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A family of Chebyshev type methods
in the complex plane

By M.A. HERNÁNDEZ (Logroño) and M.A. SALANOVA (Logroño)

Abstract. A family of third order iterative processes that includes the Chebyshev
method is studied in the Complex Plane. Results on convergence and uniqueness of the
solution are given, as well as error estimates.

1. Introduction

The degree of logarithmic convexity, introduced in [3], is a measure of
convexity. Let g : [a, b] ⊆ R→ R be a convex, twice differentiable function
on an interval [a, b] and t0 ∈ [a, b] such that g′(t0) 6= 0. The degree of
logarithmic convexity of g at t0 is

Lg(t0) =
g(t0)g′′(t0)

g′(t0)2
.

One of the most interesting applications of the degree of logarithmic con-
vexity is its relation with the convergence of iterative processes of third
order [2]. In [4] we study the convergence of iterative processes given by
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the expression

tn,α = Gα(tn−1,α)(1)

= tn−1,α − g(tn−1,α)
g′(tn−1,α)

[
1 +

αLg(tn−1,α)
2α− Lg(tn−1,α)

]
, α ∈ R

for scalar equations. In this paper, we extend this family of iterative
processes to the Complex Plane for α < 0, and obtain convergence results
by means of the degree of logarithmic convexity.

The purpose of this paper is to solve a nonlinear complex equation

(2) f(z) = 0

using an iterative process with cubical convergence. We present a new
procedure for finding majorizing sequences [11] for the family of iterative
processes

zn,α = Fα(zn−1,α)(3)

= zn−1,α − f(zn−1,α)
f ′(zn−1,α)

[
1 +

αLf (zn−1,α)
2α− Lf (zn−1,α)

]
, α < 0

defined in the Complex Plane.
Notice that if we consider F−∞ = lim

α→−∞
Fα we obtain the well known

Chebyshev method [1]. So we say that (3) is a family of Chebyshev type
iterative processes.

Firstly we construct majorizing sequences [4] for {zn,α} given by (3)
and we apply the original Kantorovich techniques [8] in the Complex Plane.
In Section 2 we establish a convergence and uniqueness theorem in the
Complex Plane for the family (3).

In the last section we solve the principal problem of this paper, i.e.
we show that given a nonlinear complex equation f(z) = 0, we can choose
an iterative process of (3) with cubical convergence to approximate its
solution. The velocity of convergence of the iterative process of this family
is analysed by means of the asymptotic error constant [6].
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2. Convergence under strong Kantorovich type conditions
in the complex plane

Let f : Ω → C be an holomorphic function in an open and convex
domain Ω of C. Starting from z0 ∈ Ω, we use (3) for solving the equation
(2). Most of the autors study the convergence of iterative processes towards
a solution of (2) under the conditions of the Kantorovich Theorem, or
closely related theorems [10], [12]. In these results it is assumed that f

is an holomorphic function under majorant assumptions for f ′′ and f ′′′,
or the weaker assumption of Lipschitz continuity for f ′′ in Ω. Recently,
[5], we have obtained a new type of convergence theorem in the Complex
Plane, assuming that Lf ′ verifies a majorant condition. The new result
can be used in order to judge whether z0 is a convergent initial point, i.e.,
the iteration (3) starting from z0 converges.

We construct a quadratic polynomial which majorizes f and we estab-
lish results on convergence and error estimates for (3), as well as uniqueness
of solution for (2). From now, given (2), α ∈ (−∞, 0) and z0 = z0,α ∈ Ω
we assume that f satisfies the following conditions

(I)
∣∣∣∣
f(z0,α)
f ′(z0,α)

∣∣∣∣ ≤ a.

(II) We consider the equation

(4) g(t) =
1
2
t2 − t + a = 0

with two positive roots t∗ and t∗∗, (t∗ ≤ t∗∗). Equivalently a ≤ 1
2 , where

the equality holds if and only if t∗ = t∗∗.

|Lf (z)| ≤ Lg(t)
1 + 2

√
2

when |z − z0| ≤ t− t0.(III)

Lf ′(z) ∈ B

(
0, 3

(
1− 1

2α

))
for z ∈ B(z0, t∗).(IV)

Let α < 0 and let g be the polynomial given in (4). As Lg′(t) = 0 the scalar
sequence {tn,α} given by (1) converges to t∗ = 1−√1− 2a, a solution of
the equation g(t) = 0 [4].

To establish the convergence of (3) and the uniqueness of the solution
we need the following results:
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Lemma 2.1. Let f : Ω → C be an holomorphic function in an open

and convex domain Ω of C.

(i) If |Lf (z)| ≤ Lg(t)
1 + 2

√
2

when |z − z0| ≤ t− t0, and α ≤ −1
4 , then

∣∣∣∣
Lf (z)

2α− Lf (z)

∣∣∣∣
2

≤ 1
2

[
Lg(t)

2α− Lg(t)

]2

.

(ii) For α ≤ −1
4

(a) |F ′α(z)| ≤ 1
2

[
Lg(t)

2α− Lg(t)

]2 (
6α2 + (1− α)Lg(t)

+ 2α2|Lf ′(z)| − 3α
)

when |z − z0| ≤ t− t0.

(b) G′α(t) =
[

Lg(t)
2α−Lg(t)

]2(
6α2 + (1− α)Lg(t)− 3α

)
, for t ∈ [0, t∗].

Proof. To prove (i), notice that |Lf (z)| ≤ Lg(t)
1 + 2

√
2

< −2α since

Lg(t) ≤ 1
2 and α ∈ (−∞,− 1

4 ]. Therefore

∣∣∣∣
Lf (z)

2α− Lf (z)

∣∣∣∣
2

≤
[

Lg(t)
−2(1 + 2

√
2)α− Lg(t)

]2

.

On the other hand, −2(1 + 2
√

2)α − Lg(t) ≥
√

2(−2α + Lg(t)) for
t ∈ [0, t∗]. So (i) follows.

Finally, we derive (a) from (i) and, as Lg′(t) = 0, (b) is proved
(see e.g. [4], p. 61). ¤

Theorem 2.2. Let us assume (I), (II), (III) and (IV). Then, for each

α ∈ (−∞,− 1
4 ], the iterative process given by (3) converges to the root

z∗ of (2) in B(z0, t∗) ∩ Ω. If t∗ < t∗∗ then the solution z∗ is unique in

B
(
z0,

t∗+t∗∗
2

)
∩Ω. If t∗ = t∗∗ then the solution is unique in B(z0, t∗)∩Ω.

Besides |z∗ − zn,α| ≤ t∗ − tn,α.

Proof. Let {tn,α} be the real sequence obtained by (1) for α ∈
(−∞,− 1

4 ], with g given by (4). Then, {tn,α} converges to t∗ = 1−√1− 2a

[4]. Now, we are going to prove that in the previous conditions the sequence
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{tn,α} majorizes {zn,α} and the results of the theorem are attained. It is
known [8] that the sequence {tn,α} majorizes {zn,α} if the following con-
ditions are satisfied

|Fα(z0)− z0| ≤ Gα(t0)− t0.(A)

|F ′α(z)| ≤ G′α(t) when |z − z0| ≤ t− t0.(B)

The condition (A) follows immediately applying Lemma 2.1 (i).
Taking into account the Lemma 2.1 (a) and (b), (B) holds if

1
2

(
6α2 + (1− α)Lg(t) + 2α2|Lf ′(z)| − 3α

) ≤ 6α2 + (1− α)Lg(t)− 3α.

Then, (B) follows from (IV).
The uniqueness is a consequence from the well known classical theo-

rem on the existence and uniqueness of the solutions of equation (2) via
majorizing sequences [7]. ¤

Now, we ask if we can extend the values of α on
(− 1

4 , 0
)
. For this, let

b > 0, and we consider

(5) h(s) =
b

2
s2 − s + a = 0.

This equation has two positive roots s∗ and s∗∗, (s∗ ≤ s∗∗) if and only if
ab ≤ 1

2 , where the equality holds if and only if s∗ = s∗∗.
For α < 0, by Lh′(s) = 0, we have (see [4]) that the scalar sequence

sn,α = Hα(sn−1,α) = sn−1,α − h(sn−1,α)
h′(sn−1,α)

[
1 +

αLh(sn−1,α)
2α− Lh(sn−1,α)

]
,

s0 = s0,α = 0, n ≥ 1

converges to s∗ =
1−√1− 2ab

b
, a root of h(s) = 0.

Theorem 2.3. Let us assume (I), (IV) and

ab ≤ 1
2

(II∗)

|Lf (z)| ≤ Lh(s)
1 + 2

√
2

when |z − z0| ≤ s− s0.(III∗)
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Then, for each α ∈ (−∞,−ab
2

]
, the iterative process given by (3) converges

to the root z∗ of (2) in B(z0, s∗) ∩ Ω. If s∗ < s∗∗ then the solution z∗

is unique in B(z0,
1
b ) ∩ Ω. If s∗ = s∗∗ then the solution is unique in

B(z0, s∗) ∩ Ω. Besides |z∗ − zn,α| ≤ s∗ − sn,α.

Proof. Notice that, as the Lemma 2.1 we obtain that Lh(s) ≤ 1
2

in [0, s∗]. Moreover L′h(s) = h′′(s)
h′(s) (1 − 2Lh(s)), then Lh is a decreasing

function in [0, s∗]. Therefore Lh(s) ≤ ab.

Then, taking into account that |Lf (z)| ≤ ab

1 + 2
√

2
≤ −2α, we obtain,

as in the last lemma
∣∣∣∣

Lf (z)
2α− Lf (z)

∣∣∣∣
2

≤ 1
2

[
Lh(s)

2α− Lh(s)

]2

when |z − z0| ≤ s− s0.

From Lemma 2.1 (ii) and in a similar way that in Theorem 2.2, the result
follows inmediately. ¤

Notice that if α ∈ (
1
4 , 0

)
, then it is suficient to consider b = −2α > 0

and therefore we extend the values of α.

3. Practical remarks

In this section we are going to study the principal purpose of this
paper. Given the equation (2) verifiying the initial condition (I), we can
always find an iterative process of the family (3) to solve this equation.
Besides, we derive an optimization result considering the velocity of conver-
gence, and we obtain error estimates. First, we analyse the condition (IV).

Theorem 3.1. Let us assume (I), then there exist b ∈ R, b > 0 and

α < 0 such that the conditions (II∗) and (IV) are verified for h(s) given

by (5).

Proof. In this proof we find b and α such that the conditions of
Theorem 2.2 are verified.

Denote M = max{|Lf ′(z)| ; z ∈ B(z0, s∗)}, then

(i) If M ≤ 3, then Lf ′(z) ∈ B(0, 3). Let b > 0 be such that ab ≤ 1
2 . Then,

for every b > α ∈ (−∞,−ab
2

]
, we have B(0, 3) ⊆ B

(
0, 3

(
1− 1

2α

))
and

the conditions (II∗) and (IV) hold.



A family of Chebyshev type methods in the complex plane 17

(ii) If 3 < M ≤ 9 then we can choose every b > 0 such that ab ≤ 1
2 and

α ∈
[

3
2(3−M) ,−ab

2

]
. Notice that 3

2(3−M) ≤ −ab
2 . Then, as Lf ′(z) ∈

B(0,M) the conditions (II∗) and (IV) are derived.
(iii) If M > 9, as 3

2(3−M) ≥ − ab
2(1+2

√
2)

for ab ≤ 1
2 , then there is only one

α = 3
2(3−M) and b = 3

a(M−3) > 0 such that the conditions (II∗) and
(IV) hold. ¤

Figure 1.

Notice that if M ≤ 9 then there exists a domain of values for α
such that the sequence given by (3) converges, but we wonder what values
of α make that the sequence converge more rapidly. Now, we give an
optimization result by means of the asymptotic error constants [6]. We
denote

Cα =
∣∣∣∣
F ′′′α (z∗)

6

∣∣∣∣ and Cβ =
∣∣∣∣
F ′′′β (z∗)

6

∣∣∣∣
the asymptotic error constants for zn,α = Fα(zn−1,α) and zn,β=Fβ(zn−1,β)
respectively. So, we have
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Theorem 3.2. Under the conditions of the last theorem, let α, β ∈(−∞,−ab
2

]
, (α < β). Then Cα < Cβ .

Proof. We can obtain Cα =
∣∣∣∣
f ′′(z∗)2(2αN − 3)

12f ′(z∗)2α

∣∣∣∣, with N = 3 −
Lf ′(z∗) = N1 + iN2. On the other hand, it follows that 0 ≤ 2N1 − 3

α <

2N1 − 3
β , so we have

∣∣2N − 3
α

∣∣ <
∣∣∣2N − 3

β

∣∣∣, and therefore Cα < Cβ . ¤

Then, for a suitable z0 ∈ D, with z0 = z0,α = z0,β , we obtain that the
sequence {zn,α} converges to z∗ faster when the value of α is smaller, at
each case.

Now , we are going to obtain error expressions for the sequences {zn,α}
given by (3). As h(s) is a quadratic polynomial, following Ostrowski [9],

we deduce the following error bounds , where we denote θ =
s∗

s∗∗
and

d = s∗∗ − s∗.

Theorem 3.3. Let h(s) be the quadratic polinomial given by (5). We

assume that h has two positive roots s∗ ≤ s∗∗. Let {sn,α} be a sequence

defined in (3), for α ≤ −ab
2 . Then , when s∗ < s∗∗ we have

(θ
√

R )3
n

d√
R− (θ

√
R )3n

≤ s∗ − sn,α ≤

(
θ
√

2− 1
α

)3n

d
√

2− 1
α −

(
θ
√

2− 1
α

)3n

where R = H(s∗), H is given by

(6) H(x) =
αx + 2α− 1

α + (2α− 1)x

and θ
√

H(0) = θ
√

2− 1
α .

If s∗ = s∗∗, then s∗ − sn,α = (s∗ − s0,α)
(

1− 3α

2(1− 4α)

)n

.

Proof. For each α ≤ −ab
2 , let us write pn = s∗−sn,α, qn = s∗∗−sn,α,

n ≥ 0. Thus h(sn,α) = b
2pnqn, h′(sn,α) = − b

2 (pn + qn) and h′′(sn) = b. By
(3) we have

pn+1 = s∗ − sn+1,α = p3
n

αpn + (2α− 1)qn

α(pn + qn)3 − pnqn(pn + qn)
,
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and similarly

qn+1 = s∗∗ − sn+1,α = q3
n

αqn + (2α− 1)pn

α(pn + qn)3 − pnqn(pn + qn)
.

If s∗ < s∗∗, then θ < 1. Denote δk =
pk

qk
to obtain

δn+1 = δ3
n

αδn + 2α− 1
α + (2α− 1)δn

.

Taking into account that the function H(x) given by (6) is decreasing we
have

(7)
δ3n+1

0 R
3n+1−1

2 ≤ · · · ≤ δ3
nR ≤ δn+1

≤ δ3
n

(
2− 1

α

)
≤ · · · ≤ δ3n+1

0

(
2− 1

α

) 3n+1−1
2

.

Then, as qn = s∗∗ − s∗ + pn = d + pn, by (7) we derive the first part.
If s∗ = s∗∗, then pn = qn. Therefore, from (6), we have

pn+1 = pn
3α− 1
8α− 2

= pn
1− 3α

2(1− 4α)
.

By recurrence, the second part holds. ¤

Notice that there is only one restrictive condition to prove the con-
vergence of {zn,α}, that is the condition (III∗). Besides, when M ≤ 9,
there are some values of b > 0 to choose, so, the condition (III∗) is not
restrictive.

To finish,we are going to obtain sufficient conditions, easier to apply
in the practice, for the condition (III∗).

Theorem 3.4. If

∣∣∣∣
f ′′(z)

f ′(z0,α)

∣∣∣∣ ≤ b for z ∈ Ω and

∣∣∣∣
f(z)

f ′(z0,α)

∣∣∣∣ ≤
h(s)

1 + 2
√

2
when |z − z0,α| ≤ s− s0,α

then the condition (III∗) is verified.
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Proof. Notice that if |z − z0,α| ≤ s− s0,α then

∣∣∣∣
f ′(z)

f ′(z0,α)
− 1

∣∣∣∣ =

∣∣∣∣∣
∫ z

z0,α

f ′′(z)
f ′(z0,α)

dz

∣∣∣∣∣ ≤ b|z − z0,α| < b(s− s0,α) ≤ bs.

Besides s ∈ [0, s∗] and therefore bs < 1. So, we obtain
∣∣∣∣
f ′(z0,α)
f ′(z)

∣∣∣∣ ≤
1

1− b|z − z0,α| ≤
1

1− bs

and then, for |z − z0,α| ≤ s− s0,α

|Lf (z)| =
∣∣∣∣

f(z)
f ′(z0,α)

f ′(z0,α)
f ′(z)

f ′′(z)
f ′(z0,α)

f ′(z0,α)
f ′(z)

∣∣∣∣

≤ b

(1− bs)2
h(s)

1 + 2
√

2
=

Lh(s)
1 + 2

√
2
. ¤
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