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A note on multiplicative functions with
regularity properties

By BUI MINH PHONG (Budapest)

J.L. MAUCLAIRE and L. MURATA [8] have shown that a multiplicative
function g(n) with properties

(1) g) =1 (n=1,2,...)
and
(2) > lgn+1) —g(n)| =o(x) as z— oo

has to be completely multiplicative. It is obvious that (1) and (2) hold for
functions of the type

g(n) =n'",

where 7 is a real number. 1. KATAT [6] conjectured that g(n) = n'" are the
only multiplicative functions that satisfy the conditions (1) and (2). This
conjecture remains open, some partial results are known. For such results
we refer to A. HILDEBRAND [4], [5] and I. KATAI [7].

Our purpose in this note is to prove the following

Theorem. Let A, B be positive integers and let C' be a non-zero
complex number. Assume that a complex-valued completely multiplicative
function g(n) satisfies the conditions

(3) lgin)|=1 (n=1,2,...)
and
(4) Z lg(An + B) — Cg(n)| =o(x) as z — oc.
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If there is a positive integer k for which

(5) limsupz ! Z (g(n))l~C >0,

T—00
n<x

then there are a real constant T and a completely multiplicative function
G(n) such that

(6) g(n) =n'".G(n),

and

(7) [G(n))F =1

hold for all positive integers n, moreover

(8) Z|G(n+1)—G(n)\ =o(r) as x— 0.
n<x

Remarks. (i) In the special case when A = B = C' = k = 1, our
theorem can be deduced directly from Theorem 2 of A. HILDEBRAND [3].
In this case, by using HALASZ’ theorem, it follows by (5) that for some
real number 7

—iT

9) Re Z 1=9)p " g(}};)p < 0,
I3

the series being taken over all primes p. A. HILDEBRAND [3] proved that
(9) implies

1 g(n)
10 N AT F
1o P rresind V52
n<x p
where .
2 1 —1T
Fp:1——+2<1——)Re—ﬁ@E—ff
P P p—glp)p~'™

Thus, (3), (4), and (10) jointly imply that F,, = 1 holds for each prime p,
ie.
9(p) =p"".
This shows that (6) holds with G(n) = 1.
(79) We hope that the conditions (3) and (4) imply (5), but we are
unable to prove it presently. If we write a multiplicative function g satis-
fying (3) in the form g = 2™/ where f is an additive function, then it
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is known from Chapter 8 of [1] that there are two possibilities: Either (5)
holds for some positive integer k or f(n) is uniformly distributed (mod 1).
We shall use some lemmas in the proof of our theorem.
For a given multiplicative function g(n) we denote by J = J(g) the
set of those pairs (@, R) of positive integers for which

(11) D 19(Qn+R) — g(Qn)| = o(z) as x— oo.

n<x

Lemma 1. Assume that a completely multiplicative function g(n)
satisfies the conditions (3) and (4). Then (Q, R) € J(g) for all fixed integers
() and R which satisfy the condition

(12) 0<R<Q.

Proor. We shall prove this lemma by the same method that was
used in the proof of Lemma 2 in [10].

Assume that a completely multiplicative function g(n) satisfies the
conditions (3) and (4). Then, by using Theorem 1 of [9] and the complete
multiplicativity of g, we have

(13) g(4) = C.

Thus, (A,B) € J =J(g), and so (A4,1) € J.
We prove next the following assertions:

(@) (@1)edif(¢g,1)eJand Q=gq
() (Q,R)eJif(¢g,1)eTJand 0<R<Q/(g—1)
(¢) (h,1)ed if(h+1,1)eJand h > 2.

Assume that (¢,1) € J. By using the complete multiplicativity of g,
we have

g(g+1)

9(q)
{9lg((g +)n +1) + 1] — g[g((¢ + 1)n + 1)]},

gllg+n+1] —gl(g+1)n] = {g(gn +1) —g(gn)}—

1
9(q)

and so, by using (3) and the fact (¢,1) € J, we deduce that (¢ +1,1) € J.
By using induction on g we have proved that (a) holds.

Assume again that (¢,1) € J. We shall prove (b) by using induction
on R. From (a) it follows that (b) is satisfied for R = 1. Assume that
(Q, R) € J holds for all integers @ and R satisfying 0 < R < Q/(¢ — 1)
and R < Ry. Let Qg be an integer such that

(14) 0< Ry <Qo/(qg—1).
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In order to show (b) it sufficies to prove that (Qo, Rp) € J. Without loss
of generality we may assume that (Qq, Ro) = 1.
Let @Q and R be positive integers such that

(15) RoQ =QoR+1 and R < Ry.
It follows from (14) and (15) that

0<R<(QoR+1)/Qo=RoQ/Qo < Q/(qg—1).

Thus, by using our assumption and the fact R < Ry, we have (Q, R) € J.
On the other hand, by (15), we get

9(Qon + Ro) — 9(Qun) = [9(Qo@n + RoQ) — 9(Q)g(Qon)] =

9(Q)
_9(Qo) n — o(On
=0 {g(Qn+ R) — g(Qn)}+
n ﬁ{g[Qo(Qn + R) + 1] — g[Qo(Qn + R)]},

consequently (Qo, Ry) € J, because (Q, R) € J and (Qq,1) € J. Thus, we
have proved (b).
Finally, we prove (c). Assume that (h+1,1) € J and h > 2. Let

T(x):= > |g(hn+1) — g(hn)|.

For each positive integer d with 0 < d < h — 1, we can choose positive
integers @ = Q(d) and R = R(d) such that

(16) (hd+1)Q = h*R + 1.
We have
h—1
T(x) = Z ‘g[hQ’m + hd + 1] — g[h(hm + d)]| =
d=0 hm-+d<z
h—1
. o om o
_Lmﬁggg@ﬁﬂh@ +R)+1] - g[h%(@Qm + B) b+
+ %{Q[Q(hm +d) + hR — Qd] — g[Q(hm + d)]}|,

and so T'(z) = o(zx) if hR — Qd = 0, because, by using (a), (h+1,1) € J
and h > 2 imply that (h%,1) € J. If hR — Qd # 0, then we obtain from
(16) that

0<hR—Qd=(Q—1)/h<Q/h,
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which, by applying (b) with ¢ = h+1, implies that (Q, hR—Qd) € J. This,
with (h%,1) € J shows that T'(x) = o(z), i.e. (h,1) € J. This completes
the proof of (c).

Now we prove Lemma 1.

As we have seen above, (A4,1) € J. If A = 1, then the assertion of
Lemma 1 holds. If A > 2, then by using (c) one can deduce that (2,1) € J,
and so by applying (b) with ¢ = 2, it follows that (@, R) € J for all integers
@ and R which satisfy (12). This completes the proof of Lemma 1.

Lemma 2. Assume that a completely multiplicative function g(n)
satisfies the conditions (3) and (4). Then for each positive integer k, we

have
S llgln + 1)]F = [g(n))] = o(z) as @ — oo.

n<x

ProOF. We first consider the case x = 1.
Let @ > 2 be a fixed positive integer. For each integer v > 0 let

By={neN|[Q" | (n+1)}

and

Sy(@) =27 Y |g(n+1) - g(n)|.
neE,

By using the conditions (3) and (4), one can get from Lemma 1 that

(1) So(@) =2 ) lgn+1) —g(n)|=o(1) as & — oo.
neBy

Thus, by using (17) and Lemma 1, it follows that

Sy@)=a"" D [gn+1) —g(n)| =

n<x
neb,,

=t Y [e@)glm+1) —g(@m+ Q" ~1)| =

m+1<(z+1)/Q"
meBy

=27 Y |e@) lglm + 1)~ g(m)] -

m+1<(z+1)/Q”
meBy

- 9@ m+Q = 1) - g(Q'm)]|
= o(1).
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The relations (17) and (18) together with (3) imply that for each positive
integer M, we have

2 Jgln+ 1) — gl < So@)+ Y. Si@ et Y 2

n<x 1<5<M n<x
QM|(n+1)

2
SO(M+1)+Q_M’

and so
limsup z~* Z lgin+1) — g(n)| << QM.

T—00
n<x

This with M — oo shows that

1Y lgn+1) = g(n)| = o(1),

n<x

which proves Lemma 2 in the case k = 1.
Now let k > 1 be an integer. By using the relation

oyt = (e - ) (2 - y),
it is easily shown that
J(g) €I(g") (r=1,2,...).

Thus, Lemma 2 is a consequence of the above relation and the fact (1,1) €
J(g). Lemma 2 is proved.

Lemma 3. Let f(n) be a multiplicative function which satisfies
|f(n)| < 1. Let 1 < wg < x. Then there is a real numbert, |t| < (log z)/1?,

so that

x (log 2wy 1/19

w \ logx
uniformly for 1 < w < wyg. If f is real-valued, then we may set t = 0. The
implied constant is absolute.

S fm) =w Y fm)+0

n<z/w n<x

PROOF. This is Theorem 1 of ELLIOTT [2].

PROOF OF THE THEOREM. Assume that a completely multiplicative
function g(n) satisfies the conditions (3), (4) and (5) for some positive
integers A, B, k and a non-zero complex number C. Let

f(n) = [g(n)]k (n=1,2,...).
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It is obvious that f(n) is a completely multiplicative function, f(n) satisfies
(3), furthermore by applying Lemma 2 with x = k it follows that (1,1) €
J(f). This shows that (@, R) € J(f) holds for all positive integers @) and

R. Let
S(z) := Z f(n).

n<x

Let wg be a sufficiently large real number. For each x > wg, by applying
Lemma 3, there is a real number t(x) satisfying |t(z)| < (logx)'/'° such

that for 1 < Q < wy we have
x [ log 2wy 1/19
Q \ logzx '
From this, we have

Yoo ) =fQ) D f(m)=

S fm) = QT MS(@) + 0
m<az/Q

(19) nEOT(LrE(TdQ) mse/Q
_ -1-it(z) z log 2w i
—Q (@) +0 | 5@ ().

By using (19) and the fact (Q,R) € J(f) for all integers @@ and R, we
deduce that

Yoo fmy= D> f)—f-RI+ > f(m)=

n<x n<x m<zr—R
n=R(mod Q) n=R(mod Q) m=0(mod Q)
—1—it(x) X log 2wy He
= Q@O Q)S()+0 | 2 @) (2L T tofa)

holds for each R =0,...,Q — 1. Thus by adding the above relations, we
get

(20)  S(z) = Q™" f(Q)S(x) + O

estin) ™)

log x

1@

By the condition (5), we can choose D > 0 and a sequence {z;}5°,,
x; — oo such that

‘S(xl) >D>0 as x; — oc0.

X
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Then (20) gives

f(Q) f@) | |Si)
D ‘1 ~ Qitten < ‘1 ~ it . ’ - =o(1)
and so
(21) Qi) f(Q) as x; — .

Since (21) holds for all integers @ for which 1 < @ < wp, and for each @
we get from (21) that

(22) t(x;)) =t as x; — oo,
thus (21) and (22) imply
(23) f(@) =Q"

for all 1 < @ < wg. This with wy — oo shows that (23) holds for all
positive integers Q).
Since

fn)=[gm)])* and f(n)=n" (n=12...),

it follows that for each positive integer n there exists a complex number
G(n) such that

(24) g(n) = n*’* G(n).
It is obvious that G(n) is a completely multiplicative function and
Gn))F=1 (n=1,2,...).
Let 7 :=t/k. By (24) we have
_ g(An + B) — g(An)

G(An+ B) — G(An) = s -

(An + B)'™ — (An)'"
(An)ZT

— G(An + B)

which with (4) implies that
Z |G(An + B) — G(An)| = o(x) as x — oc.
n<x

By using Lemma 2 with g(n) replaced by G(n), the last relation im-
plies (8). This completes the proof of our theorem.
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to I. KATAL
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