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On common eigenfunctions of difference operators
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Abstract. Exponential functions on the reals can be characterized as normed
eigenfunctions of the differential operator belonging to nonzero eigenvalues. Exponen-
tial functions on abelian groups are defined as homomorphisms into the multiplicative
group of nonzero complex numbers. In other words they are common normed eigen-
functions of all translation operators. In this paper nonconstant exponential functions
on some abelian groups are characterized as those common normed eigenfunctions of
all difference operators of order n, which do not belong to their common kernel.

In [3] we studied functional equations of the type

(1) f(x + ny) +
n−1∑

k=0

ck(y)f(x + ky) = 0

on locally compact abelian groups (see also [4], Chapter 3, Section 13). As
a main result we proved that on finitely generated discrete abelian groups,
or on compactly generated locally compact abelian groups, in which the
set of all compact elements is connected, every continuous complex valued
function f satisfying an equation of the above form with some complex
valued functions ck is an exponential polynomial. In this paper we consider
the special case (2) (see below) of the above functional equation and we

Mathematics Subject Classification: Primary 39B40, Secondary 39B50.
Key words and phrases: functional equation, spectral synthesis.
Research supported by FKFP 0310/1997 and OTKA Grant T-016846



700 László Székelyhidi

characterize all solutions of it on some types of abelian groups. It turns
out that this leads to a new characterization of exponential functions.

If G is a locally compact abelian group, then the difference opera-
tor ∆n

y of order n is defined for any y in G and for any positive integer n
in the usual way: if x, y are in G, then

∆n
yf(x) =

n∑

i=0

(
n

i

)
(−1)n−if(x + iy),

for any complex valued function f on G. The continuous complex val-
ued function f is called a generalized polynomial of degree at most n, if
∆n+1

y f(x) = 0 holds for any x, y in G. In other words, polynomials of
degree at most n are the elements of the common kernel of the difference
operators of order n + 1. For instance, if G is the additive group of the
reals equipped with the usual topology, then generalized polynomials of
degree at most n are exactly the ordinary polynomials of degree at most
n. For more about generalized polynomials see e.g. [4].

If G is a locally compact abelian group, then any continuous homo-
morphism of G into the additive group of the reals is called an additive
function, and any continuous homomorphism of G into the multiplicative
group of nonzero complex numbers is called an exponential function. A
product of additive functions is called a monomial and a product of a
monomial and an exponential function is called an exponential monomial .
Complex linear combinations of monomials, resp. exponential monomials
are called polynomials, resp. exponential polynomials. Any polynomial is
a generalized polynomial in the above sense. For more about polynomials
and exponential polynomials on abelian groups see e.g. [4].

Exponential functions are common eigenfunctions of all translation
operators. As any difference operator is a linear combination of transla-
tion operators, exponential functions are also common eigenfunctions of
all difference operators of any order. The natural question arises: which
functions are the common eigenfunctions of all difference operators of a
fixed order? If the fixed order is one, then the common eigenfunctions
are the constants, forming the common kernel, and constant multiples of
exponentials. The subject of this paper is to prove a partial converse of
this statement for higher order difference operators.

For any locally compact abelian group G the symbol C(G) denotes
the locally convex topological vectorspace of all continuous complex val-
ued functions equipped with the pointwise operations and the topology
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of uniform convergence on all compact sets. A closed linear translation
invariant subspace of C(G) is called a variety . For instance, the closed
linear subspace generated by all translates of a function in C(G) is a va-
riety, which is called the variety generated by the given function. The set
of all exponential functions, resp. exponential monomials contained in a
variety is called the spectrum, resp. the spectral set of the variety. We say
that spectral synthesis holds for a given variety, if this variety is equal to
the closure of the linear hull of its spectral set. If spectral synthesis holds
for any variety in C(G), then we simply say that spectral synthesis holds
for G. For instance, spectral synthesis holds for R, and for any finitely
generated discrete abelian group. For more about spectral synthesis see
e.g. [1], [2], [4].

As it has been pointed out in [4] spectral synthesis can be utilized for
the solution of some types of functional equations. Here we consider the
functional equation

(2) ∆n
yf(x) = f(x)g(y),

where we suppose that G is a locally compact abelian group, f, g : G → C
are continuous functions, n is a fixed positive integer and (2) is supposed
to hold for any x, y in G. In this case we say that f, g form a solution
of (2). Obviously (2) is a special case of (1), but the results of [3] could be
used only to derive that f in (2) must be an exponential polynomial.

Our main result establishes that nonconstant complex exponential
functions on G can be characterized as common continuous normed eigen-
functions of all difference operators of order n belonging to nonzero eigen-
values, if G is an n-divisible locally compact abelian group for which spec-
tral synthesis holds. Here n is a fixed positive integer, “normed” means
that f(0) = 1 and an abelian group is called n-divisible, if the mapping
x 7→ nx is surjective.

Theorem. Let n be a positive integer and let G be an n-divisible

locally compact abelian group for which spectral synthesis holds. Let

f, g : G → C be continuous functions, where f is nonidentically zero. The

functions f, g form a solution of (2) if and only if

(i) either g is identically zero and f is a generalized polynomial

of degree at most n− 1,
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(ii) or there exists an exponential function m on G and a complex

number c such that

f(x) = cm(x),

g(x) = (m(x)− 1)n

holds for every x in G.

Proof. It is a routine calculation to check that the functions given
in (i) and (ii) form a solution of (2). Conversely, suppose that f 6= 0 and
g are functions forming a solution of (2). If g is identically zero then

∆n
yf(x) = 0

holds for all x in G, hence f is a generalized polynomial of degree at most
n − 1 (see e.g. [4]). Now suppose that g is nonidentically zero. It is clear
that any function in the variety generated by f , together with g forms
a solution of (2). As f is nonidentically zero then by spectral synthesis
on G there exists an exponential function m such that m, g form a solution
of (2). Hence we have for all x, y in G

∆n
ym(x) = m(x)(m(y)− 1)n = m(x)g(y),

that is, g(y) = (m(y)− 1)n holds for all y in G. On the other hand, if m0

is any exponential function for which m0, g form a solution of (2), then

(m0(y)− 1)n = (m(y)− 1)n

holds for any y in G. It follows for any m(y) 6= 1 that

m0(ny) = m0(y)n(1−m0(−y))n(1−m(−y))−n

= (m0(y)− 1)n(m(y)− 1)−nm(y)n = m(ny),

and hence m0 = m. This means that the spectrum of the variety generated
by f contains the exponential function m only, where m 6= 1. Now we
determine the spectral set of the variety generated by f . Suppose that the
exponential monomial x 7→ p(x)m(x) belongs to this variety with some
monomial p. If p is nonconstant, then by translation invariance we infer
that x 7→ a(x)m(x) also belongs to the variety for some nonzero additive
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function a (see [4], Lemma 4.8, p. 44), which means, that together with g

it forms a solution of (2). By substitution we have for all x, y in G

n∑

i=0

(
n

i

)
(−1)n−ia(x + iy)m(y)i = a(x)(m(y)− 1)n,

which implies

a(y)
n∑

i=0

(
n

i

)
(−1)n−iim(y)i = 0

or any y in G. On the other hand, we have

a(y)
n∑

i=0

(
n

i

)
(−1)n−iim(y)i = na(y)m(y)(m(y)− 1)n−1

for any y in G. This implies that a(y)(m(y)− 1) = 0, that is a(y)m(y) =
a(y) for any y in G. As m is different from the exponential function 1 and
different exponential functions are linearly independent over polynomials
(see e.g. [4], Lemma 4.3, p. 41), we have a contradiction. That means, the
spectral set of the variety generated by f consists of the constant multiples
of m. The proof is complete by spectral synthesis.

We can formulate two corollaries.

Corollary 1. Let f, g : R→ C be continuous functions, f is noniden-

tically zero, and let n be a positive integer. Then f, g form a solution of (2)
if and only if

(i) either g is identically zero and f is a polynomial of degree at

most n− 1,

(ii) or there exist complex numbers λ, c such that

f(x) = ceλx,

g(x) = (eλx − 1)n

holds for every x in R.
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Corollary 2. Let n be a positive integer, G a discrete n-divisible
finitely generated abelian group and let f, g : G → C be functions, where f
is nonidentically zero. The functions f, g form a solution of (2) if and only
if

(i) either g is identically zero and f is a generalized polynomial
of degree at most n− 1,

(ii) or there exists an exponential function m on G and a complex
number c such that

f(x) = cm(x),
g(x) = (m(x)− 1)n

holds for every x in R.

Here we give an example which shows that the Theorem is no longer
valid if the hypothesis on n-divisibility is dropped. Let G be the discrete
abelian group Z and let n = 4. Let for any x in Z

f(x) = ix + (−i)x,

g(x) = (ix − 1)4,

where i is the complex imaginary unit. Then f, g form a solution of (2), f, g
are nonidentically zero, and f is not a constant multiple of an exponential,
as f(1) = 0. We note that Z is finitely generated, but it fails to be 4-
divisible.
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