

ϕ2(1− yj)aj

m∏
j=1

ϕ1(yj)aj +
m∏

j=1

ϕ2(1− yj)aj

=
Φ(1− y1, . . . , 1− ym)

Φ(y1, . . . , ym) + Φ(1− y1, . . . , 1− ym)
.

Dividing the first equation by the second one we have

(27)

m∏
j=1

ϕ1(yj)aj

m∏
j=1

ϕ2(1− yj)aj

=
Φ(y1, . . . , ym)

Φ(1− y1, . . . , 1− ym)
.

Write here 1 − yj instead of yj (j = 1, . . . , m) and multiply (27) by the
equation so obtained to get

(28)

m∏
j=1

ϕ1(1− yj)aj

m∏
j=1

ϕ2(yj)aj

=

m∏
j=1

ϕ2(1− yj)aj

m∏
j=1

ϕ1(yj)aj

.

Let now y ∈ ]0, 1[ and yp = y, yj = 1
2 if j 6= p, j = 1, . . . , m in (28). Then

we have (21) with

α =

(
ϕ2

(
1
2

)

ϕ1

(
1
2

)
) 2(a−ap)

ap

> 0.

(22) follows from (21) and (28). Define the function T on ]0, +∞[ m by

T (y1, . . . , ym) =
Φ(y1, . . . , ym)√

m∏
j=1

ϕ1(yj)aj ϕ2(yj)aj

.

Then T is continuous and we obtain (23). (20) follows from (27), (28) and
the definition of T . Finally, (12), (13) and (14) with n = 2 imply (26),
(24) and (25), respectively.

The proof of the converse is purely and simply computation. ¤
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3. Remark and examples

Remark. If a 6= 0 then, by (6) and (22), c1 = · · · = cn = 1 in Theo-
rem 1 and α = 1 in Theorem 2, respectively. If a = 0 then c1, . . . , cn and
α are arbitrary positive numbers.

Example 1. Let ϕ(y) = y, y ∈ ]0, 1[ in Theorem 1. Then equation

(7) has the unique solution x = L(x1, . . . , xn) =
(

n∑
k=1

ckxk

)−1

with the

property (8). Thus, by (9),

(29) Fk(x1, . . . , xn) =
ckxk
n∑

`=1

c`x`

(k = 1, . . . , n).

The choice model with selection probabilities given by (29) is called the
“beta model” (see [2]). If in addition a 6= 0 then, by (6), c1 = · · · = cn = 1
and (29) becomes

(30) Fk(x1, . . . , xn) =
xk

n∑
`=1

x`

(k = 1, . . . , n)

which are the selection probabilities of Luce’s choice model. We can con-
struct other models by taking a continuous and stricly monotonic function
ϕ : ]0, 1[ → ]0, +∞[ , finding the unique solution of (7) with (8) and defin-
ing Fk by (9). (See the example ϕ(y) = 1

4 (
√

1 + 4y − 1)2, y ∈ ]0, 1[,
ϕ−1(t) = t +

√
t, t > 0 in [1].

Example 2. Let ϕ1(y) = ey− 1
2 (ey − 1), ϕ2(y) = ey − 1 and

T (y1, . . . , ym) = 1+
m∑

j=1

|1− 2yj | ; y, y1 . . . , ym ∈ ]0, 1[ in Theorem 2. Then

(20) and (21) with α = 1 is satisfied. Furthermore

ϕ−1
1 (z) = ln

1 +
√

1 + 4
√

e z

2
and ϕ−1

2 (z) = ln(z + 1), z > 0

and (24) reduces to an algebraic equation of degree 3 which has exactly one
solution x = L(x1, x2) > 0 for all x1, x2 ∈ ]0, +∞[ . Since ϕ−1

1 and ϕ−1
2 are

positive functions (25) holds, too. Define the functions Φ and Fk (k = 1, 2)
by (23) and (26), respectively. Then it follows from Theorem 2 that the
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triple (Φ, F1, F2) is a solution of the system (1)–(2)–(3) with n = 2. This
solution is not of the form given by (5) and (9) with n = 2 in Theorem 1.
(Otherwise

T (y1, . . . , ym) = c

m∏

j=1

(
ϕ(yj)√

ϕ1(yj)ϕ2(yj)

)aj

, (y1, . . . , ym) ∈ ]0, 1[m

would follow for some continuous and strictly monotonic ϕ : ]0, 1[ →
]0,+∞[ and for some c > 0, which is impossible.) This example shows that
there are solutions in the case n = 2 which are not solutions of (1)–(2)–(3)
for n > 2.
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