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A note on multiplicative functions with
regularity properties

By BUI MINH PHONG (Budapest)

J.L. Mauclaire and L. Murata [8] have shown that a multiplicative
function g(n) with properties

(1) |g(n)| = 1 (n = 1, 2, . . . )

and

(2)
∑

n≤x

|g(n + 1)− g(n)| = o(x) as x →∞

has to be completely multiplicative. It is obvious that (1) and (2) hold for
functions of the type

g(n) = niτ ,

where τ is a real number. I. Kátai [6] conjectured that g(n) = niτ are the
only multiplicative functions that satisfy the conditions (1) and (2). This
conjecture remains open, some partial results are known. For such results
we refer to A. Hildebrand [4], [5] and I. Kátai [7].

Our purpose in this note is to prove the following

Theorem. Let A, B be positive integers and let C be a non-zero
complex number. Assume that a complex-valued completely multiplicative
function g(n) satisfies the conditions

(3) |g(n)| = 1 (n = 1, 2, . . . )

and

(4)
∑

n≤x

|g(An + B)− Cg(n)| = o(x) as x →∞.
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If there is a positive integer k for which

(5) lim sup
x→∞

x−1

∣∣∣∣∣∣
∑

n≤x

(g(n))k

∣∣∣∣∣∣
> 0,

then there are a real constant τ and a completely multiplicative function
G(n) such that

(6) g(n) = niτ .G(n),

and

(7) [G(n)]k = 1

hold for all positive integers n, moreover

(8)
∑

n≤x

|G(n + 1)−G(n)| = o(x) as x →∞.

Remarks. (i) In the special case when A = B = C = k = 1, our
theorem can be deduced directly from Theorem 2 of A. Hildebrand [3].
In this case, by using Halász’ theorem, it follows by (5) that for some
real number τ

(9) Re
∑

P

1− g(p)p−iτ

p
< ∞,

the series being taken over all primes p. A. Hildebrand [3] proved that
(9) implies

(10)
1
x

∑

n≤x

g(n)
g(n + 1)

→
∏
p

Fp,

where

Fp = 1− 2
p

+ 2
(

1− 1
p

)
Re

g(p)p−iτ

p− g(p)p−iτ
.

Thus, (3), (4), and (10) jointly imply that Fp = 1 holds for each prime p,
i.e.

g(p) = piτ .

This shows that (6) holds with G(n) ≡ 1.
(ii) We hope that the conditions (3) and (4) imply (5), but we are

unable to prove it presently. If we write a multiplicative function g satis-
fying (3) in the form g = e2iπf , where f is an additive function, then it
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is known from Chapter 8 of [1] that there are two possibilities: Either (5)
holds for some positive integer k or f(n) is uniformly distributed (mod 1).

We shall use some lemmas in the proof of our theorem.
For a given multiplicative function g(n) we denote by J = J(g) the

set of those pairs (Q,R) of positive integers for which

(11)
∑

n≤x

|g(Qn + R)− g(Qn)| = o(x) as x →∞.

Lemma 1. Assume that a completely multiplicative function g(n)
satisfies the conditions (3) and (4). Then (Q,R) ∈ J(g) for all fixed integers
Q and R which satisfy the condition

(12) 0 < R < Q.

Proof. We shall prove this lemma by the same method that was
used in the proof of Lemma 2 in [10].

Assume that a completely multiplicative function g(n) satisfies the
conditions (3) and (4). Then, by using Theorem 1 of [9] and the complete
multiplicativity of g, we have

(13) g(A) = C.

Thus, (A,B) ∈ J = J(g), and so (A, 1) ∈ J.
We prove next the following assertions:
(a) (Q, 1) ∈ J if (q, 1) ∈ J and Q ≥ q

(b) (Q,R) ∈ J if (q, 1) ∈ J and 0 < R < Q/(q − 1)
(c) (h, 1) ∈ J if (h + 1, 1) ∈ J and h ≥ 2.
Assume that (q, 1) ∈ J. By using the complete multiplicativity of g,

we have

g[(q + 1)n + 1]− g[(q + 1)n] =
g(q + 1)

g(q)
{g(qn + 1)− g(qn)}−

− 1
g(q)

{g[q((q + 1)n + 1) + 1]− g[q((q + 1)n + 1)]},

and so, by using (3) and the fact (q, 1) ∈ J, we deduce that (q + 1, 1) ∈ J.
By using induction on q we have proved that (a) holds.

Assume again that (q, 1) ∈ J. We shall prove (b) by using induction
on R. From (a) it follows that (b) is satisfied for R = 1. Assume that
(Q,R) ∈ J holds for all integers Q and R satisfying 0 < R < Q/(q − 1)
and R < R0. Let Q0 be an integer such that

(14) 0 < R0 < Q0/(q − 1).
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In order to show (b) it sufficies to prove that (Q0, R0) ∈ J. Without loss
of generality we may assume that (Q0, R0) = 1.

Let Q and R be positive integers such that

(15) R0Q = Q0R + 1 and R < R0.

It follows from (14) and (15) that

0 < R < (Q0R + 1)/Q0 = R0Q/Q0 < Q/(q − 1).

Thus, by using our assumption and the fact R < R0, we have (Q,R) ∈ J.
On the other hand, by (15), we get

g(Q0n + R0)− g(Q0n) =
1

g(Q)
[g(Q0Qn + R0Q)− g(Q)g(Q0n)] =

=
g(Q0)
g(Q)

{g(Qn + R)− g(Qn)}+

+
1

g(Q)
{g[Q0(Qn + R) + 1]− g[Q0(Qn + R)]},

consequently (Q0, R0) ∈ J, because (Q,R) ∈ J and (Q0, 1) ∈ J. Thus, we
have proved (b).

Finally, we prove (c). Assume that (h + 1, 1) ∈ J and h ≥ 2. Let

T (x) :=
∑

n≤x

|g(hn + 1)− g(hn)|.

For each positive integer d with 0 ≤ d ≤ h − 1, we can choose positive
integers Q = Q(d) and R = R(d) such that

(16) (hd + 1)Q = h2R + 1.

We have

T (x) =
h−1∑

d=0

∑

hm+d≤x

|g[h2m + hd + 1]− g[h(hm + d)]| =

=
h−1∑

d=0

∑

hm+d≤x

∣∣∣∣
1

g(Q)
{
g[h2(Qm + R) + 1]− g[h2(Qm + R)]

}
+

+
g(h)
g(Q)

{
g[Q(hm + d) + hR−Qd]− g[Q(hm + d)]

}∣∣∣∣,

and so T (x) = o(x) if hR −Qd = 0, because, by using (a), (h + 1, 1) ∈ J
and h ≥ 2 imply that (h2, 1) ∈ J. If hR − Qd 6= 0, then we obtain from
(16) that

0 < hR−Qd = (Q− 1)/h < Q/h,
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which, by applying (b) with q = h+1, implies that (Q, hR−Qd) ∈ J. This,
with (h2, 1) ∈ J shows that T (x) = o(x), i.e. (h, 1) ∈ J. This completes
the proof of (c).

Now we prove Lemma 1.
As we have seen above, (A, 1) ∈ J. If A = 1, then the assertion of

Lemma 1 holds. If A ≥ 2, then by using (c) one can deduce that (2, 1) ∈ J,
and so by applying (b) with q = 2, it follows that (Q, R) ∈ J for all integers
Q and R which satisfy (12). This completes the proof of Lemma 1.

Lemma 2. Assume that a completely multiplicative function g(n)
satisfies the conditions (3) and (4). Then for each positive integer κ, we
have ∑

n≤x

|[g(n + 1)]κ − [g(n)]κ| = o(x) as x →∞.

Proof. We first consider the case κ = 1.
Let Q ≥ 2 be a fixed positive integer. For each integer γ ≥ 0 let

Bγ = {n ∈ N | Qγ ‖ (n + 1)}
and

Sγ(x) := x−1
∑

n≤x
n∈Bγ

|g(n + 1)− g(n)|.

By using the conditions (3) and (4), one can get from Lemma 1 that

(17) S0(x) = x−1
∑

n≤x
n∈B0

|g(n + 1)− g(n)| = o(1) as x →∞.

Thus, by using (17) and Lemma 1, it follows that

(18)

Sγ(x) := x−1
∑

n≤x
n∈Bγ

|g(n + 1)− g(n)| =

= x−1
∑

m+1≤(x+1)/Qγ

m∈B0

∣∣g(Qγ)g(m + 1)− g(Qγm + Qγ − 1)
∣∣ =

= x−1
∑

m+1≤(x+1)/Qγ

m∈B0

∣∣∣g(Qγ) [g(m + 1)− g(m)]−

− [
g(Qγm + Qγ − 1)− g(Qγm)

]∣∣∣
= o(1).
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The relations (17) and (18) together with (3) imply that for each positive
integer M , we have

x−1
∑

n≤x

|g(n + 1)− g(n)| ≤ S0(x) +
∑

1≤j≤M

Sj(x) + x−1
∑

n≤x

QM |(n+1)

2 ≤

≤ o(M + 1) +
2

QM
,

and so
lim sup

x→∞
x−1

∑

n≤x

|g(n + 1)− g(n)| << Q−M .

This with M →∞ shows that

x−1
∑

n≤x

|g(n + 1)− g(n)| = o(1),

which proves Lemma 2 in the case κ = 1.
Now let κ > 1 be an integer. By using the relation

xκ+1 − yκ+1 = x(xκ − yκ) + yκ(x− y),

it is easily shown that

J(g) ⊆ J(gκ) (κ = 1, 2, . . . ).

Thus, Lemma 2 is a consequence of the above relation and the fact (1, 1) ∈
J(g). Lemma 2 is proved.

Lemma 3. Let f(n) be a multiplicative function which satisfies
|f(n)| ≤ 1. Let 1 ≤ w0 ≤ x. Then there is a real number t, |t| < (log x)1/19,
so that

∑

n≤x/w

f(n) = w−1−it
∑

n≤x

f(n) + O

[
x

w

(
log 2w0

log x

)1/19
]

uniformly for 1 ≤ w ≤ w0. If f is real-valued, then we may set t = 0. The
implied constant is absolute.

Proof. This is Theorem 1 of Elliott [2].
Proof of the theorem. Assume that a completely multiplicative

function g(n) satisfies the conditions (3), (4) and (5) for some positive
integers A, B, k and a non-zero complex number C. Let

f(n) := [g(n)]k (n = 1, 2, . . . ).
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It is obvious that f(n) is a completely multiplicative function, f(n) satisfies
(3), furthermore by applying Lemma 2 with κ = k it follows that (1, 1) ∈
J(f). This shows that (Q,R) ∈ J(f) holds for all positive integers Q and
R. Let

S(x) :=
∑

n≤x

f(n).

Let w0 be a sufficiently large real number. For each x > w0, by applying
Lemma 3, there is a real number t(x) satisfying |t(x)| ≤ (log x)1/19 such
that for 1 ≤ Q ≤ w0 we have

∑

m≤x/Q

f(m) = Q−1−it(x)S(x) + O

[
x

Q

(
log 2w0

log x

)1/19
]

.

From this, we have

(19)

∑

n≤x
n≡0(mod Q)

f(n) = f(Q)
∑

m≤x/Q

f(m) =

= Q−1−it(x)f(Q)S(x) + O

[
x

Q
f(Q)

(
log 2w0

log x

)1/19
]

.

By using (19) and the fact (Q,R) ∈ J(f) for all integers Q and R, we
deduce that

∑

n≤x
n≡R(mod Q)

f(n) =
∑

n≤x
n≡R(mod Q)

[f(n)− f(n−R)] +
∑

m≤x−R
m≡0(mod Q)

f(m) =

= Q−1−it(x)f(Q)S(x)+O

[
x

Q
f(Q)

(
log 2w0

log x

)1/19
]

+o(x)

holds for each R = 0, . . . , Q − 1. Thus by adding the above relations, we
get

(20) S(x) = Q−it(x)f(Q)S(x) + O

[
xf(Q)

(
log 2w0

log x

)1/19
]

+ o(Qx).

By the condition (5), we can choose D > 0 and a sequence {xi}∞i=1,
xi →∞ such that

∣∣∣∣
S(xi)

xi

∣∣∣∣ ≥ D > 0 as xi →∞.
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Then (20) gives

D

∣∣∣∣1−
f(Q)
Qit(xi)

∣∣∣∣ ≤
∣∣∣∣1−

f(Q)
Qit(xi)

∣∣∣∣ ·
∣∣∣∣
S(xi)

xi

∣∣∣∣ = o(1)

and so

(21) Qit(xi) → f(Q) as xi →∞.

Since (21) holds for all integers Q for which 1 ≤ Q ≤ w0, and for each Q
we get from (21) that

(22) t(xi) → t as xi →∞,

thus (21) and (22) imply

(23) f(Q) = Qit

for all 1 ≤ Q ≤ w0. This with w0 → ∞ shows that (23) holds for all
positive integers Q.

Since

f(n) = [g(n)]k and f(n) = nit (n = 1, 2, . . . ),

it follows that for each positive integer n there exists a complex number
G(n) such that

(24) g(n) = nit/k.G(n).

It is obvious that G(n) is a completely multiplicative function and

[G(n)]k = 1 (n = 1, 2, . . . ).

Let τ := t/k. By (24) we have

G(An + B)−G(An) =
g(An + B)− g(An)

(An)iτ
−

−G(An + B)
(An + B)iτ − (An)iτ

(An)iτ

which with (4) implies that
∑

n≤x

|G(An + B)−G(An)| = o(x) as x →∞.

By using Lemma 2 with g(n) replaced by G(n), the last relation im-
plies (8). This completes the proof of our theorem.
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