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The mean values of multiplicative functions IV

By GEDIMINAS STEPANAUSKAS (Vilnius)

Dedicated to Professors Imre Kdtai and Zoltan Dardczy
on their 60th birthday

Abstract. The mean value theorem for the product of multiplicative functions
with arguments from arithmetic progression when the variable of these progressions
runs over primes is proved. This theorem is used for the investigation of the limit
behaviour of a sum of additive functions.

1. Results

Let g : N—C, 1 =1,...,s be multiplicative functions. Throughout
the paper p and ¢ denote primes; ¢, cy,... are positive constants; m,n, k
are positive integers; a1, ...,as are positive integers, also; and bq,...,b;
are integers.

In this paper we continue the investigations of publications [6], [7],
8], [9]. Let

G(n) =G(n;91,...,9s) = gi(ain +b1)...gs(asn + by).

We consider the asymptotic behaviour of the sum

M) = == 3 6l).

Mathematics Subject Classification: 11N.
Key words and phrases: multiplicative number theory, multiplicative functions, mean
values of multiplicative functions.



660 Gediminas Stepanauskas

as ¥ — o0o. This sum was earlier analyzed by I. KATAT [4].
Define the multiplicative functions g; and g¢;., [ =1,...,s, by

o™ {gl(pm) if p<r, - (™) {1 if p<r,
AR if p > 7, W aomy itp >
and the multiplicative functions h;, hy., [ = 1,...,s, by means of the

convolution h; = g;* u, hy» = g * u, where p denotes the Mébius function.
Let us introduce some notations we shall use below. Let

(dy,....dy), [di,.. . di]

mean the greatest common divisor and the least common multiple of the
integers dy, ..., dy, respectively;

¢ be the Euler function; a = max(ay,...,as), b=max(by,...,bs);
Ak‘l :akbl—albk, 1 §k<l§8, A = max |Akl|;
1<k<I<s

B (™) ()
W) =D )

where the prime ' means that the summation is taken over all collections
(p™,...,p™*) with non-negative integer exponents m;, | = 1,...,s, for
which

(pmlva‘l)zla (pmlabl):17 lzl,...,S,

and (p™*,p™) | A, 1<I<k<s;

P(x):pr, P(r,z) = H Wp;

p<z r<p<lx

- 91(p) — 1

S(r,z) = Z Z .
=1 r<p<lz p

We shall use the conditions:

3 Re (g1(p) + -+ gs(p)) — s

(A) p

<,

r<p<lz

(B) ‘gl(nﬂ <i(n) < (logn)?, 1=1,...,s,



The mean values of multiplicative functions IV 661

for n > 2, where A; are non-negative constants and the functions v; do

not decrease,

U(n) =11(an+b1)...¢0s(asn +bs), A=max(Ay,...,As);
1

S(r, x)gi, s<r, s(log T)A*IST, A<r, Ap#0, a<r, b<r,

ar+b >0, (a,b) =1, by #0, iz + b < %2,
I=1,...,s 1<k<l

We can formulate now our main result.

Theorem. Let the multiplicative functions g1, ..., gs satisfy the con-
ditions (A), (B), and (C) with some collection of required constants. As-
sume further that B > 0, « > a9 > 0, 1 —1/s < a < 1. Then for

2<r<logx

(2) M,(G) — P(x)
1 (az + b)s(=2) csr(logr)4—1
< (o + 7 e o (0
(logr)*~! ya, log(at 3)
+¥(z)s " +log log(a|b|+2)<(S(T7x)) + log x > 7

where the constant ¢ and the one in the symbol < may depend on B, on

oy, and on the constants from (A) and (B), only.

The conditions (C) are not essential. They could be weakened, but

the proof of Theorem would be more difficult.

It is easy to apply our Theorem to the functions from a set G (for the

definition of G see [8]). For example, let
A = {n‘pmHn:m<k}

denote a set of k-free positive integers.
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Corollary 1. For z > 2 and s < (loglog x)/3

o(p o(p+s)
;z;c (p+s) pr+R
7r(1x) Z 1:va+Q(x)

p<lz p

p+1,...,p+sEAL

The values of w, and v, are defined by (1) and can be evaluated as

follows. Let s = Ep+n, where &, n are integers for which £ > 0,0 <7 < p.

Then
N
w, = +(p—n—1)((1—;)£—1)> ifp<s,

S

1—— ifp>s,
p(p—1)
0 if p* < s,
Up = s—¢&
1—— 2S5  ifpF>s.
pFtp—1)

For the remainder terms we have

sloglog s
R
(z) < (loglog x)/3(log log log z:)3/2’
Q) < sloglog s

(log log 2)t/3(log log log )%

In case if s is fixed

R(z) and Q(z) <. W,

where 3, 0 < 2 < s/(s — 1), is arbitrary.
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Let further the values s, a;, b;, I =1,...,s, not depend on x. Denote
f£(p)
(3) Yoo i=1,s,
swi<t P
1
(4) Z 57 [ = 1’ » Sy
lfi(p)|>1
filp) + -+ fs(p)
(5) > ‘
p
If1(p)I<L
[fs(P)|<1
Let also be

a;+b >0, (a,b)=1, b, #£0, l=1,...,s;

6
(6) ANjp#0, 1<j<k<s.

Corollary 2. Let f;, l = 1,...,s, be real-valued additive functions,
let the series (3), (4), (5) converge, and let the conditions (6) be fulfilled.
Then the distribution functions

W(lm)#{mpgx, fulap+by) 4+ fulasp+be) < 2}

converge weakly towards a limit distribution as * — oo, and the charac-
teristic function of this limit distribution is equal to

[
p

where w,, is defined by (1) with g, = e/t 1 =1,...,s.
Corollaries 1 and 2 clearly imply
Corollary 3. Let s not depend on z. Then the distribution functions

op+1)...o(p+s) _
ptD) .. (pts) =€ }

converge weakly towards a limit distribution, as x — oo. The characteristic
function of this limit distribution is

1w
p

1
M#{?‘PS%
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e
wy={ - 1><(1 - ;)“g - 1)) ifp<s,

1 it
15 <(1—) —1) ifp> s,
p—1 P

where & and 1 are defined in Corollary 1.

with

In the following corollary we give an example of a sum of additive
arithmetical functions with shifted arguments which is uniformly distribu-
ted mod 1 on the set of primes. The additive functions may depend on .

Let

fl(aln + bl) +oot fs(asn + bs) = f(n)

We say that F(n) is asymptotically uniformly distributed mod 1 on the
set of primes if

1 # {p | p < z, fractional part of F(p) € [0475)} — -«

()
as r — oo, forevery a, 5,0 < a< < 1.

Corollary 4. Let real-valued additive arithmetical functions f1, ..., fs
be such, that the following conditions are satisfied:

(a) filp) = 0asp — oo, forl=1,...,s;

(b) there exists r, 2 < r < loglog x, such that

fl2 (p) -0
TQZ;w p

asxt — oo, forl=1,...,s;
(c) at least one of the functions fj, satisfies

2
AP o
p<z p

Let the conditions (6) also be fulfilled. Then the sum F(n) is asymptoti-
cally uniformly distributed mod 1 on the set of primes.
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For example, let

fl(p):k);pv =1, ;8 — 1,
1 :
Togp if p > loglog z,
fs(p) = 1
W if p <loglog .

Then the sum F(n) is asymptotically uniformly distributed mod 1 on the
set of primes.

Finally we formulate a local limit law for the sum of additive integer-
valued functions.

Let Ak, k € Z, be defined by means of the equality
+00 '
Z etk = pr for Vt € R,
k=—o0 p
where w, = w,(t) are determined by (1) with g; = e*/t. Let us put also
s . 1/4
w-(x X 1)
— p
=1 p>loglog x
fi(p)#0

Corollary 5. Let the integer-valued additive arithmetical functions
f1,..., fs be such, that the series

fu(p)#0 b
converge and the conditions (6) are fulfilled. Then

b
m(z)

uniformly for all k € Z and © > 2.

#4p <2 F0) = k) = e+ 0(l) + )
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2. Auxiliary lemmas

We shall use some estimates and statements which we formulate as
lemmas.

Lemma 1 (Turan—Kubilius). Let f(p) be complex numbers, £ € N,
neEZ,n#0,En)=1,6+n7>0,x+n< 2% 0< B < 1. Then for
x> 2

1 ol F@)P
PR P AR I PR

q<z” qf¢ ate

where the constant in the symbol < depends only on 3 and K.

For the proof of Lemma 1, it is enough to repeat the proof of Lem-
ma 4.12 from [2] and to satisfy oursel that the conditions of Lemma 1
guarantee the uniformity of our estimate with respect to f, x, £, and 7.
Consider further a system of congruences

(7) an+b =0 modd;, (a5 ,b)=11=1,...,s.

The Chinese residue theorem includes as a special case the following

Lemma 2. The system of congruences (7) has a solution if and only
if (aj,d;) =1,1=1,...,s, and

(di,dy) | (arhy — arby), 1<k <Il<s.

If the solution exists, it is exactly one residue class modulo [dy, ..., ds].

Lemma 3 ([9, Lemma 3|). Assume v > 0. Then uniformly in u,
0<u<l,

S e
_ +
— (1 —wu)
Lemma 4 ([9, Lemma 4]). Assume ¢; < < 1. Then uniformly in -y

and u > 2
1 u”
Z 1—v < lo U‘
pSuP g




The mean values of multiplicative functions IV 667
Lemma 5. Assume v > 0, # € R. Then uniformly for all v > 2

T (log p)? < (logu)”

plty u¥logu’

p>u

PROOF. The assertion of the lemma follows from the following in-
equality. Let § > 0. Then

1 > 1
Yoy Y

p>u k=1 2k—1ly<p<2ky

1 logp
< >
k—14,)0 k—1
= (2 ) log(2F ) = p
1 >0 1 1
ul log u Z 2(k—1)¢ (log 2+ 0(1)) <
k=1

o0

<

u®logu’

Lemma 6 (Brun-Titchmarsh, [5, Ch. 5, Theorem 2.1]). Let v be a
real number, 0 < v < 1. Then the inequality

T
d -
m(z,d,v) < o(d) log.x

holds uniformly for all x > 2 and integers v and d with 1 < d < x"7.

Lemma 7 ([3, Theorem 3.7]). The inequality

X

m(z,d,v) K ——
¢(d) log d

holds uniformly for all x > 2 and integers d and v with 1 < d < =z,
(v,d) = 1.

Lemma 8 ([5, Ch. 4, Theorem 7.5]). There is a positive constant ca,
such that uniformly for all x > 2

m(z) — iz < ze—c2Viee®,
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Lemma 9 (Bombieri [1]). Let K be a positive real number. Then
there exists a further real number L, such that uniformly for all x > 2

I
Z max |7(z,d,v) — T« °

d<z1/2(logz)~L (dv)=1 Sp(d) (log x)K

Lemma 10 ([5, Ch. 2, Theorem 4.2]). Let k1, ko be positive integers,
li, lo be integers, (k;,l;) =1 for j = 1,2, kily — kaly # 0. Then

#{n|n <w, kjn+1; are primes for j = 1,2}

-1
T 1
< 1—-
log® x H ( p)

plkika(kila—kaly)

uniformly in x > 2, kj, l;, j =1,2.

Lemma 11. Let k and d be positive integers, (k,d) = 1, v be an
integer, v # 0. Then

#{(p, @) |p <z kg—dp=v} <

FTEE: 1;[ <1 - >

??‘

uniformly in x > 2, k, d, and v.
PRrROOF. It follows from the condition (k,d) = 1 that the equation
(8) km —dn = v

has solutions in positive integers m and n. All these solutions have the
form

m=mg+dt, n=mng-+ kt, t=1tg,t0+1,...,
where mg, ng is the integer solution of the equation (8),
kmg — dng = v, 0<ng<k,

and tg is the least positive integer for which mg + dtg > 0. The number of
such pairs (m,n), where both components are primes (p, q), p < z, can be
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estimated by Lemma 10. Thus

#{(p.q¢) | p <z, kg —ap = v}

= #{t ’ t < v _kno, mg + dt and ng + kt are primes}

and Lemma 11 is proved.

3. Proofs

PROOF of the Theorem. Let [ belong to the set {1,...,s}. The fol-
lowing estimates will be used later. We obtain from (B), Lemma 3 and
Lemma 4, that

huy(d
Z! z(;))\ :

IA
Q"_‘
[]#

=
€ |3
=&
=

Q
|
&)=
N

—

[]#
5
S
3=
I3
3
Q
N———

d>z ¥ d=1 p<r m=1 P
1 c3(log p) A 1\ At
< o <1+ sl 1g—§) < o 1—a>
z p
p<r
1 ca(log p) ™
9 < — 1
(9) = Lo o ( + (1— a)AH—lpl—a
1 Cs (log p)™
< Z—aexp ((1 _ a)AH—l Z pl—o
p<r

< 1 exp cer®(log r)Al_l ,
z¢ (1—a)Att

where the constant cg does not depend on «. Analogously

(10) dzzzl |h£"($§)| < exp (07(log )4 log log 1")
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and

> hy-(d cgr®(log r)Ai—1
- > roits < o (ST )

d=1

Split the left-hand side of (2) in the following way:

Ma(G) = P(x) = P(r,2)(Mx(G,) - P(r))

+7r(1x) S 6.(0)(G: () — P(r, ),

p<z

where
Gr(n) =Gn;g1r, ..., gsr) and  Gr(n) =GN G7,, -y Gar)-

Let w(n) mean the number of distinct prime divisors of the number n
and

1
MmO(gr) = @ g: gr(p)-
(pb)=1¥1

The value of M,(G,) can be written in the form

= Mz0(Gr) + O(i((;:)) (|ba] + -+ + |bs’)> — M,o(G,) + O(\;E)

Put

R = | 56,0060 - Pl
Then evidently
1
(12) My(9) - P(a) < |P(r,2)| (B1 + ﬁ) + Ry.
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From the definition of h;. and then from Lemma 2, we obtain that

Mxo(gr):@ S0 b)Y ha(d)

p<z di|a1p+b1 dslasp+bs
(p,b1)=1,VI
1
D SIS SR STAN SR
d1§a1m+b1 dsgasa:“l‘bs p<£E
(p,br)=1,VI
dl|alp+bL,Vl
1 "
=——~ > h(dr) .. b (de)m(x,[dy, . d] ),

dlSalJJ—l-bl,Vl
where the double prime " means that the summation in taken over all
vectors (dy,...,ds) € N°® for which (dj,a;) = 1, (d;,b;) = 1, VI, and
(di,di)| Ak, 1 < k <1 <s, and where v is the only integer for which

av+b =0 modd;, Vi,

and 0 <wv < [dy,...,ds] — 1. It is clear also, that (v,[d1,...,ds]) = 1.
Since

Y

. /’hh«(dl)...hsr(ds)
HOEDY o([d, .-, dy))

we can write
Ry < Ri1 + Ri2 + Ri3 + R,

where

1 "
Ri= —— B (dy) - . her(ds))|
o) 2,

lix

(p([dl, NP 7ds]> ’

B 1 1" ‘hlr(dl)-'-hsr(ds)‘ ix —ml(x
R12_7r($)d,z<;w e(ld,. ... ds]) ! o

" hh« d1 h (ds)
ry=y 3 Tl el

I=1d;>z

m(x,[d1,...,ds],v)
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and

S

Rl4z7r(1x)z S haeld) b (o) s [ d), o)

k=14,<a;z+b;,Vl
dp>z

with some z, z° < 21/3, which we shall choose later.

By Lemma 6
1 liz |/ = \'°
d.v) —
B <y max (rledo) = oy <log:c>
(dv)=1

" ‘hlr(dl) .. h’sr(ds)‘
di<z,Vl (tp([dl, e ds]))lfa’

and by Lemma 9 it is

1 Z ‘ " ha(dh) - b (ds) |
< s 2, (L @) e

d;1<z,Vl *1<j<k<s
1 Tme 2 ‘h1r<d1)‘ > ‘hsr(dsﬂ
L A-k|> B A A Yt el iy
<1ogw><K—1>a<1§E§S f Z: (p(d)) e d§1<w<d8>>1—a

Keeping in mind that

H |A]k’ <<AS(S_1)/2

1<j<k<s

and using also the inequality (11), we obtain that

1 AS(S—I)/Z exp CgSTa(IOg T‘)A—l
(log x)(K—1a (1 — a)A+?

1 b (closro‘(log r)Al)

< (log z)(K—Da ex (1— a)A+t

R K

Using the same ideas as in the estimation of Ry, from Lemma 8 and
the inequality (10) we deduce that

Ri1s < exp(—ci14/log x)AS(S_l)/2 exp (0125(10g r)* log log 7‘)
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and from the inequalities (10) and (9) that

- huy(d
Riz < AS(—1)/2 exp (Clgs(log T)A log log 7“) Z | (dy)|
=1 d;> Qp(dl)
1>z
c14r (logr)A=1
(1 —a)Att

1
< AS6D/2 oy (clgs(log r)A log log r)s— exp <
Zoc

1 c1557(log r)A=1
< o &P < (1 — a)A+

Analogously

s

1 " x
R14 < mz Z ‘hlr(dl)-'-hsr(ds)‘<[d1’.

—— + 1)
. dJ]
k=1 dlSal$+bl7vl
d>z

1 (ax+b)s0-) cipsr* (logr) !
< <za+x log = exp (1= ) At .

Let us choose z = (log 2)°" with sufficiently large constant ¢;7. Then
the estimates of Ri1, Ri2, R13, and R4 imply that

1 b s(l—a) a(] A-1
13) R < ( + <a@’+x> ng) exp (M)

(logz)? (1 —a)A+t
If p > r, then
— hi(p™) + -+ hs(p™)
wp —1=
8 mz:l w(p™)

and it follows from (B), (C) and Lemma 3, that

lwp — 1] <

2
p((ha@)+-+1h@)) N 1 cssogp)?
p—1 p P2t T

< pf 1 (55(;737)>1/2 L ciss(logp)? <P 1+ Cls(logP)A.

p? T p-12 p
Thereby it is clear that

(14) fw, — 1] <

=~ w
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if p > po, where pg is large enough and depends only on the constants from
(B).

Without loss of generality we may assume that r > pg. We estimate
the value of P(r,z) using (14), Lemma 3, Lemma 5 and the conditions

(A), (B) and (C). Thus

hi(p™) + -+ hs(p™)
)= o > ) )}

r<p<z m=1

.. A
- ( p)+ -+ hy(p) +O<s<log2p> )
r<p<x p

L=

L= :
(15) +O< )+ [l Ik ))}

{ :

(5

iy hs(p)
p

= exp

r<p<z

+0 logr +S(r, g;)>} <1

Put
P = {p]p <, d¢ > r and 3, that q | a;p + b; and |h;(p)| > é},
Py ={p|p <z, 3¢g>rand 3, that ¢° | ap+ b} \ P,
Ps={plp<z}\(Pr1UP2).

Split further Ry into three sums Ro1, Roo, Raog over p from Py, Pro, Py3,
respectively.
It follows from (B) and (15) that

(16) R21<<:IT/((§))XP:1< ;32 3 Yoo

=1 r<q<ajr+b; p<lz
|hi(g)|>1/2 a;p+b;=0 mod g

Let
Yy = exp (1 — (S(r, 3;))1/2) log .
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Split the right-hand side of (16) into two sums Rs11 and Rgjs including
terms for which r < ¢ <y and y < g < a;x + by, respectively. Then

Ro11 < :f Z Z max 71'(33 q,v )

1<v<q
- r<q<y
Ihz(Q)\>1/2

By Lemma 7

IL‘ > Z

DD e

.’E =1 r<g<y qlog*
\hz(Q)|>1/2

< ;Irj((;c)) ~ i > ulg) < U(z)(S(r, x))l/Q‘

log g =1 r<q<y q

Changing the order of summation in the expression Rs12, we have

(PRS- DOND S YD

=1 y<q<a;z+b; 1<k< ajztby p<z
q
aip+bi=
(17)

jZZ 2. Xt

=l st yoge @t p<a
aip+bi=kq

Observing now that the inner sum is empty when (a;, k) # 1 and using
Lemma 11 and a few well-known estimates, we get that

U(z) x ap|by|
faz < ) 7(x) Z 2 T p(albi)

=1 <pgastt ¥ (k) log” A ¥

U(z) x 1
18 log1 b|+2) ——— —
(18) < gy Hosloglalbl +2) — Y o
az + b 1Sk
< ¥(x)sloglog(alb| + 2) log = 7 log ar b.
log® Yy
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Since

b
log Y =logy — log (a—I—f) chglogyzcﬂlogx
ax T 2

+b

with sufficiently small positive constant cig9, we obtain

b
log (a + =
Ra12 < W()sloglog(alb| +2) <g1(gm$) + (S<r,x>)”2>‘
We have now that
b
log (a + =
(19) Ry < U(z)sloglog(alb] + 2) (gl(ogmx) + (S(r, a:))l/2>,

The value of Rss does not exceed

S
DY >
T\ T
( ) =1 r<g<(ajz4b)t/? p<z
a;p+b;=0 mod ¢

¥(z) - 2
<T@ > >  max w(z,q%,v).
=1 r<q<(arz+b)/2

For the estimation of m(x, ¢?,v) in the range r < ¢ < z'/4, we use Lemma 7.
In the range 2'/4 < ¢ < (qyz+b;)'/?, we estimate 7(z, g%, v) trivially. Thus

PcfBS (X e 3 L+ ¥ )

2
=1 Ncq<at/a d logq7 zl/4<qul/2q «1/2 <q<(agatby)t/?

Now Lemma 5 implies that

1/2
(20) Roy < \I’(a:),s((r logr) ™t + 214 + W—;b))

For the estimation of Rs3 we use the inequality
e — e < [u—v] (je] + |e])
true for all u,v € C. Therefore

(21) Ros < (@)

Z |log Gy (p) — P(r, z)| < Ras1 + Rasz + Rass,

pEP3
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where

Ran= B Y Y| X mw- ¥ MY

=1 peP,3 qlaip+b; r<q<z q
q>r
v s
R232 — (x) Z hl(Q) + + h (Q) . IOgP(T,.’,U) ’
7T({E) pEP,3 ' r<q<lzx q
U(z) & 2
Ross = () Z Z \hu(q)]™.

=1 PEPr3 gla;p+b
q>r

The sum Rs37 does not exceed

Ro311 + Roz12 + Rozi3 + Ro3i4,

where

S - Y M9

q

Roz12 = \71;((;3)) ZZ Z [hi(a)l;

I=1psz glaptb
Va<q<a'T?

Ra313 = :ITJ((;:)) ZZ Z 1,

=1 P2 gla;p+b,
g>z'—?

Rops =¥(@) Y S hu(q)|

=1 rx<q<z 4

»

with 0 = (S(\/E,x))IM.

By the Cauchy inequality, the inner sum from Rs31; does not exceed

(Z‘ > hp)- > hi(q) 2)1/2(21>1/2,

q
PST gla;p+by r<g<yz ps®
r<q<vz
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and then by Lemma 1, it is

- m)( 5 |m<q>|2>”?

r<g<yz e

Therefore
Rosnn < U(x)(s S(r, vz)) ">

Let us estimate Ro312. Changing the order of summation, we obtain

that
Raz12 = :IT/((;:)) Z Z |ha(q)] Z

I=1 /z<q<at =9 p<zx
a;p+b;=0 mod q

[a—

By Lemma 7, the inner sum is

<

z 2
qlog% dqlogx’

It follows now from the Cauchy inequality that

Rm«‘l’(x)( 3 (|h1<q>|+--~+|hs<q>)2>1/2< > 1)1/2

0 VE< <zl =9 q ﬁ<q§x1,5q

< U(2)Vs(S(Va ).

Similarly as in (17) and (18) (the only difference is that in place of y

1—6)

we take x , we have

1 b
Rasns < ¥(w)sloglog(alt| +2) logz ———— log

loo?
8 ar +b

og(a+2
< U(x)sloglog(alb| + 2) <(S(\/§,x))1/4 + W)

In the same way as in the estimation of Rogz12, it follows from the
Cauchy inequality that

Rogis < W(z)(s S(vz, )2,
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and therefore
Ras1 < U(x)sloglog(alb] + 2)

O a Q
X <(S(r, Vo) + (S(va, o)t + 1g(+:¢)>

log
Using (15), we easily get that

s(log ’I“)A_l

r

Rosp < \If(:c)( +S(r, :z:)).

Analogously as in the estimation of Rs1, we obtain that
12 log(a+8)
Ro33 < ¥(x)sloglog(alb| + 2) (S(r, :];)) + ~ogr )"

Collecting the latter estimates into (21), we get the estimate of Ras.
Then it follows from (19), (20), and (21) that

1 A—-1
(22) Ry, < \I/(a:)s<(0g:) + log log(alb| + 2)

b
x ((S(r,:r))l/2 + (S(ﬁ,x))1/4 + log(a+3) ))

log

Finally, putting (13) and (22) into (12) and remembering (15), we
obtain that

azr s(1—a)
M,(G) — P(z) < <( ! + (az +b) logaj>

logz)B x
csr®(logr)A—1
<o (St ape)
(23) 1
+¥(x)s ((log:)“ + log log(alb] + 2)((5'(7’,33))1/2

+<s<ﬁ,x>>”4+1°g(“+9)>,

log x
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and our Theorem is proved.

PROOF of Corollary 1. In case when g;(n) = ¢(n)/n, we have h;(p) =
h(p) = —1/p and h;(p™) = 0 for m > 2. Hence

B ! ! h(p™ ... h(p™*)
D D ot

M1
m1=0 ms=0 QD([p ’
@™, p™ k)| (k—35),1<j<k<s
(™1, )=1,v1

If p > s, it is clear that

S
p(p—1)

Let p < s. Split the numbers 1,...,s into residue classes mod p.
There are p — 1 residue classes the members of which are coprime to p.
Among these classes there are n residue classes with £ + 1 members and

p—n— 1 residue classes with £ members. Let us observe also that p|(k — j)
only if 7 and k£ belong to the same residue class mod p. Therefore

w, =1~—

wy =1+ So(lp) <(nC§+1 +p—n- 1)C§)h(p)

+ (nC§+1 +p-n- 1)C§>h2(p)

4+t (7]0§+1 +(p—n-— 1)C§)h£(p) + chillhg—‘rl(p))

R (O O R (B )

The values of v, can be evaluated in a similar way.

The estimates of the remainder terms in Corollary 1 can be got
from (23) by choosing for example
s—1+4cyo

)

s
{ co1(loglog z)'/3logloglogz  in the common case,
B c21(loglog z logloglog z)/® if s is fixed,

with sufficiently small constants cag, co1 and by making some simple cal-
culations.
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The proof of Corollary 2 is based on the method of characteristic
functions. This method is well-known. It is explained for example in [6].

The proof of Corollary 4 is based on Weyl’s well-known theorem [10]
about the uniform distribution mod 1 of a number sequence. This proof
can be realized in the same way as in [9].

For the proof of Corollary 5 it is enough to repeat the proof of the
analogous result from [9].
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