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Pseudo-distance dependent dimensions

By FRANCISCO G. ARENAS (Almeŕıa)

Abstract. From 1965 to 1968, Nagami, Roberts and Slaughter introduced
several definitions of dimension dependent of the metric of the space and studied the
relations between them and to the topological dimensions such as covering dimension.
In this paper we extend the definitions and results of [9], [12] and [12] to pseudo-
distance spaces (which includes quasi-metrizable spaces) with some specific topological
properties such as normality. These new results include some relevant non-metrizable
quasi-metrizable spaces as the Sorgenfrey line and the Michael line.

1. Introduction

In 1928, P. Alexandroff (see [1]) proved that a compact subspace X

of a euclidean space Rn has dimension ≤ m if and only if for every compact
polyhedron K in Rn of dimension n−m− 1 and every ε > 0, there exists
an ε-translation f : X → Rn such that f(X) ∩K = ∅. This property of
euclidean spaces was used by Alexandroff to define a dimension dependent
on the metric. Later, Smirnov proved in [15] that Alexandroff’s dimension
is equivalent to his µ dim.

In [9], [10] and [12], K. Nagami, J.H. Roberts and F. Slaughter

introduced several notions of metric-dependent function (a new type of
dimension function definable only in metrizable spaces and depending upon
the metric and not only upon the topology of the spaces) and proved
several relations between them, to the µ dim of Smirnov and to the classical
topological dimensions.
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This paper extends the definitions and results to distance spaces,
which include quasi-pseudo-metrizable spaces, with some specific topo-
logical properties such as normality. These new results include some rel-
evant non-metrizable quasi-metrizable spaces as the Sorgenfrey line and
the Michael line (see Section 4). The standard terminology about quasi-
metrics, distances and so on is taken from [13]. We recall here the notions
of pseudo-distance and quasi-metric.

Definition 1.1. A nonnegative real-valued function d : X ×X → R is
a pseudo-distance function for X if and only if d(p, p) = 0 for every p ∈ X;
d is a distance function if for every p, q ∈ X, d(p, q) = 0 if and only if
p = q.

A quasi-pseudometric on a set X is a non-negative real valued function
d on X ×X such that for all x, y, z ∈ X:

1. d(x, x) = 0, and
2. d(x, y) ≤ d(x, z) + d(z, y).
3. If d satisfies the additional condition Sup{d(x, y), d(y, x)} = 0⇔x = y,

then we shall say that d is a quasi-metric on X.
A quasi-(pseudo) metric ((pseudo-)distance) space is a pair (X, d)

such that X is a nonempty set and d is a quasi-(pseudo)metric ((pseudo-)
distance) on X.

Each quasi-pseudometric (pseudo-distance) d on X generates a topol-
ogy T (d) on X which has as a base the family of d-balls {Sd(x, r) : x ∈ X,
r > 0}, where Sd(x, r) = {y ∈ X : d(x, y) < r}.

For any other topological concepts and notations, see [3]. In par-
ticular, recall the definition of strongly hereditarily normal (SHN) spaces
from 2.1.2. of [3].

Finally, the following lemma collects all the properties of the pseudo-
distance spaces that will be needed in the proofs of the theorems of the
rest of the paper.

Lemma 1.2. Let (X, d) be a pseudo-distance space. Let define
d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, d(A) = sup{d(a, b) : a, b ∈ A} and
meshU = sup{d(U) : U ∈ U}, where A,B ⊂ X and U ⊆ P(X).

1. If F and H are two subsets of X and d(F,H) > 0, then F ∩H = ∅.
2. If f : X → [0, 1] is a mapping, d∗(x, y) = d(x, y) + |f(x) − f(y)| is a

pseudo-distance equivalent to d.

Proof. All the proofs are straightforward. ¤
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2. Pseudo-distance dependent functions

This section collects the definitions of all the pseudo-distance depen-
dent functions we are going to use through this paper.

We beging with that what was defined first.

Definition 2.1. Let (X, d) be a pseudo-distance space. We define
µ dim(X, d) as follows:

1. If X = ∅, then µ dim(X, d) = −1.

2. If there exists a sequence Ui of locally finite cozero coverings of X

such that OrdUi ≤ n + 1 for each i and lim meshUi = 0, then we say
that µ dim(X, d) ≤ n.

3. If µ dim(X, d) ≤ n and the statement µ dim(X, d) ≤ n − 1 is false,
then µ dim(X, d) = n.

4. If µ dim(X, d) is not less than n for any n, then µ dim(X, d) = ∞.

Let us recall how was this dimension introduced.
For a subspace X of Rn and ε > 0, a continuous map f : X → Rn

is called an ε-translation if d(x, f(x)) < ε for each x ∈ X. The metric
dimension µ dim was defined by Alexandroff as the least integer m such
that for every ε > 0, X admits an ε-translation into a polyhedron which
is an underlying space of a locally finite simplicial complex of dimension
= m. That definition was proved to be equivalent in Rn to the preceding
one by Smirnov in [15].

The following four dimensions were introduced in [9] and [10] for met-
ric spaces. We are not going to prove any result about the first, but we
define it for the pseudo-distance case.

Definition 2.2. Let (X, d) be a pseudo-distance space. We define
d1(X, d) as follows:

1. If X = ∅, then d1(X, d) = −1.

2. If for every pair of closed sets F , H of X with d(F,H) > 0 there exists
a closed set B, separating F and H, with d1(B, d) ≤ n − 1, then we
say d1(X, d) ≤ n.

3. If d1(X, d) ≤ n and the statement d1(X, d) ≤ n − 1 is false, then
d1(X, d) = n.

4. If there is no such integer n, then we say d1(X, d) = ∞.
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Definition 2.3. Let (X, d) be a pseudo-distance space. We define
d2(X, d) as follows:

1. If X = ∅, then d2(X, d) = −1.

2. If for any n + 1 pairs of zero sets Ci, C ′i i = 1, . . . , n + 1 of X with
d(Ci, C

′
i) > 0 for every i = 1, . . . , n + 1, there exist closed sets Bi,

i = 1, . . . , n + 1 such that
⋂

i∈NBi = ∅ and such that Bi separates Ci

from C ′i for every i = 1, . . . , n + 1, then we say d2(X, d) ≤ n.

3. If d2(X, d) ≤ n and the statement d2(X, d) ≤ n − 1 is false, then
d2(X, d) = n.

4. If there is no such integer n, then we say d2(X, d) = ∞.

Definition 2.4. Let (X, d) be a pseudo-distance space. We define
d3(X, d) as follows:

1. If X = ∅, then d3(X, d) = −1.

2. If for any finite number of pairs of zero sets Ci, C ′i i = 1, . . . , m of X

with d(Ci, C
′
i) > 0 for every i = 1, . . . , m, there exist closed sets Bi,

i = 1, . . . , m such that Bi separates Ci from C ′i for every i = 1, . . . , m

and Ord{Bi : i = 1, . . . , m} ≤ n, then we say d3(X, d) ≤ n.

3. If d3(X, d) ≤ n and the statement d3(X, d) ≤ n − 1 is false, then
d3(X, d) = n.

4. If there is no such integer n, then we say d3(X, d) = ∞.

Definition 2.5. Let (X, d) be a pseudo-distance space. We define
d4(X, d) as follows:

1. If X = ∅, then d4(X, d) = −1.

2. If for any sequence of pairs of zero sets Ci, C ′i i ∈ N of X with
d(Ci, C

′
i) > 0 for every i ∈ N, there exist closed sets Bi, i ∈ N such

that Bi separates Ci from C ′i for every i ∈ N and Ord{Bi : i ∈ N} ≤ n,
then we say d4(X, d) ≤ n.

3. If d4(X, d) ≤ n and the statement d4(X, d) ≤ n − 1 is false, then
d4(X, d) = n.

4. If there is no such integer n, then we say d4(X, d) = ∞.

Note that, since every open (closed) set in a metric space is a cozero
(zero) set, these definitions generalize those given in metric spaces.
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3. Relation between dimensions and
pseudo-distance functions

Clearly d2(X, d) ≤ d3(X, d) ≤ d4(X, d).

The first two results of this section give relations of two of our pseudo-
distance dimensions with the covering dimension of the underlying topo-
logical space.

Theorem 3.1. For any pseudo-distance space (X, d),

d4(X, d) ≤ dim X.

Proof. It is proved in [5] that the modification of covering dimension
due to Katetov and Morita involving basic covers instead of open covers
is equivalent to the following assertion: dim X ≤ n if and only if for any
n + 1 pairs of disjoint zero sets Ci, C ′i i = 1, . . . , n + 1 of X there exist
zero sets Bi, i = 1, . . . , n+1 such that Ord{Bi : i = 1, . . . , n+1} and such
that Bi separates Ci from C ′i for every i = 1, . . . , n + 1. From this result
the theorem is clear. ¤

The next lemma shows how the pseudo-distance can be modified in or-
der to obtain another pseudo-distance equivalent to d2 coinciding with the
covering dimension (and hence with the other two dimensions d2 and d3).

Theorem 3.2. If (X, ρ) is a pseudo-distance space with dim X = n,

then there exists a pseudo-distance ρ′ equivalent to ρ such that d2(X, ρ′)=n.

Proof. Since dim X = n (see [5]) there exists an essential system
of n pairs C1, C

′
1, . . . , Cn, C ′n. Let fi : X → [0, 1], i = 1, . . . , n be mappings

such that fi(Ci) = 0 and fi(C ′i) = 1.

Set ρ′(x, y) = ρ(x, y) +
∑n

i=1 |fi(x) − fi(y)|. Then ρ′ is a pseudo-
distance equivalent to ρ and ρ′(Ci, C

′
i) > 0 for each i. Thus we have

d2(X, ρ′) ≥ n and from 3.1 we obtain d2(X, ρ′) = n. ¤

Now we are going to relate d3 with µ dim.

Theorem 3.3. For any pseudo-distance normal space

(X, d), d3(X, d) ≤ µ dim X.



6 Francisco G. Arenas

Proof. Suppose µ dim X ≤ n. Let Ci, C1
i i = 1, . . . , m be a finite

number of pairs of zero sets of X with d(Ci, C
1
i ) > 0 for every i = 1, . . . , m

such that m ≥ n + 1. Let ε = Min{d(Ci, C
1
i ) : i = 1, . . . , m} > 0. By the

definition of µ dim X there exists a locally finite cozero covering U0 of X

such that OrdU0 ≤ n + 1 and meshU0 < ε
2 .

By repeated applications of a result from [6] (valid in normal spaces),
we obtain closed sets Bi, i = 1, . . . ,m and locally finite open coverings Ui,
i = 1, . . . , m of X which satisfy the following conditions:

1. Each Bi separates Ci and C ′i.
2. Ui refines Ui−1 in a one-one corresponding way.
3. Ordx Ui ≤ Ordx Ui−1 for any point x ∈ Bi.

To prove Ord Bi ≤ n, assume the contrary. Then there would be a
point x and a sequence 1 ≤ i1 < i2 < · · · < in+1 ≤ m such that x ∈ Bij ,
j = 1, . . . , n + 1.

By condition (iii), n + 1 ≥ Ordx U0 ≥ Ordx U1 ≥ · · · > Ordx Ui1 ≥
· · · > Ordx Ui2 ≥ · · · > Ordx Uin+1 .

Hence Ordx Uin+1 < n + 1 − (n + 1) = 0, a contradiction. Thus we
obtain d3(X, d) ≤ n. ¤

The next lemma is a technical step in the proof of the last result of
this section.

Lemma 3.4. Let (X, ρ) be a paracompact Hausdorff distance space

with µ dim(X, ρ) = k; then for every positive number ε > 0 there exists a

locally finite, σ-discrete, closed covering H of X such that OrdH ≤ k + 1
and meshH < ε.

Proof. Let ε be an arbitrary positive number. Then by Defini-
tion 2.1 there exists a locally finite open covering V of X such that
meshV < ε and OrdV ≤ k + 1.

As can be seen in Section VIII 3 A) and 3 B) of [8], from the paracom-
pactness of X there exists a polyhedron P with the weak topology such
that P approximates V and the combinatorial dimension of P is at most k.

Let V be the vertex set of P . Then there exists a mapping f : X → P

such that V is refined by f−1({St(v) : v ∈ V }). From the locally finite sum
Theorem 3.1.10. of [3] in normal spaces for the covering dimension and
the relation between the combinatorial dimension of a polyhedron and its
covering dimension (see [3], Section 1.10.), we have that dim P ≤ k. Since
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P is paracompact Hausdorff, the open covering {St(v) : v ∈ V } has a
locally finite open covering U =

⋃Ui such that each Ui is discrete. By
Theorem 1.3 of [7], there exists a normal open covering G of P such that
OrdG ≤ k + 1 and G < U .

Well-order the elements U of U . Let GU be the union of all elements
G of G such that G ⊂ U and G 6⊂ U1 for any U1 preceding U . Set
Gi = {GU : U ∈ Ui}, i = 1, 2, . . . . Then each Gi is discrete and

⋃Gi is
locally finite, hence normal. Moreover,

⋃Gi covers P ,
⋃Gi refines U and

Ord
⋃Gi ≤ k + 1.
By Theorem 15-10 of [16],

⋃Gi is shrinkable. Hence there exists a
closed covering

⋃Fi of P refining
⋃Gi in a one-to-one corresponding way,

where each Fi is correspondent to Gi. then each Fi is discrete,
⋃Fi is

locally finite and refines U and Ord
⋃Fi ≤ k + 1.

Set Hi = f−1(Fi); then H =
⋃Hi is a locally finite closed covering

of X such that each Hi is discrete, H < V and OrdH ≤ k + 1 and then
we have meshH < ε. ¤

This lemma shows how changes µ dim when one modifies the pseudo-
distance.

Lemma 3.5. Let (X, ρ) be a paracompact Hausdorff pseudo-distance

space with µ dim(X, ρ) = k. Let f : X → [0, 1] be a mapping. Define a

pseudo-distance ρ∗ equivalent to ρ (see 1.2) by ρ∗(x, y) = ρ(x, y)+ |f(x)−
f(y)|. Then k ≤ µ dim(X, ρ∗) ≤ k + 1.

Proof. Since ρ∗ enlarges ρ, it is evident that k ≤ µ dim(X, ρ∗). Let
us prove that µ dim(X, ρ∗) ≤ k+1. Let ε be an arbitrary positive number.
Then by Lemma 3.4, there exists a locally finite closed covering H =

⋃Hi

of X such that each Hi is discrete, OrdH≤k + 1 and ρ−meshH< ε
2 .

Set Hi =
⋃{H : H ∈ Hi}; then {Hi} is a closed covering of X of

order at most k + 1. Now pick an infinite sequence of finite sequences
ai0 = 0 < ai1 < ai2 < · · · < aimi = 1 such that ai,j − ai,j−1 < ε

2 and for
different i 6= k, ai,j 6= ak,s for all j and s, except, of course, all ai0 = 0 and
all aimi = 1.

For each i, break the closed set Hi into mi closed sets Hi ∩ {x :
ai,j−1 ≤ f(x) ≤ ai,j}, j = 1, 2, . . . , mi. Let Fi be the collection of all
such pieces. Then Ord

⋃Fi ≤ k + 2, because any x which is on a dividing
line Hi ∩ {x : f(x) = ai,j} (j 6= 0, j 6= mi) for some i will not be on
any other dividing line. Set H =

⋃
(Hi ∧ Fi). Then H is a locally finite
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closed covering of X satisfying ρ∗−meshH < ε and OrdH ≤ k + 2. From
Definition 2.1, a theorem of [6] and the equivalence between Hausdorff
paracompact and Hausdorff fully normal spaces (see [2]), we conclude that
µ dim(X, ρ∗) ≤ k + 1. ¤

Next theorem shows how to fill in the gaps between µ dim and dim, if
they exists.

Theorem 3.6. Let (X, ρ) be a paracompact Hausdorff pseudo-dis-

tance space with µ dim(X, ρ) = k < dim X = n, then there exist equivalent

pseudo-distances ρ1, . . . , ρn−k to ρ such that µ dim(X, ρi) = k + i, where

i = 1, . . . , n− k.

Proof. Let C1, C
1
1 , . . . , Cn, C1

n be an essential system of n pairs
of zero sets. Let fi : X → [0, 1] i = 1, . . . , n, be mappings such
that fi(Ci) = 0 and fi(C1

i ) = 1. Set σ0 = ρ(x, y), σi(x, y) =
ρ(x, y) +

∑i
j=1 |fj(x) − fj(y)|, i = 1, . . . , n. Then by Lemma 3.5

µ dim(X, σi−1) ≤ µ dim(X, σi) ≤ µ dim(X,σi−1) + 1 for i = 1, . . . , n.
Since d2(X,σi) ≤ µ dim(X,σi) for i=0, . . . , n, d2(X,σi−1) ≤ d2(X, σi)

for i = 1, . . . , n and moreover d2(X, σn) = n by Lemma 3.2, then the
theorem follows. ¤

4. Examples and counterexamples

To complete the picture of the relations between the pseudo-distance
dependent dimensions we have defined and the classical ones, we quote
from [10] several spaces with prescribed values of each of its dimensions.
The details of the calculations can be found in the above mentioned paper.
Note that all the examples quoted are metrizable.

Example 4.1. There exists a subset of I4 with the euclidean metric
(S, σ) with d2(S, σ) = 2 and µ dim(S, σ) = dim(S, σ) = 3.

Example 4.2. There exist spaces (Xn, ρ) with d2(Xn, ρ) = [n
2 ] and

dim Xn ≥ n− 1.

Example 4.3. There exist spaces (Yn, ρ) with µ dim(Yn, ρ) = [n
2 ] and

dim Yn ≥ n− 1.

Note that the Xn and Yn obtained replacing Kn with In have
dim Xn = dim Yn = n− 1.
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Example 4.4. There exist spaces (Zn, σi), n ≥ 2, such that dim Zn=n,
d2(Zn, σi) = d3(Zn, σi) = µ dim(Zn, σi) = i − 1, for every i = m,m+1,

. . . , n + 1, where m = [n+1
2 ] + 1.

Example 4.5. There exists a metric space (R, ρ) with d2(R, ρ) = 2,
d3(R, ρ) = µ dim(R, ρ) = 3 and dim R = 4.

There is also another relation between these dimension functions that
is valid in metric spaces but not in quasi-metric spaces. In [10], it is
proved that for every precompact metric space (X, ρ) we have d3(X, ρ) =
µ dim(X, ρ). However this result is not valid in quasi-metric spaces, as the
following example shows.

Example 4.6. Let X be the set of nonnegative integers with the fol-
lowing quasi-metric:

d(x, y) =





0 if x = y
1
y if x = 0

1 otherwise.

One can easily check that this quasi-metric space is the one-point
compactification of N with its usual topology (hence a compact metric
space). However, it is straightforward that every non-singleton has diame-
ter 1, so one cannot find a family of coverings by open sets with diameters
converging to zero, hence µ dim(X, d) = ∞; however d3(X, ρ) = 0.

Finally we mention four quasi-metrizable non-metrizable spaces with
good topological properties such as normality or paracompactness: Sor-
genfrey and Michael lines. These spaces are of those to which the results
of this paper can be applied and the previous theory not. Their definitions
and properties can be found in [4].
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