On arrangment of regular cyclic subgroup in symmetric group

By PIOTR W. GAWRON (Gliwice) and WITOLD TOMASZEWSKI (Gliwice)

Abstract

In this paper we investigate weakly normal and polinormal regular cyclic subgroups in a symmetric group S_{n}. We give here necessary and sufficient conditions for the subgroup generated by a long cycle ($\overline{0} \overline{1} \ldots \overline{n-1}$) in S_{n} to be weakly normal or polinormal. We also describe a normalizer of this subgroup in S_{n}.

Let $Z_{n}=\{\overline{0} \overline{1} \ldots \overline{n-1}\}$ be a ring of all integers modulo n (where n is a fixed positive integer) and let S_{n} be a symmetric group of degree n which acts on Z_{n}. As usual, Z_{n}^{*} denotes a set of invertible elements in Z_{n}. Each cycle of the length n in S_{n} is called a long cycle. The subgroup generated by a long cycle is called regular. We denote $x^{y}=y^{-1} x y$.

Let G be an arbitrary group, and D be its subgroup. We denote by $N_{G}(D)$ a normalizer of D in G. If $A, B \subseteq G$ then $\langle A, B\rangle$ denotes the subgroup generated by A, B. If $g \in G$ then $D^{\langle g, D\rangle}$ denotes the normal closure of D in the group $\langle g, D\rangle$, that is $D^{\langle g, D\rangle}$ is the subgroup generated by all elements d^{h}, where $d \in D$ and $h \in\langle g, D\rangle$. The subgroup $D^{D^{\langle g, D\rangle}}$ denotes a normal closure of D in $D^{\langle g, D\rangle}$ and we have $D^{D^{\langle g, D\rangle}} \subseteq D^{\langle g, D\rangle}$.

A subgroup D of an arbitrary group G is called weakly normal [3] if $D^{g} \leq N_{G}(D)$ implies $D^{g}=D$. In paper [1] Z. I. Borevich and O. Macedońska introduced definition of a polinormal subgroup. The subgroup D is polinormal in G if for each $g \in G$ the following property holds: $D^{\langle g, D\rangle}=D^{D^{\langle g, D\rangle}}$. Finally, a subgroup D is called pronormal [3]

Mathematics Subject Classification: 20B35.
Key words and phrases: permutation groups, weakly normal subgroups, pronormal subgroups, polinormal subgroups, regular subgroup.
if subgroups D and D^{g} are conjugated in the subgroup $\left\langle D, D^{g}\right\rangle$, for each $g \in G$. Sylow subgroups in a finite group are pronormal. Every pronormal subgroup is weakly normal and polinormal.

In this paper we investigate weakly normal and polinormal regular cyclic subgroups in a symmetric group S_{n}. We give here the necessary and sufficient conditions for the subgroup generated by a long cycle $(\overline{0} \overline{1} \ldots \overline{n-1})$ in S_{n} to be weakly normal and polinormal. We also describe a normalizer of this subgroup in S_{n}.

If n is a prime then the regular subgroup generated by a long cycle is a Sylow subgroup in S_{n}, so it is pronormal. R. I. Tyshkevich proved [5] that if $(n, \varphi(n))=1$ (where φ is the Euler function), then the subgroup generated by a long cycle in S_{n} is pronormal. The same result, by another methods, was obtained by P. P. Palfy in [4].

Let $\gamma=(\overline{0} \overline{1} \ldots \overline{n-1})$ be a long cycle in S_{n} and let Γ be the subgroup generated by γ. A permutation η from Γ is a long cycle (i.e. it is conjugated to γ), if $\eta=\gamma^{k}$, where k is an invertible element of Z_{n} (that is, $k \in Z_{n}^{*}$). We describe a normalizer N of Γ in S_{n}.

Lemma 1. The normalizer N of Γ in S_{n} consists of all such permutations η, which act on Z_{n} as follows:

$$
\eta(x)=k x+a,
$$

where $k \in Z_{n}^{*}, a \in Z_{n}$. Moreover:

$$
|N|=n \cdot \varphi(n) .
$$

Proof. The permutation γ acts on Z_{n} as follows:

$$
\gamma(x)=x+\overline{1}
$$

Hence, we have: $\gamma^{k}(x)=x+k$. A permutation η belongs to N if and only if:

$$
\eta \gamma \eta^{-1}=\gamma^{k}
$$

for some $k \in Z_{n}^{*}$.
Let η be in N, then we have:

$$
\eta(x+\overline{1})=\eta(\gamma(x))=\eta \gamma \eta^{-1} \eta(x)=\gamma^{k} \eta(x)=\eta(x)+k,
$$

thus by induction

$$
\eta(x+y)=\eta(x)+k y .
$$

If

$$
\eta(\overline{0})=a \text {, then } \eta(y)=k y+a \text {, and } \eta^{-1}(y)=k^{-1} y-k^{-1} a .
$$

Conversely, let $\eta(x)$ be equal to $k x+a$, where $k \in Z_{n}^{*}, a \in Z_{n}$. Hence

$$
\begin{aligned}
\eta \gamma \eta^{-1}(x) & =\eta \gamma\left(k^{-1} x-k^{-1} a+\overline{1}\right) \\
& =\eta\left(k^{-1} x-k^{-1} a+\overline{1}\right)=x+k=\gamma^{k}(x),
\end{aligned}
$$

which finishes the proof.
A weak normality of Γ in S_{n} is equivalent to the following condition: if η is a long cycle that belongs to N, then η belongs to Γ. If n is a prime, then Γ has $n-1$ long cycles and there are no long cycles in $N \backslash \Gamma$.

If $n=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$ is a factorization of n, then the ring Z_{n} is isomorphic to a direct product of rings $Z_{q_{i}}$, where $q_{i}=p_{i}^{\alpha_{i}}$. Let $S_{q_{i}}$ be a symmetric group acting on $Z_{q_{i}}$, let Γ_{i} be a subgroup generated in $S_{q_{i}}$ by a cycle ($\left.\overline{0} \overline{1} \ldots \overline{q_{i}-1}\right)$ and let N_{i} be the normalizer of Γ_{i} in $S_{q_{i}}$.

Lemma 2. The normalizer N of a subgroup Γ in S_{n} is isomorphic to the direct product $N_{1} \times \ldots \times N_{m}$.

Proof. Let ψ be a mapping:

$$
\psi: N \rightarrow N_{1} \times \cdots \times N_{m}: \psi(\eta)=\left(\eta_{1}, \ldots, \eta_{m}\right),
$$

such, that if $\eta(x)=k x+a$ for $k \in Z_{n}^{*}, a \in Z_{n}$, then for all $i \in\{1, \ldots, m\}$ $\eta_{i}(x)=k x+a$, where all numbers are taken modulo q_{i}. Clearly, ψ is a homomorphism. Let $\eta, \mu \in N$ and

$$
\eta(x)=k x+a, \quad \mu(x)=l x+b .
$$

If $\psi(\eta)=\psi(\mu)$ then $k x+a \equiv l x+b\left(\bmod q_{i}\right)$ for $i=1 \ldots m, x \in Z$. Hence $k \equiv l, a \equiv b\left(\bmod q_{i}\right)$, so $k=l, a=b$ in Z_{n} and this means that ψ is a monomorphism. We know from Lemma 1 that $|N|=n \cdot \varphi(n)$. Let us compute:

$$
\left|N_{1} \times \ldots \times N_{m}\right|=q_{1} \ldots q_{m} \cdot \varphi\left(q_{1}\right) \ldots \varphi\left(q_{m}\right)=n \cdot \varphi(n),
$$

where the last equation holds from multiplicative property of the Euler function. It means that φ is a monomorphism of two groups, which have the same number of elements, so φ is an isomorphism.

In the notations of Lemma 2 we get:
Lemma 3. A permutation $\eta \in N$ is a long cycle, if and only if, each η_{i} is a long cycle in N_{i}. A number of long cycles in N is a product of numbers of long cycles in all N_{i}.

Proof. If η is a long cycle, which belongs to N, then n is equal to the least common multiple of orders of all permutations η_{i}. Lengths of different η_{i} are coprime, so each η_{i} must be a long cycle in N_{i}. The converse statement is clear. Thus in N we have as many long cycles as rows of the type $\left(\eta_{1}, \ldots, \eta_{m}\right)$, where η_{i} is a long cycle in N_{i}.

The following theorem was firstly presented without proof in [2].
Theorem 1. A subgroup Γ generated by a long cycle in S_{n} is weakly normal if and only if n is not divisible by 8 and is not divisible by a square of an odd prime.

Poof. We note, that if $n=4$, then there are only two long cycles in $N: \gamma$ and γ^{3}, and these cycles belong to Γ. Let n be not divisible by 8 and by a square of an odd prime. Then for an arbitrary diviser p_{i} of n, there exist $\varphi\left(q_{i}\right)$ long cycles in a subgroup N_{i}. Hence there are $\varphi\left(q_{1}\right) \ldots \varphi\left(q_{m}\right)=\varphi(n)$ long cycles in N and each of them belongs to Γ. So we proved that Γ is weakly normal in S_{n}.

Let now n be divisible by p^{2} or by 8 , where p is an odd prime. We want to show that Γ is not weakly normal. For this purpose we use the permutation acting on Z_{n} :

$$
\sigma(x)=x+\frac{x(x+\overline{1})}{\overline{2}} \frac{n}{k},
$$

where $k=p$ if n is divisible by p^{2} and $k=2$ if n is divisible by 8 . Then the inverse permutation is:

$$
\sigma^{-1}(x)=x-\frac{x(x+\overline{1})}{\overline{2}} \frac{n}{k} .
$$

The permutation $\eta=\sigma \gamma \sigma^{-1}$ is a long cycle and

$$
\eta(x)=\left(\overline{1}+\frac{n}{k}\right) x+\overline{1}+\frac{n}{k} .
$$

By Lemma 1, permutation belongs to N and does not belong to Γ. So Γ is not a weakly normal subgroup of S_{n}, which finishes the proof.

Corollary 1. If n is divisible by 8 or by a square of an odd prime, then Γ is not a polinormal subgroup of S_{n}.

Proof. Let σ and η be the same permutations as in the proof of Theorem 1. We show that a permutation σ normalizes the subgroup $\langle\gamma, \eta\rangle$. Indeed by computation we get $\sigma \eta \sigma^{-1}=\gamma^{\left(-1+\frac{n}{p}\right)} \eta^{2} \in\langle\gamma, \eta\rangle$ and by definition of η we have $\sigma \gamma \sigma^{-1}=\eta \in\langle\gamma, \eta\rangle$. Hence $\langle\gamma, \eta\rangle \subseteq \Gamma^{\langle\sigma, \Gamma\rangle}$. So we get $\Gamma^{\langle\sigma, \Gamma\rangle}=\left\langle\gamma^{h} ; h \in\langle\sigma\rangle\right\rangle=\langle\gamma, \eta\rangle$. The subgroup $\Gamma^{\Gamma^{\langle\sigma, \Gamma\rangle}}$ is equal to $\Gamma^{\langle\gamma, \eta\rangle}$ and by Theorem $1\langle\gamma, \eta\rangle \subseteq N$, so we have $\Gamma^{\langle\gamma, \eta\rangle}=\Gamma$, which means that Γ is not polinormal in S_{n}.

The above theorem implies straightforward, such a corollary:
Corollary 2. If Γ is polinormal in S_{n} then it is also weakly normal.
By simple calculation it follows that for $n=6$ the subgroup Γ is not polinormal in S_{n}. So the converse to Corollary 2 is not true. We note that $(6, \varphi(6))=2>1$, and we can prove:

Theorem 2. A subgroup Γ is polinormal in S_{n} if and only if $(n, \varphi(n))=1$ or $n=4$.

Before we prove the above Theorem, we will give some auxiliary lemmas. Let, for now, n be an even integer grater than 4 . So there exists k, such that $n=2 k$. We take $\gamma=(\overline{0} \overline{1} \ldots \overline{2 k-1})$ and $g=$ $(\overline{3} \overline{2 k-1})(\overline{5} \overline{2 k-3}) \ldots$. The permutation g is an involution. We also introduce two symbols x and y for following cycles:

$$
x=(\overline{0} \overline{2} \ldots \overline{2 k-2}), y=(\overline{1} \overline{3} \ldots \overline{2 k-1}) .
$$

Permutations x and y commute and have the same order k. We, also, have a relation $\gamma^{2}=x y$. Let Γ be the cyclic subgroup generated by γ. The normal closure of $\Gamma=\langle\gamma\rangle$ in the group $\langle\gamma, g\rangle$ is generated by all conjugates of γ, so $\langle\gamma\rangle^{\langle\gamma, g\rangle}=\left\langle\gamma^{h} ; h \in\langle\gamma, g\rangle\right\rangle$. It is enough to take as generators of this normal closure all elements γ^{h} for $h \in\langle g\rangle$. The element g is an involution, so:

$$
\Gamma^{\langle g, \Gamma\rangle}=\langle\gamma\rangle^{\langle g, \gamma\rangle}=\left\langle\gamma^{h} \mid h \in\langle g\rangle\right\rangle=\left\langle\gamma, \gamma^{g}\right\rangle .
$$

Now we describe the subgroup $\Gamma^{\Gamma^{\langle g, \Gamma\rangle}}$ which, by the above is:

$$
\begin{equation*}
\Gamma^{\Gamma^{\langle g, \Gamma\rangle}}=\langle\gamma\rangle^{\left\langle\gamma, \gamma^{g}\right\rangle}, \tag{1}
\end{equation*}
$$

and we prove, it is generated by γ and $\gamma^{\gamma^{g}}$.

Lemma 4. The permutations g and γ satisfy the relation:

$$
\begin{equation*}
\left(\gamma^{g}\right)^{2}=\gamma \cdot \gamma^{\gamma^{g}} \tag{2}
\end{equation*}
$$

and for all numbers $l \in Z$ we have:

$$
\begin{equation*}
\gamma^{\left(\gamma^{g}\right)^{l}} \in\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle . \tag{3}
\end{equation*}
$$

Proof. By calculation we get $(\gamma)^{2}=x y^{-1}=\gamma \cdot \gamma^{\gamma^{g}}$ and it proves the first part of the lemma. We prove the second part by induction on l. Let us start from $l=2$. By equation (2):

$$
\gamma^{\left(\gamma^{g}\right)^{2}}=\gamma^{\gamma \cdot \gamma^{\gamma^{g}}} \in\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle .
$$

Let, now (3) be true for all numbers less than l, and let $l \geq 2$ then $\gamma^{\left(\gamma^{g}\right)^{l}}=$ $\left(\gamma^{\left(\gamma^{g}\right)^{l-2}}\right)^{\left(\gamma^{g}\right)^{2}}$, by inductive assumption $\left(\gamma^{\left(\gamma^{g}\right)^{l-2}}\right) \in\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle$ and by the equation (2) $\left(\gamma^{g}\right)^{2} \in\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle$, which finishes the proof.

We have to show that Γ is not polinormal. Due to the second part of the Lemma 4 and from the equation (1) we get:

$$
\Gamma^{\Gamma^{\langle g, \Gamma\rangle}}=\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle .
$$

We need to show, that:

$$
\Gamma^{\langle g, \Gamma\rangle} \nsubseteq \Gamma^{\Gamma^{\langle g, \Gamma\rangle}}
$$

In fact, it is enough to show that:

$$
\begin{equation*}
\gamma^{g} \notin \Gamma^{\Gamma^{\langle, \Gamma\rangle}}=\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle . \tag{4}
\end{equation*}
$$

Let us denote $\delta=\gamma^{\gamma^{g}}=(\overline{0} \overline{1} \overline{2 k-2} \overline{2 k-1} \ldots \overline{5} \overline{2} \overline{3})$. By computations one can find relations between γ and δ :

$$
\begin{gathered}
\gamma^{2 k}=\delta^{2 k}=1 \\
(\gamma \cdot \delta)^{k}=\left(x y^{-1}\right)^{k}=x^{k} y^{-k}=1, \\
\gamma^{2} \cdot \delta^{2}=x y \cdot x^{-1} y^{-1}=1
\end{gathered}
$$

Now we want to describe groups with such relations:
Lemma 5. Let G be a group with presentation:

$$
\begin{equation*}
\left\langle a, b \mid a^{2 k}=b^{2 k}=(a b)^{k}=1, a^{2} b^{2}=1\right\rangle \tag{5}
\end{equation*}
$$

Then:
(1) every element of G can be written in the form $a^{s} c^{t}$, where: $c=a b$, $s \in\{1, \ldots, 2 k\}, t \in\{1, \ldots, k\}$,
(2) $|G| \leq 2 k^{2}$,
(3) if G has such an element d that $a^{d}=b$ then G has a relation $a^{2}=c^{s}$, where s is an odd integer.

Proof. First, we want to describe the commutator subgroup G^{\prime} in G. The group G is two-generator, the commutator subgroup G^{\prime} is generated by elements $\left[a^{s}, b^{t}\right], s, t \in Z$. From the relation $a^{2} b^{2}=1$, it follows the relation $a^{2} b=b a^{2}$. Indeed it follows from equalities: $a^{2} b=b^{-2} b=b b^{-2}=$ $b a^{2}$. So the commutator subgroup is cyclic and generated by $[a, b]$. From the relation $a^{2} b^{2}=1$ we have the equality $a b=a^{-1} b^{-1}$. Hence

$$
\begin{equation*}
[a, b]=a^{-1} b^{-1} a b=(a b)^{2}, \tag{6}
\end{equation*}
$$

which means that $G^{\prime}=\langle[a, b]\rangle \subseteq\langle a b\rangle$ and the subgroup $H=\langle a b\rangle$ is normal and has order k. The quotient goup G / H is cyclic generated by the coset $a H$ and has order less or equal $2 k$. So every element of G can be written as $a^{s}(a b)^{t}$ and G has the order less or equal $2 k^{2}$. It proves (1) and (2).

To prove (3) we show, first, that in G holds the relation $c a=a c^{-1}$ (where $c=a b$). We use relations of G and the equality (6), to get:

$$
\begin{equation*}
c a=a b a=a^{2} b[b, a]=a a b(a b)^{-2}=a(a b)^{-1}=a c^{-1} . \tag{7}
\end{equation*}
$$

Now we prove that for every l the following holds:

$$
\begin{equation*}
c^{l} a=a c^{-l} . \tag{8}
\end{equation*}
$$

Let the equation be true for all numbers less or equal to l, then by inductive assumption and (7): $c^{l+1} a=c a c^{-l}=a c^{-1} c^{-l}=c^{-(l+1)}$. Let now there exists $d \in G$, such that $a^{d}=b$. Then $d=a^{s} c^{t}$ and by (8) we have: $a^{d}=c^{-t} a^{-s} a a^{s} c^{t}=c^{-t} a c^{t}=a c^{2 t}=b$. From the last equation we obtain the equality $a^{2} c^{2 t}=a b=c$ and we get the relation $a^{2}=c^{s}$ for s an odd integer. It finishes the third part of Lemma 5.

Due to the previous Lemma we can prove that:
Corollary 3. The element γ^{g} is not in $\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle$.
Proof. The subgroup $\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle=\langle\gamma, \delta\rangle$ satisfies the same relations as the group G in Lemma 5. So by that Lemma γ^{g} belongs to $\left\langle\gamma, \gamma^{\gamma^{g}}\right\rangle$ if there is a relation: $\gamma^{2}=\delta^{2 s+1}$. We show that elements γ and δ do not satisfy such a relation. Indeed, $\gamma^{2}=x y$, and $\delta^{2 s+1}=\left(x y^{-1}\right)^{s} \delta$. Suppose the relation $\gamma^{2}=\delta^{2 s+1}$ holds then we have: $\delta=x^{1-s} y^{s-1}$, which never holds because δ is a long cycle, while $x^{1-s} y^{s-1}$ is not a long cycle.

The following Corollary follows straightforward from Corollary 2 and from (4):

Corollary 4. If n is an even number then the subgroup $\Gamma=\langle(\overline{0} \overline{1} \ldots \overline{n-1})\rangle$ is not polinormal in S_{n}.

Now we can prove the main Theorem 2.
Proof of Theorem 2. Let $n>4$. If $(n, \varphi(n))=1$ then by PalfyTyshkievich Theorem ([4], [5]) the subgroup Γ is pronormal, so it is also polinormal. Conversely if Γ is polinormal then by Corollary 2 it is weakly normal. Hence n is not divisible by 8 and by a square of an odd prime number. It means that it is enough to prove that n cannot be an even number, which follows from Corollary 4.

References

[1] Z. I. Borevich and O. N. Macedońska, On the lattice of subgroups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 103 (1980), 13-19, (LOMI) AN SSSR. (in Russian)
[2] P. W. Gawron, On weakly normal subgroups in symmetric groups, In book: XVII Vsesoyuznaya algebraicheskaja konferencya, Tezisi, Part 1, Leningrad, 1981, 35. (in Russian)
[3] K. H. MüLler, Schwachnormale Untergruppen: eine gemeinzame Verallgemeinerung der normalen und normalizatorgleichen Untergruppen, Rend. Semin. Mat. Univ. Padova 36 N 1 (1966), 129-157.
[4] P. P. Palfy, On regular pronormal subgroups of symmetric groups, Acta Math. Acad. Sci. Hungar. 34 (1979), 287-292.
[5] R. I. Tyshkevich, Pronormal regular subgroups of a finite symmetric group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 103 (1980), 132-139, (LOMI) AN SSSR. (in Russian)

PIOTR W. GAWRON
INSTITUTE OF MATHEMATICS
SILASIAN TECHNICAL UNIVERSITY
DENT KASZUBSKA 23
44-100 GLIWICE
POLAND
E-mail: pgawron@zeus.polsl.gliwice.pl

WITOLD TOMASZEWSKI
INSTITUTE OF MATHEMATICS
SILASIAN TECHNICAL UNIVERSITY
DENT KASZUBSKA 23
44-100 GLIWICE
POLAND
E-mail: wtomasz@zeus.polsl.gliwice.pl
(Received December 1, 1996; revised April 15, 1997)

