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A companion to a Lehmer problem

By M. V. SUBBARAO (Edmonton)

Dedicated to Professors Zoltán Daróczy and Imre Kátai
on their 60th birthday

Abstract. We here consider a new problem analogous to Lehmer’s problem con-
cerning n for which ϕ(n)|n− 1, which is just as challenging as the Lehmer problem. A
particular case of this problem is as follows: if p1, . . . , pr are distinct odd primes and if
(p1 + 1) . . . (pr + 1) ≡ 1 (mod p1 . . . pr), is r = 1?

0. Introduction

In 1932 D. H. Lehmer [3] raised a question which has now become
one of the most famous unsolved problems of elementary number theory.
If ϕ(n) denotes the Euler totient, he asked if there is an integer n for which
ϕ(n) is a proper divisor of n−1, i.e. a divisor other than 1 and n−1 itself.
One can easily show that this is equivalent to the following problem: If
p1, . . . , pr are distinct odd primes and if we have

(p1, . . . pr)− 1 ≡ 0
(
mod (p1 − 1) . . . (pr − 1)

)
,

does it necessarily follow that r = 1?
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For forty years after Lehmer’s paper was published, it was completely
ignored as Lehmer lamented. But from the early seventies on, it at-
tracted much attention and numerous papers were published since 1972,
though the problem remains unsolved. In 1971, this author [12] consid-
ered the unitary analogue (stated below) of Lehmer’s Problem; later he
and Prasad [13] obtained several new results concerning these problems.

If ϕ∗(n) denotes the unitary analogue of ϕ(n) (so that if n=pa1
1 . . . aar

r ,
then ϕ∗(n) = (pa1

1 − 1) . . . (par
r − 1)), the author’s question is whether

ϕ∗(n)|(n− 1) necessarily implies that n is a prime power. If the answer to
this is in the affirmative, then so is the answer to Lehmer’s question but
not the reverse.

In this paper, we raise “companions” to these problems which seem
just as difficult as the Lehmer problem. Namely, if p1, . . . , pr are distinct
primes, and if (p1 + 1) . . . (pr + 1) ≡ 1 (mod p1 . . . pr), is r necessarily
= 1? The author conjectures that this is so. More generally, the author
conjectures that for arbitrary positive integers a1, . . . , ar and distinct odd
primes p1, . . . , pr the relation (pa1

1 + 1) . . . (par
r + 1) ≡ 1 (mod pa1

1 . . . par
r )

implies r = 1.

1. Notation and definitions

Unless otherwise stated, we use throughout the following notation

1 < n = pa1
1 . . . par

r

where p, p1, . . . , pr are distinct primes
ϕ(n) is Eulers totient
σ(n) = sum of the positive divisors of n

ω(n) = number of distinct prime divisors of n

ϕ∗(n) =
r∏

i=1

(pai
i − 1), the unitary totient

σ∗(n) = sum of the unitary divisors of n, where by a “unitary divisor
of n′′

we mean a divisor d of n such that d and n/d are relatively prime.
ψ(n) = the Dedekind function given by

ψ(n) = n
∏

p|n

(
1 +

1
p

)
=

∑

dδ=n

µ2(d)δ =

sum of those divisors of n whose conjugates are square free.
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2. Lehmer’s Problem:
Generalization and some conjuectures

As already mentioned Lehmer asked the equivalent of: If ϕ(n)|n−1,
is n a prime? Several people worked on this still unsolved problem (Leh-

mer [3], Schuh [7], Lieuwens [4], Kishore [2], Cohen and Hagis [1],
Hagis [5], Pomerance [6], Prasad, Rangamma [8], Prasad and Sub-

barao ([9], [12], [13]) and several others).
For M ≥ 1, define

SM = {n > 1 : Mϕ(n) = n− 1}.

Clearly, S1 is the set of primes. The question then is: Does SM have any
composite numbers for M > 1. Clearly, for M > 1, n ∈ SM implies that
n is odd and square-free. For n ∈ SM , M > 1, (this is assumed in all that
follows)

ω(n) ≥ 7 (Lehmer [7])

ω(n) ≥ 13 (Keshore [2])

≥ 14 (Peter Hagis, Jr. [5])

3|n =⇒ ω(n) ≥ 212 (Lieuwens [4])

≥ 1850 (Prasad and Subbarao [9])

≥ 29884 (Hagis [5])

The set SM has density 0 (Pomerance [6]).

(1) For each n ∈ SM , M > 1, we have n < r2r

, where r = ω(n)

(Pomerance (1977, [6]). Prasad and Subbarao [13] improved this in
1985 to n < (r − 1)2

r−1
. Pomerance [6], proved that the number of n ≤ x

in any
SM (M > 1) is 0

(
x1/2 log3/4 x(log log x)−1/2

)
.

Conjecture (Pomerance [6]). The number of n ≤ x in all Sn, n > 1,

is 0(nε) for every ε > 0.
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The author formally makes the following

Conjecture A. ϕ(n)|(n− 1), n > 1 ⇐⇒ n is a prime.

Lehmer [3] himself said that he was tempted to make this conjecture.

Lehmer’s problem as a limiting case. We first state the following:

Theorem. For r = 2, 3, . . . and n > 1, we have

(2) nr − 1 ≡ 0 (mod ϕ(n)σ
(
nr−1)

)

if and only if n is a prime.

The proof is easy and is omitted.

Remark. The case r = 1 is the Lehmer Problem.

Remark. We note that the relation (2) implies that n is square-free.

Hence the result (2) is equivalent to

Theorem. For any given integer k > 1 and finite number of distinct

primes p1, . . . , pr, the congruence

pk
1 . . . pk

r ≡ 1
(
mod (pk

1 − 1) . . . (pk
r − 1)

)

is possible if and only if r = 1.

This itself is a special case of

Theorem. For any any finite set of distinct primes p1, . . . , pr and for

arbitrary positive integers a1, . . . , ar, and for all integers k ≥ 2, the relation

pka1
1 . . . pkar

r − 1 ≡ 0
(
mod (pka1

1 − 1) · · · (pkar
r − 1)

)

holds if and only if r = 1.

Again, we shall omit the proof.

Remark. In 1971 this author [12] made the conjecture which in effect
says that the last Theorem holds for k = 1 also.

Equivalently,

Conjecture B (Subbarao [12]). For n > 1, the relation ϕ∗(n)|(n−1)
implies that n is a prime power.
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Remark. If Conjecture B holds so also Conjecture A. The reverse
implication is false.

3. Some results connected with Conjecture B

In this section we assume that n satisfies ϕ∗(n)|(n− 1). Define

S∗(M) = {n : Mϕ∗(n) = n− 1, n > 1}
and

N∗(x) = #{n : n ≤ x, n ∈ S∗(n) for some n > 1}.
Then we can show ([13]) that n is odd and is not a powerful number (an
integer is powerful whenever in its canonical form, all powers of primes
are ≥ 2). Moreover

ω(n) ≥ 11 and n > 1017.

These can be further improved easily.

N∗(x) = 0
(
x1/2 log2 x(log log x)−2

)

If ω(n) = r then
n < (r − 1)2

r−1
.

Note that this improves Pomerance’s result (1). If p | n, q ≡ 1 (mod p),
then q - n.

3 | n =⇒ ω(n) > 1850.

4. A Companion to the Lehmer problem

We first prove the

Theorem. For every integer k>1, the relation (pi are distinct primes)

(3) (pk
1 + 1) . . . (pk

r + 1) ≡ 1 (mod pk
1 . . . pk

r )

implies that r = 1.

More generally, for arbitrary positive integers a1, . . . , ar and every
integer k > 1, the congruence

(4) (pa1k
1 + 1) . . . (park

r + 1) ≡ 1
(
modpa1k

1 . . . park
r

)
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implies that r = 1.

Proof. Write (3) as

(pk
1 + 1) . . . (pk

r + 1) = 1 + M(pk
1 . . . pk

r )

where M is an integer ≥ 1. This implies

1 ≤ M <

r∏

i=1

(
1 +

1
pk

i

)
<

r∏

i=1

(
1− p−k

i

)−1

<

r∏

i=1

(
1− p−2

i

)−1
, since k ≥ 2

<
∏
q

(1− q−2)−1 = ζ(2) = π2/6 < 2,

where q ranges over all primes, and ζ(s) is the Riemann zeta function.
Hence M = 1, giving

(pk
1 + 1) . . . (pk

r + 1) = (pk
1 . . . pk

r ) + 1,

which is impossible if r > 1, since then the left side is

(pk
1 + 1)(pk

2 . . . pk
r )

which is greater than the right side.
Proof of the more general result (4) is similar.

Remark. Recalling that for n = pa1
1 . . . par

r , σ∗k(n) = (sum of the k-th
powers of the unitary divisors of n) = (pka1

1 +1) . . . (pkar
r +1), we can state

the last theorem as

Theorem. For r = 2, 3, . . . , we have σ∗r (n) ≡ 1 (mod n) =⇒ n = a
prime power.

The author believes that this result holds for r = 1 also.

Conjecture C (Subbarao).

(5) σ∗(n) ≡ 1 (mod n) ⇐⇒ n is a prime power.

In particular, for arbitrary distinct primes p1, . . . , pr, r ≥ 1,

(6) (p1 + 1) . . . (pr + 1) ≡ 1 (mod p1p2 . . . pr) ⇐⇒ r = 1.
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Equivalently, ψ(n) ≡ 1 (modn) ⇐⇒ n = a prime.

Some results related to (6).

Adapting the ideas and methods of our earlier paper [13], we can
derive marry results concerning Conjecture C analogous to those in that
paper. We content ourselves mentioning below a few of them, mostly
skipping proofs.

Definitions. For M = 1, 2, 3, . . .

T (M) = {n : ψ(n) = 1 + Mn}
T ∗(M) = {n : σ∗(n) = 1 + Mn}

= {n : (pa1
1 + 1) . . . (par

r + 1) ≡ 1 + Mn}

Remarks. All the n in T (M) and T ∗(M) are square-free.

T (M) ⊂ T ∗(M)

T (1) = {set of all primes}
T ∗(1) = {set of all prime powers}.

Our Conjecture C is that for M > 1, T (M), T ∗(M) are empty.
In the sequel we assume that M > 1, unless stated otherwise explicitly.

(7) n ∈ T ∗(M) =⇒ n is not a powerful number.

M is odd ≥ 3 and ω(n) ≥ 16, n > 1020.
Taking {qi} to be the sequence of odd primes, the last two results

in (7) follow from (writing n =
r∏

i=1

pai
i )

M
r
<

i=1

∏
(pai

i + 1)pai
i <

r∏

i=1

(pi + 1)/pi

≤
r∏

i=1

(qi + 1)/qi < 3 if r ≤ 15.

Hence, M being odd, we have r ≥ 16 and n ≥ q1q2 . . . q16 ≥ (9.6)1020.
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We easily obtain the following result. If n ∈ T ∗(M), M > 1, we then
obtain: if p | n and qβ +1 ≡ 0 (mod p) then qβ cannot be a unitary divisor
of n. In particular, if p and q are prime such that p - n and q + 1 ≡ 0
mod p, then q - n.

We can get improved lower bounds for ω(n) with conditions on n. For
example

Theorem. If n ∈ T (M), M > 1, then

(8) 3 | n =⇒ ω(n) ≥ 185.

We here use only simple arguments, but we can improve this result
using computer-oriented methods as in [5].

Proof of (8). We adapt an idea used in [10]. Since n is square free,
say n = p1 . . . pr we have

(p1 + 1) . . . (pr + 1) = ψ(p1 . . . pr) = Mp1 . . . pr + 1.

Let p1 = 3. Since pi 6≡ −1 (mod pi) for j 6= i we have

(9) pi ≡ 1 (mod 3), i ≥ 2

and so pi + 2 ≡ 0 (mod 3), pi + 4 ≡ 2 (mod 4) so that in view of (9), pi + 2
and pi + 4 cannot divide n. It follows that

(10) pi+1 ≥ pi + 6 for 2 ≤ i ≤ r − 1.

In particular, p2 ≥ 7.

We now show that

M <
(4

3

)(p2 + 1
p2

) (p3 + 6r − 17
p3 − 5

)1/6

.

Using (10) we have

p4 ≥ p3 + 6, p5 ≥ p4 + 6 ≥ p3 + 12,

and in general pi ≥ p3 + 6i− 18, 3 ≤ i ≤ r. Thus

M <
(
1 +

1
p1

)
. . .

(
1 +

1
pr

)
=

(
1 +

1
3

) (
1 +

1
p2

) r∏

i=3

(
1 +

1
pi

)
.
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Noting that x+1
x is a decreasing function of x for x > 0 we get

M <
4
3

(p2 + 1
p2

) r∏

i=3

(p3 + 6i− 17
p3 + 6i− 18

)
.

Thus

M6 <
(4

3

)6 (p2 + 1
p2

)6 r∏

i=3

(p3 + 6i− 17
p3 + 6i− 18

)6

.

This gives, on using the fact that

x− a

x− (a + 1)
<

x− (a + 1)
x− (a + 2)

for a = 17, 18, . . .

that

M6 ≤
(4

3

)6 {(p2 + 1
p2

)6 r∏

i=3

(p3 + 6i− 17
p3 + 6i− 18

)

×
(p3 + 6i− 18

p3 + 6i− 19

)
· · ·

(p3 + 6i− 22
p3 + 6i− 23

)}

=
(4

3

)6(p2 + 1
p2

)6

·
(p3 + 6r − 17

p3 − 5

)
.

From this we can deduce that if 7 - n so that p2 ≥ 13, p3 ≥ 19, then

r >
1
3

(13M

21

)6

− 1
3
.

Use the fact that p3+6r−17
p3−5 is a decreasing function of p3 and that x+1

x

is a decreasing function of x for x > 0; we get on using p2 = 13, p3 = 19,
that

M <
4
3
·
(14

13

) (19 + 6r − 17
19− 5

)1/6

<
(56

39

) (6r + 2
14

)1/6

=
(56

39

) (3r + 1
7

)1/6

.

This gives

M6 <
(56

39

)6

· 3r + 1
7

.
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Hence

r >
7
3

(39M

56

)6

− 1
3
.

Utilizing the fact that M ≥ 3, this gives

ω(n) = r ≥ 7
3

(117
56

)6

− 1

from which we get the theorem in the case when 7 - n.
In the case 7 | n, then p1 = 3, p2 = 7, p3 ≥ 19, p4 ≥ 31, so pi ≥

p4 + 6i− 24 for i ≥ 4. Proceeding as in the previous case, we get

M <
3 + 1

3
· 7 + 1

7
· (p3 + 1)

p3

r∏

i=4

p4 + 6r − 23
p4 + 6r − 29

<
3 + 1

3
· 7 + 1

7
·
(p3 + 1

p3

) (p4 + 6r − 23
p4 − 5

)1/6

since p3 ≥ 19, p4 ≥ 31, this gives

M <
32
21
· 20
19
·
(31 + 6r − 23

31− 5

)1/6

=
640
399

(3r + 4
13

)1/6

.

Hence

r >
13
3

(399M

640

)6

− 4
3
.

Since M ≥ 3, this gives r > 185.
Hence the theorem follows in this case also.

Remark. Using the computer, one can get better results similar to
those of Peter Hagis [5] adapting his methods. One can also improve the
result (8) by using the method adopted in the proof of ([13], Theorem 5)
by proving that 3 | n =⇒ ω(n) > 2557; n > (5.9)1010766. Details will
appear elsewhere.

Remark. It is easy to show that if 3 | n, n ∈ T (M), that ω(n) is odd
while if 3 | M , then ω(n) is even.

Several of the results of our earlier paper [13] have their analogues for
the function ψ(n) on suitably modifying the ideas and details there. For
instance can prove
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Theorem. If n ∈ T ∗(M) with ω(n) = r, then n < (r − 1)2
r−1

.

We give a complete proof of this here.

Lemma. If n ∈ T
∗
M , m‖N , 1 ≤ m < N , then σ∗(m)/m < n.

Proof. For m = 1, the lemma is obvious, let us assume that m > 1
has exactly (r − 1) unitary prime power divisors of N , where ω(N) = r.
Write m′ = N/m, so that (m,m′) = 1, and m′ = a prime power = pα, say.

Since N ∈ T ∗M , we have

1 = σ∗(N)−MN = σ∗(m)σ∗(m′)−Mmm′

= σ∗(m)(m′ + 1)−Mmm′

= m′(σ∗(m)−Mm) + σA(m).

Since σ∗(m) ≥ 2, this gives σ∗(m) − Mm < 0, from which the lemma
follows.

Lemma. Suppose N ∈ T ∗M , M > 1. If m‖N , 1 < m < N , and

σ∗(m)/m < M , then the least among the prime power divisors of m′ =
N |m is less that mω(m′).

Proof. Since N is odd, we have m ≥ 3. Write m′ = pβ1
1 pβ2

2 . . . pβr
r

with pβ1
1 < pβ2

2 < · · · < pβr
r . Then

σ∗(m)/m < M < σ∗(N)/N =
σ∗(m)

m
· σ∗(m′)

m′

which implies σ∗(m′)/m′ > Mm/σ∗(m) >= 2, on using the previous lemma.
This gives

(11)
r∏

i=1

(pβi

i + 1)

pβi

i

> 2.

Since pβ1
1 < pβ2

2 < · · · < pβr
r and each pi is odd, we get pβi

i ≥ pβ2
2 +2(i− 1)

for i = 2, 3, . . . , t. Hence, by the decreasing nature of x/(x− 1) and (11),
we get

(12)
r∏

i=1

(pβ1
1 + 2i− 1

pβ1
1 + 2i− 2

)2

> 4.
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Again, using the fact that x/(x− 1) is a decreasing function of x, we have

pβ1
1 + 2i− 1

pβ1
1 + 2i− 2

<
pβ1
1 + 2i− 2

pβ1
i + 2i− 3

for each i, from which we get from (12).

4 <

r∏

i=1

( β1
1 + 2i− 1

pβ1
1 + 2i− 2

)2

<

r∏

i=1

(pβ1
1 + 2i− 1

pβ1
1 + 2i− 2

) (pβ1
i + 2i− 2

pβ1
1 + 2i− 3

)

=
t∏

i=1

(pβ1
i + 2i− 1

pβ1
i + 2i− 3

)
=

pβ1
i + 2t− 1

pβ1
1 − 1

.

This gives
pβ1
1 < 1 + 2t/3 < 3t ≤ mt,

thus proving the lemma.

Lemma. If N ∈ T ∗M so that σ∗(ω)/N > M , and N = pa1
1 pa2

2 . . . par
r ,

with pa1
1 < pa2

2 < . . . par
r , then for i = 2, 3, . . . , r, we have

pai
i < (r − i + 1)

i−1∏

j=1

(
p

aj

j

)
.

Proof. Fix i and write m =
i−1∏
j=1

p
aj

j . Then m‖N , m 6= 1, m 6= N ,

so that by the Lemma, σ∗(m)/m < M . Also using σ∗(N) = 1 + MN , we
have σ∗(N)/N > M .

Now the result of the following lemma follows from the last lemma.

Lemma. If N = pa1
1 pa2

2 . . . par
r , with pa1

1 < par
2 . . . par

r , is such that

σ∗(N)/N > 2, then pa1
1 < 1 + 2(r/3).

Proof. This is implied in the result of the previous lemma (see the
last sentence in its proof).

Proof of the last Theorem. Suppose n = pa1
1 < pa2

2 < · · · < par
r ,

so that σ∗(n)/n > 2 and r ≥ 16. Hence the last lemma gives pa1
1 <

1 + (2r/3) < r − 4.
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Now from the two last lemmas we successively have

pa2
2 < (r − 1)pa1

1 < (r − 4)(r − 1) < (r − 1)2

pa3
3 < (r − 2)pa1

1 pa2
2 < (r − 2)(r − 1)(r − 4)(r − 1)

= (r − 2)(r − 4)(r − 1)2 < (r − 1)2
2

and so on.
Hence

n = pa1
1 pa2

2 . . . par
r

< (r − 1)(r − 1)2(r − 1)2
2
. . . (r − 1)2

r−1

= (r − 1)2
r−1

.

We can also establish the following theorem analogous to those for
the ϕ and ϕ∗ cases proved by Pomerance [6] and Prasad and Sub-

barao [13].

Theorem. The number of n ≤ x for which n ∈ T ∗(n) for any n ≥ 3
is

0
(
x1/2 log2 x(log log x)−1/2

)
.

We omit the proof.
Using computational methods as it was done by Hagis [5], we can

obtain several results analogous to those of Hagis. For example,

Theorem. If ψ(n) = 1 + Mn, where M ≥ 3 and (15, n) = 1, then

ω(n) ≥ 269.

Proof. We adapt an idea due to Hagis [5]. From the relation ψ(n) =
1 + Mn, we get

M <
ψ(n)

n
=

∏

p|n
(p + 1)/p.

Assume now that (15, n) = 1. Take the set

S = {7, 11, 17, 19, 23, 29, 31, 37, 41}.
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We shall say that a subset A (including possibly a nul set) of S is feasible
if whenever p ∈ A and q ∈ A, then q + 1 6≡ 0 (mod p). For each feasible
subset A, define for P ≥ 41 a prime,

FA(P ) =
∏

pA

(p + 1)/p ·
p∏

q=43

∗
(q + 1)/q,

where Π∗ indicates that the product is taken over all primes q such that
q + 1 6≡ 0 (mod p) if p ∈ A. If QA denotes the smallest prime P such that
FA(P ) ≥ 3, it follows from M < (p + 1)/p that if the set of prime factors
of n which do not exceed 41 in A, then ω(n) ≥ the number of prime

factors in FA(QA) and n ≥ ∏
p<A

p ·
QA∏

q=43

∗
q. A computer search showed

min
A

QA = 11981 when A ran over all the feasible subsets of S. Also the

‘minimal A’ is
B = {7, 11, 17, 19, 23, 29, 31}

and the minimal product is

∏

p∈B

p ·
11981∏
q=43

∗
q

and the minimal ω(n) = 269. Hence the theorem follows.

Theorem. If ψ(n) = 1+Mn and 3 - n, n 6= a prime (so that M ≥ 3),
we have ω(n) ≥ 123.

Proof. We proceed as in the previous theorem taking
S = {5, 7, 11, 13, 17, 19, 23, 29, 31, 37} and find QA = 761, and the minimal
feasible set is B = {5, 7, 11, 17, 23, 31}.

5. Concluding remarks

We have considered only a few of the several possible results analogous
to those for ϕ and ϕ∗.

The Lehmer problem and its unitary analogue can be integrated into
a single general problem as was done by Prasad and this author [9] in
terms of Narkiewich’s regular convolution: However we shall not go into
its details.
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Finding possible characterizations of primes involving congruences for
arithmetic functions is generally not an easy thing except in “obvious”
cases. Thus it is easy to see that σ(n)ϕ(n)|(n2 − 1) is a characterization
for n to be a prime. For distinct odd primes p1, . . . , pr, the result

p2
1 . . . p2

r − 2 ≡ 0
(
mod (p2

1 − 2) . . . (p2
r − 2)

)

is possible only if r = 1. The author does not know if the same conclusion
holds when the p2

i in the above are replaced by pr
i for r = 1 or r > 2.

Consider the conguences

nσ(n) ≡ 2
(
modϕ(n)

)

and
ϕ(n)τ(n) + 2 = 0 (mod n)

which are satisfied by all primes. The only composite solutions of the
former are 4, 6, 22, whereas no composite solution other than 4 for the
latter congruence is known so far. We refer to [15] for details.
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