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On arrangment of regular cyclic
subgroup in symmetric group

By PIOTR W. GAWRON (Gliwice) and
WITOLD TOMASZEWSKI (Gliwice)

Abstract. In this paper we investigate weakly normal and polinormal regular
cyclic subgroups in a symmetric group Sn. We give here necessary and sufficient con-
ditions for the subgroup generated by a long cycle (0 1 . . . n− 1) in Sn to be weakly
normal or polinormal. We also describe a normalizer of this subgroup in Sn.

Let Zn = {0 1 . . . n− 1} be a ring of all integers modulo n (where n is
a fixed positive integer) and let Sn be a symmetric group of degree n which
acts on Zn. As usual, Z∗n denotes a set of invertible elements in Zn. Each
cycle of the length n in Sn is called a long cycle. The subgroup generated
by a long cycle is called regular. We denote xy = y−1xy.

Let G be an arbitrary group, and D be its subgroup. We denote by
NG(D) a normalizer of D in G. If A,B ⊆ G then 〈A,B〉 denotes the
subgroup generated by A, B. If g ∈ G then D〈g,D〉 denotes the normal
closure of D in the group 〈g,D〉, that is D〈g,D〉 is the subgroup generated
by all elements dh, where d ∈ D and h ∈ 〈g,D〉. The subgroup DD〈g,D〉

denotes a normal closure of D in D〈g,D〉 and we have DD〈g,D〉 ⊆ D〈g,D〉.
A subgroup D of an arbitrary group G is called weakly normal [3]

if Dg ≤ NG(D) implies Dg = D. In paper [1] Z. I. Borevich and
O. Macedońska introduced definition of a polinormal subgroup. The
subgroup D is polinormal in G if for each g ∈ G the following property
holds: D〈g,D〉 = DD〈g,D〉

. Finally, a subgroup D is called pronormal [3]
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if subgroups D and Dg are conjugated in the subgroup 〈D, Dg〉, for each
g ∈ G. Sylow subgroups in a finite group are pronormal. Every pronormal
subgroup is weakly normal and polinormal.

In this paper we investigate weakly normal and polinormal regu-
lar cyclic subgroups in a symmetric group Sn. We give here the neces-
sary and sufficient conditions for the subgroup generated by a long cycle
(0 1 . . . n− 1) in Sn to be weakly normal and polinormal. We also describe
a normalizer of this subgroup in Sn.

If n is a prime then the regular subgroup generated by a long cycle is
a Sylow subgroup in Sn, so it is pronormal. R. I. Tyshkevich proved [5]
that if (n, ϕ(n)) = 1 (where ϕ is the Euler function), then the subgroup
generated by a long cycle in Sn is pronormal. The same result, by another
methods, was obtained by P. P. Palfy in [4].

Let γ = (0 1 . . . n− 1) be a long cycle in Sn and let Γ be the subgroup
generated by γ. A permutation η from Γ is a long cycle (i.e. it is conjugated
to γ), if η = γk, where k is an invertible element of Zn (that is, k ∈ Z∗n).
We describe a normalizer N of Γ in Sn.

Lemma 1. The normalizer N of Γ in Sn consists of all such permu-

tations η, which act on Zn as follows:

η(x) = kx + a,

where k ∈ Z∗n, a ∈ Zn. Moreover:

|N | = n · ϕ(n).

Proof. The permutation γ acts on Zn as follows:

γ(x) = x + 1.

Hence, we have: γk(x) = x+k. A permutation η belongs to N if and only
if:

ηγη−1 = γk,

for some k ∈ Z∗n.
Let η be in N , then we have:

η(x + 1) = η(γ(x)) = ηγη−1η(x) = γkη(x) = η(x) + k,
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thus by induction
η(x + y) = η(x) + ky.

If
η(0) = a, then η(y) = ky + a, and η−1(y) = k−1y − k−1a.

Conversely, let η(x) be equal to kx + a, where k ∈ Z∗n, a ∈ Zn. Hence

ηγη−1(x) = ηγ(k−1x− k−1a + 1)

= η(k−1x− k−1a + 1) = x + k = γk(x),

which finishes the proof. ¤
A weak normality of Γ in Sn is equivalent to the following condition:

if η is a long cycle that belongs to N , then η belongs to Γ. If n is a prime,
then Γ has n− 1 long cycles and there are no long cycles in N \ Γ.

If n = pα1
1 . . . pαm

m is a factorization of n, then the ring Zn is isomorphic
to a direct product of rings Zqi , where qi = pαi

i . Let Sqi
be a symmetric

group acting on Zqi , let Γi be a subgroup generated in Sqi by a cycle
(0 1 . . . qi − 1) and let Ni be the normalizer of Γi in Sqi .

Lemma 2. The normalizer N of a subgroup Γ in Sn is isomorphic to
the direct product N1 × . . .×Nm.

Proof. Let ψ be a mapping:

ψ : N → N1 × · · · ×Nm : ψ(η) = (η1, . . . , ηm),

such, that if η(x) = kx + a for k ∈ Z∗n, a ∈ Zn, then for all i ∈ {1, . . . ,m}
ηi(x) = kx + a, where all numbers are taken modulo qi. Clearly, ψ is a
homomorphism. Let η, µ ∈ N and

η(x) = kx + a, µ(x) = lx + b.

If ψ(η) = ψ(µ) then kx+a ≡ lx+b (mod qi) for i = 1 . . .m, x ∈ Z. Hence
k ≡ l, a ≡ b (mod qi), so k = l, a = b in Zn and this means that ψ is
a monomorphism. We know from Lemma 1 that |N | = n · ϕ(n). Let us
compute:

|N1 × . . .×Nm| = q1 . . . qm · ϕ(q1) . . . ϕ(qm) = n · ϕ(n),

where the last equation holds from multiplicative property of the Euler
function. It means that ϕ is a monomorphism of two groups, which have
the same number of elements, so ϕ is an isomorphism. ¤
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In the notations of Lemma 2 we get:

Lemma 3. A permutation η ∈ N is a long cycle, if and only if, each
ηi is a long cycle in Ni. A number of long cycles in N is a product of
numbers of long cycles in all Ni.

Proof. If η is a long cycle, which belongs to N , then n is equal
to the least common multiple of orders of all permutations ηi. Lengths
of different ηi are coprime, so each ηi must be a long cycle in Ni. The
converse statement is clear. Thus in N we have as many long cycles as
rows of the type (η1, . . . , ηm), where ηi is a long cycle in Ni. ¤

The following theorem was firstly presented without proof in [2].

Theorem 1. A subgroup Γ generated by a long cycle in Sn is weakly
normal if and only if n is not divisible by 8 and is not divisible by a square
of an odd prime.

Poof. We note, that if n = 4, then there are only two long cycles
in N : γ and γ3, and these cycles belong to Γ. Let n be not divisible
by 8 and by a square of an odd prime. Then for an arbitrary diviser
pi of n, there exist ϕ(qi) long cycles in a subgroup Ni. Hence there are
ϕ(q1) . . . ϕ(qm) = ϕ(n) long cycles in N and each of them belongs to Γ.
So we proved that Γ is weakly normal in Sn.

Let now n be divisible by p2 or by 8, where p is an odd prime. We
want to show that Γ is not weakly normal. For this purpose we use the
permutation acting on Zn:

σ(x) = x +
x(x + 1)

2
n

k
,

where k = p if n is divisible by p2 and k = 2 if n is divisible by 8. Then
the inverse permutation is:

σ−1(x) = x− x(x + 1)
2

n

k
.

The permutation η = σγσ−1 is a long cycle and

η(x) =
(
1 +

n

k

)
x + 1 +

n

k
.

By Lemma 1, permutation belongs to N and does not belong to Γ. So Γ is
not a weakly normal subgroup of Sn, which finishes the proof. ¤
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Corollary 1. If n is divisible by 8 or by a square of an odd prime,
then Γ is not a polinormal subgroup of Sn.

Proof. Let σ and η be the same permutations as in the proof of The-
orem 1. We show that a permutation σ normalizes the subgroup 〈γ, η〉.
Indeed by computation we get σησ−1 = γ(−1+ n

p )η2 ∈ 〈γ, η〉 and by defini-
tion of η we have σγσ−1 = η ∈ 〈γ, η〉. Hence 〈γ, η〉 ⊆ Γ〈σ,Γ〉. So we get
Γ〈σ,Γ〉 = 〈γh; h ∈ 〈σ〉〉 = 〈γ, η〉. The subgroup ΓΓ〈σ,Γ〉

is equal to Γ〈γ,η〉 and
by Theorem 1 〈γ, η〉 ⊆ N , so we have Γ〈γ,η〉 = Γ, which means that Γ is
not polinormal in Sn. ¤

The above theorem implies straightforward, such a corollary:

Corollary 2. If Γ is polinormal in Sn then it is also weakly normal.

By simple calculation it follows that for n = 6 the subgroup Γ is not
polinormal in Sn. So the converse to Corollary 2 is not true. We note that
(6, ϕ(6)) = 2 > 1, and we can prove:

Theorem 2. A subgroup Γ is polinormal in Sn if and only if
(n, ϕ(n)) = 1 or n = 4.

Before we prove the above Theorem, we will give some auxiliary
lemmas. Let, for now, n be an even integer grater than 4. So there
exists k, such that n = 2k. We take γ = (0 1 . . . 2k − 1) and g =
(3 2k − 1)(5 2k − 3) . . . . The permutation g is an involution. We also
introduce two symbols x and y for following cycles:

x = (0 2 . . . 2k − 2), y = (1 3 . . . 2k − 1).

Permutations x and y commute and have the same order k. We, also, have
a relation γ2 = xy. Let Γ be the cyclic subgroup generated by γ. The
normal closure of Γ = 〈γ〉 in the group 〈γ, g〉 is generated by all conjugates
of γ, so 〈γ〉〈γ,g〉 = 〈γh; h ∈ 〈γ, g〉〉. It is enough to take as generators
of this normal closure all elements γh for h ∈ 〈g〉. The element g is an
involution, so:

Γ〈g,Γ〉 = 〈γ〉〈g,γ〉 = 〈γh | h ∈ 〈g〉〉 = 〈γ, γg〉.

Now we describe the subgroup ΓΓ〈g,Γ〉
which, by the above is:

(1) ΓΓ〈g,Γ〉
= 〈γ〉〈γ,γg〉,

and we prove, it is generated by γ and γγg

.
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Lemma 4. The permutations g and γ satisfy the relation:

(2) (γg)2 = γ · γγg

and for all numbers l ∈ Z we have:

(3) γ(γg)l ∈ 〈γ, γγg 〉.

Proof. By calculation we get (γ)2 = xy−1 = γ · γγg

and it proves
the first part of the lemma. We prove the second part by induction on l.
Let us start from l = 2. By equation (2):

γ(γg)2 = γγ·γγg

∈ 〈γ, γγg 〉.

Let, now (3) be true for all numbers less than l, and let l ≥ 2 then γ(γg)l

=
(γ(γg)l−2

)(γ
g)2 , by inductive assumption (γ(γg)l−2

) ∈ 〈γ, γγg 〉 and by the
equation (2) (γg)2 ∈ 〈γ, γγg 〉, which finishes the proof. ¤

We have to show that Γ is not polinormal. Due to the second part of
the Lemma 4 and from the equation (1) we get:

ΓΓ〈g,Γ〉
= 〈γ, γγg 〉.

We need to show, that:
Γ〈g,Γ〉 6⊆ ΓΓ〈g,Γ〉

.

In fact, it is enough to show that:

(4) γg 6∈ ΓΓ〈,Γ〉 = 〈γ, γγg 〉.

Let us denote δ = γγg

= (0 1 2k − 2 2k − 1 . . . 5 2 3). By computations
one can find relations between γ and δ:

γ2k = δ2k = 1,

(γ · δ)k = (xy−1)k = xky−k = 1,

γ2 · δ2 = xy · x−1y−1 = 1.
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Now we want to describe groups with such relations:

Lemma 5. Let G be a group with presentation:

(5) 〈a, b | a2k = b2k = (ab)k = 1, a2b2 = 1〉
Then:

(1) every element of G can be written in the form asct, where: c = ab,
s ∈ {1, . . . , 2k}, t ∈ {1, . . . , k},

(2) |G| ≤ 2k2,

(3) if G has such an element d that ad = b then G has a relation
a2 = cs, where s is an odd integer.

Proof. First, we want to describe the commutator subgroup G′ in G.
The group G is two-generator, the commutator subgroup G′ is generated
by elements [as, bt], s, t ∈ Z. From the relation a2b2 = 1, it follows the
relation a2b = ba2. Indeed it follows from equalities: a2b = b−2b = bb−2 =
ba2. So the commutator subgroup is cyclic and generated by [a, b]. From
the relation a2b2 = 1 we have the equality ab = a−1b−1. Hence

(6) [a, b] = a−1b−1ab = (ab)2,

which means that G′ = 〈[a, b]〉 ⊆ 〈ab〉 and the subgroup H = 〈ab〉 is
normal and has order k. The quotient goup G/H is cyclic generated by
the coset aH and has order less or equal 2k. So every element of G can
be written as as(ab)t and G has the order less or equal 2k2. It proves (1)
and (2).

To prove (3) we show, first, that in G holds the relation ca = ac−1

(where c = ab). We use relations of G and the equality (6), to get:

(7) ca = aba = a2b[b, a] = aab(ab)−2 = a(ab)−1 = ac−1.

Now we prove that for every l the following holds:

(8) cla = ac−l.

Let the equation be true for all numbers less or equal to l, then by inductive
assumption and (7): cl+1a = cac−l = ac−1c−l = c−(l+1). Let now there
exists d ∈ G, such that ad = b. Then d = asct and by (8) we have:
ad = c−ta−saasct = c−tact = ac2t = b. From the last equation we obtain
the equality a2c2t = ab = c and we get the relation a2 = cs for s an odd
integer. It finishes the third part of Lemma 5. ¤
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Due to the previous Lemma we can prove that:

Corollary 3. The element γg is not in 〈γ, γγg 〉.
Proof. The subgroup 〈γ, γγg 〉 = 〈γ, δ〉 satisfies the same relations

as the group G in Lemma 5. So by that Lemma γg belongs to 〈γ, γγg 〉 if
there is a relation: γ2 = δ2s+1. We show that elements γ and δ do not
satisfy such a relation. Indeed, γ2 = xy, and δ2s+1 = (xy−1)sδ. Suppose
the relation γ2 = δ2s+1 holds then we have: δ = x1−sys−1, which never
holds because δ is a long cycle, while x1−sys−1 is not a long cycle. ¤

The following Corollary follows straightforward from Corollary 2 and
from (4):

Corollary 4. If n is an even number then the subgroup

Γ = 〈(0 1 . . . n− 1)〉 is not polinormal in Sn.

Now we can prove the main Theorem 2.

Proof of Theorem 2. Let n > 4. If (n, ϕ(n)) = 1 then by Palfy–
Tyshkievich Theorem ([4], [5]) the subgroup Γ is pronormal, so it is also
polinormal. Conversely if Γ is polinormal then by Corollary 2 it is weakly
normal. Hence n is not divisible by 8 and by a square of an odd prime
number. It means that it is enough to prove that n cannot be an even
number, which follows from Corollary 4. ¤
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