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An analytic proof of the Lévy–Khinchin formula on Rn

By NIELS JACOB (München) and RENÉ L. SCHILLING∗ (Leipzig)

Abstract. We give a proof of the Lévy–Khinchin formula using only some parts
of the theory of distributions and Fourier analysis, but without using probability theory.

The Lévy–Khinchin formula says that every continuous and negative
definite function ψ : Rn → C has the following representation

ψ(ξ) = c + idξ + q(ξ)(1.1)

+
∫

Rn\{0}

(
1− e−ixξ − ixξ

1 + ‖x‖2
)

1 + ‖x‖2
‖x‖2 µ(dx),

with a positive constant c ≥ 0, a vector d ∈ Rn, a symmetric positive
semidefinite quadratic form q, and a finite Borel measure µ on Rn \ {0}.
Every continuous negative definite ψ is uniquely determined by (c, d, q, µ)
and any such quadruplet defines via (1.1) a continuous negative definite
function.

The importance of continuous negative definite functions and the
Lévy–Khinchin formula rests in their applications in the theory of limit
theorems for independent and identically distributed random variables, cf.
the monograph by B.W. Gnedenko and A.N. Kolmogorov [8] or the
more recent book by V.V. Petrov [14]. Moreover, S. Bochner, cf. [2],
showed that convolution semigroups of probability measures are charac-
terized by negative definite functions. The Lévy–Khinchin formula can
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also be used to decompose a given Lévy process into simpler processes, see
e.g. [2] or the textbook by L. Breiman [3].

Although there is many a textbook or monograph that gives a more
or less elementary probabilistic proof of the Lévy–Khinchin formula in one
space dimension, it is rather difficult to find a proper reference for higher
dimensions; an exception is e.g. [6]. In the early sixties several purely an-
alytic proofs of the Lévy–Khinchin representation for ψ : Rn → C were
given. A proof by Ph. Courrège [4] used quite hard analytic results on
certain integro-differential operators; in [16] M. Rogalski introduced the
radial limit method which he attributes to A. Beurling. There are other
proofs which employ extreme-point methods and Choquet theory, e.g. [13].
One should also mention the proof in M. Reed and B. Simon [15] which
is but a bit sketchy and partly hidden in exercises. The growing interest
in harmonic analysis and probability theory on (locally compact Abelian)
groups led to further proofs, for example the one given by Kh. Harzal-

lah [9] for real-valued continuous negative definite functions which was
subsequently generalized to the complex case by G. Forst [7]. In the
monograph [10] by H. Heyer these results are discussed rather compre-
hensively. In particular, he pointed out the fundamental strategy of all of
these approaches: every continuous negative definite function ψ : Rn → C
can be uniquely related with a convolution semigroup of sub-probability
measures by Bochner’s theorem. This, in turn, induces a semigroup of
convolution operators on suitable function spaces. The Lévy–Khinchin
formula is then derived using both certain representations for the infini-
tesimal generator of the operator semigroup and more or less complicated
limiting procedures.

The proof we are going to present here follows exactly these lines.
The new point of view, however, is to use some results of the theory of
distributions (in the sense of L. Schwartz). The idea for this approach
grew out of a lecture-course on Pseudo-differential operators generating
Feller processes given by the first-named author, but it was the second
author who brought some first attempts to a successful end. That such
a proof was really necessary came up to us when lecturing an audience
which was well-trained in analysis – especially Fourier analysis and the
theory of partial differential equations – but did almost completely lack
any background in probability or advanced potential theory. We hope that
our approach is easily accessible to such an audience.
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Due to a result of Ph. Courrège [5] an operator

(1.2) −p(x,D)u(x) = −(2π)−n/2

∫

Rn

eixξp(x, ξ)û(ξ) dξ

with a continuous function p : Rn ×Rn → C such that p(x, •) : Rn → C is
negative definite for all x ∈ Rn, satisfies the positive maximum principle
on C∞0 (Rn). By the Hille–Yosida–Ray theorem, −p(x,D) is, therefore, a
candidate for a pre-generator of a Feller semigroup, hence of a Feller pro-
cess. In many cases it is indeed possible to construct a Feller semigroup
by starting with (1.2), cf. [12] for a non-technical introduction. In order to
treat these operators, it is necessary to develop some distribution theory
and Fourier analysis well-known in the theory of partial differential equa-
tions, see L. Hörmander [11] as a good reference. On the other hand,
the study of the semigroup and the associated stochastic process requires
a good deal of the Fourier analysis used in probability theory, cf. C. Berg

and G. Forst [1]. It is therefore natural, once we have both parts of
Fourier analysis at our disposal, to combine them and try to prove the
Lévy–Khinchin formula.

Our proof is given in Section 5. The other sections are added to fix
some notations but also to make the paper self-contained for the read-
ers’ convenience. Let us finally remark that our proof is elementary in the
sense that it only requires a small portion of the above mentioned distribu-
tion theory (only basic knowledge of tempered distributions) and Fourier
analysis (here: Lévy’s continuity theorem).

2. Negative definite functions and convolution semigroups

In this section we will collect some well-known facts on (continuous)
negative definite functions. All results and their proofs can be found in
the book by C. Berg and G. Forst [1].

Definition 2.1. A function ψ : Rn → C is called negative definite if
for all m ∈ N and all ξ1, . . . , ξm ∈ Rn the matrix

(
ψ(ξk) + ψ(ξ`)−ψ(ξk −

ξ`)
)m

k,`=1
is positive Hermitian.

It is easy to see that a function ψ : Rn → C is negative definite if and
only if ψ(0) ≥ 0, ψ(ξ) = ψ(−ξ), and if for all m ∈ N, ξ1, . . . , ξm ∈ Rn,



72 Niels Jacob and René L. Schilling

and z1, . . . , zm ∈ C such that
∑m

k=1 zk = 0

(2.1)
m∑

k,`=1

ψ(ξk − ξ`)zkz̄` ≤ 0

holds. We will need some further properties of negative definite functions.

Lemma 2.2. Let ψ : Rn → C be a negative definite function. Then
ψ(0) ≥ 0 and for all ξ ∈ Rn we have Re ψ(ξ) ≥ 0 and ψ(ξ) = ψ(−ξ). If ψ
is continuous,

(2.2) |ψ(ξ)| ≤ cψ(1 + |ξ|2), ξ ∈ Rn,

holds with some constant cψ > 0.

The following characterization of negative definite functions is due to
J.L. Schoenberg:

Theorem 2.3. A function ψ : Rn → C is negative definite if and only
if ψ(0) ≥ 0 and if for all t > 0 the function

(2.3) Rn 3 ξ 7→ (2π)−n/2 e−tψ(ξ)

is positive definite.

Remark 2.4. (A) Recall that a function f : Rn → C is positive definite
if for all m ∈ N and ξ1, . . . , ξm ∈ Rn the matrix

(
f(ξk−ξ`)

)m

k,`=1
is positive

definite.
(B) The normalizing factor (2π)−n/2 in (2.3) is added just for conve-

nience and is of no further relevance.

It is an important consequence of Schoenberg’s theorem that we can
establish a relation between continuous negative definite functions and
convolution semigroups on Rn.

Definition 2.5. Let {µt}t≥0 be a family of sub-probability measures
on Rn, i.e. µt is a Borel measure on Rn with total mass µt(Rn) ≤ 1. We
call {µt}t≥0 a convolution semigroup on Rn if µt ?µs = µt+s for all s, t ≥ 0
and if limt→0 µt = µ0 = ε0 (in the sense of vague convergence of measures)
are satisfied.

Here, ε0 denotes the Dirac measure (unit mass) at the origin. The
Fourier transform of any finite Borel measure µ is given by

(2.4) µ̂(ξ) = (2π)−n/2

∫

Rn

e−ixξ µ(dx), ξ ∈ Rn.
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Theorem 2.6. Let ψ : Rn → C be a continuous negative definite

function. Then there exists a unique convolution semigroup {µt}t≥0 on

Rn such that

(2.5) µ̂t(ξ) = (2π)−n/2 e−tψ(ξ), t ≥ 0, ξ ∈ Rn

holds. Conversely, for any convolution semigroup {µt}t≥0 on Rn there is a

unique continuous negative definite function ψ : Rn → C satisfying (2.5).

In the definition of convolution semigroups we used already the notion
of vague convergence of measures. We say that a net {µi}i∈I of Borel
measures on Rn converges vaguely to a Borel measure µ if for all φ ∈
C0(Rn), i.e. all continuous and compactly supported function,

(2.6) lim
i∈I

∫

Rn

φ(x)µi(dx) =
∫

Rn

φ(x)µ(dx).

A net of bounded Borel measures {µi}i∈I on Rn is said to converge weakly
to a bounded Borel measure µ if (2.6) holds for all continuous and bounded
functions φ ∈ Cb(Rn). It is well-known that for any convolution semigroup
{µt}t≥0

lim
t→0

µt = ε0 weakly

and not only vaguely.
We shall also need some results on how the Fourier transform acts on

bounded measures. First of all, let us recall Bochner’s theorem.

Theorem 2.7. A continuous function u : Rn → C is positive definite

if and only if there exists a bounded measure µ on Rn such that

(2.8) u(ξ) = µ̂(ξ) = (2π)−n/2

∫

Rn

e−ixξ µ(dx).

Theorem 2.8. The Fourier transform is a homeomorphism between

the space of bounded measures (equipped with the weak topology) and the

set of continuous positive definite functions (equipped with the topology of

uniform convergence on compact sets). In particular, weakly converging

nets of measures are mapped onto locally uniformly converging nets of

continuous positive definite functions and vice versa.
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3. Tempered distributions

Let us recall some results from the theory of distributions which we
shall need later on. We shall follow the presentation of L. Hörmander [11].

The Schwartz space S(Rn) consists of all arbitrarily often differen-
tiable functions φ : Rn → C such that

(3.1) pα,β(φ) := sup
x∈Rn

|xβ∂αφ(x)|

is finite for all α, β ∈ Nn
0 . The family {pα,β}α,β∈Nn

0
is a family of seminorms

that turns S(Rn) into a Fréchet space. On S(Rn) we define the Fourier
transform by

(3.2) Fφ(ξ) = φ̂(ξ) = (2π)−n/2

∫

Rn

e−ixξφ(x) dx.

It is well-known that the Fourier transform is a bijective and bicontinuous
mapping of S(Rn) onto itself and that its inverse is given by

(3.3) F−1φ(ξ) = (2π)−n/2

∫

Rn

eixξφ(x) dx.

In particular, we have F2φ(x) = φ(−x) and F4 = id, thus F−1 = F3. For
φ, ψ ∈ S(Rn) we have Parseval’s identity

(3.4)
∫

Rn

φ(x)ψ(x) dx =
∫

Rn

φ̂(ξ)ψ̂(ξ) dξ

and the convolution theorem holds

(3.5) (φ ? ψ)̂ (ξ) = (2π)n/2φ̂(ξ)ψ̂(ξ).

In addition, we have the formula

(3.6) ξβ(−i∂ξ)αφ̂(ξ) = (−1)|α|
(
(−i∂x)β(xαφ(•)))̂ (ξ).

Definition 3.1. The space S ′(Rn) of all tempered distributions is the
space of all continuous linear functionals on S(Rn).

It is easy to see that Lp(Rn) ⊂ S ′(Rn) for all 1 ≤ p ≤ ∞ and that
all bounded measures and all measurable functions which grow at most
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polynomially define elements in S ′(Rn). For a bounded measure µ we
have

(3.7) 〈µ, φ〉 :=
∫

Rn

φ(x)µ(dx), φ ∈ S(Rn).

By duality we can extend several operations onto S ′(Rn):

〈∂αu, φ〉 = (−1)|α| 〈u, ∂αφ〉 ;(3.8)

〈û, φ〉 =
〈
u, φ̂

〉
;(3.9)

〈gu, φ〉 = 〈u, gφ〉;(3.10)

where u ∈ S ′(Rn), φ ∈ S(Rn), and g is a C∞-function which is together
with all of its partial derivatives polynomially bounded. Moreover, we set

(3.1) (u ? φ)(x) = 〈u, φ(x− •)〉, x ∈ Rn.

Clearly, these definitions extend the earlier definitions. In particular, the
Fourier transform of a bounded measure µ as in (2.4) coincides with (3.9).
For the Dirac measure ε0 we find

(3.12) ε̂0 = (2π)−n/2 and 1̂ = (2π)n/2ε0.

Moreover, (3.5), (3.6) remain true in S ′(Rn) with an appropriate interpre-
tation, and (3.4) extends to φ, ψ ∈ L2(Rn) as well as to f ∈ {

g ∈ L1(Rn) :
ĝ ∈ L1(Rn)

}
and bounded measures µ, i.e. we have

(3.13)
∫

Rn

f(x)µ(dx) =
∫

Rn

f̂(ξ)µ̂(−ξ) dξ =
∫

Rn

f̂(ξ)µ̂(ξ) dξ

since µ̂(−ξ) = µ̂(ξ).
The support of u ∈ S ′(Rn) is the complement of all open sets Ω ⊂ Rn

where u
∣∣
C∞0 (Ω)

≡ 0 holds. Here, C∞0 (Ω) are the test functions, that are
the arbitrarily often differentiable, compactly supported (in Ω) functions.

Theorem 3.2. Suppose that u ∈ S ′(Rn) and supp u = {0}. Then

there exists a number m ∈ N0 such that

(3.14) u =
∑

|α|≤m

cα∂αε0
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is valid with some constants cα ∈ C.

Let u ∈ S ′(Rn) be such that û = c0ε0 +
∑n

j=1 cj
∂

∂xj
ε0. Then (3.6)

and (3.12) imply

(3.15) u(x) = c̃0 +
n∑

j=1

c̃jxj .

Later on, we will consider the set

S0(Rn) :=
{

v ∈ S(Rn) : v̂(0) =
∂

∂ξj
v̂(0) = 0, 1 ≤ j ≤ n

}
(3.16)

=
{

v̂ ∈ S(Rn) : v(0) =
∂

∂ξj
v(0) = 0, 1 ≤ j ≤ n

}
.

Using (3.6) we find for any v ∈ S0(Rn)

(3.17)
∫

Rn

v(x) dx =
∫

Rn

xjv(x) dx = 0, 1 ≤ j ≤ n.

Lemma 3.3. Let f, g : Rn → C be two measurable functions which

are polynomially bounded. If for all φ ∈ S0(Rn)

(3.18)
∫

Rn

f(x)φ(x) dx =
∫

Rn

g(x)φ(x) dx,

then there exist a constant c ∈ C and a vector d ∈ Cn such that

(3.19) f(x) = c + d · x + g(x).

Proof. Clearly, both f and g induce elements of S ′(Rn), thus (3.18)
implies

〈f,F2φ〉 = 〈g,F2φ〉(3.20)

and

〈f̂ , φ̂〉 = 〈ĝ, φ̂〉(3.21)



An analytic proof of the Lévy–Khinchin formula on Rn 77

for all φ ∈ S0(Rn). Since S0(Rn) is rich enough we find supp(f̂ − ĝ) ⊂ {0},
implying

(3.22) f̂ − ĝ =
∑

|α|≤m

cα∂αε0.

Since for |α| ≥ 2 there are φ ∈ S0(Rn) with ∂αφ(0) 6= 0, we have necessarily
m < 2 in (3.22) and the assertion follows from (3.15). ¤

4. Convolution semigroups and Feller semigroups

Let {µt}t≥0 be a convolution semigroup on Rn. For any measurable
and bounded function u, that is u ∈ Bb(Rn), we can define the operator

(4.1) Ttu(x) =
∫

Rn

u(x− y)µt(dy), x ∈ Rn.

Clearly, Ttu is again in Bb(Rn) and the family {Tt}t≥0 is a one-parameter
semigroup of linear operators on Bb(Rn), i.e.

(4.2) Tt+s = Tt ◦ Ts and T0 = id.

Moreover, {Tt}t≥0 is a Feller semigroup in the following sense:

Definition 4.1. Let {Tt}t≥0 be a family of operators acting on the
continuous functions vanishing at infinity, Tt : C∞(Rn) → C∞(Rn), such
that Tt+s = Tt ◦Ts, and T0 = id, limt→0 ‖Ttu−u‖∞ = 0, and 0 ≤ Ttu ≤ 1
whenever 0 ≤ u ≤ 1 are fulfilled. Then {Tt}t≥0 is said to be a Feller
semigroup.

Since S(Rn) ⊂ C∞(Rn) we find for u ∈ S(Rn)

(4.3) Ttu(x) = (2π)−n/2

∫

Rn

eixξe−tψ(ξ)û(ξ) dξ, x ∈ Rn,

where ψ : Rn → C is the continuous negative definite function associated
with the convolution semigroup {µt}t≥0

(4.4) µ̂t(ξ) = (2π)−n/2e−tψ(ξ), ξ ∈ Rn.
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Let (A,D(A)) denote the infinitesimal generator of the semigroup {Tt}t≥0,

Au = lim
t→0

Ttu− u

t
,(4.5)

D(A) =
{
u ∈ C∞(Rn) : the limit (4.5) exists in C∞(Rn)

}
.(4.6)

It is a straightforward calculation that for u ∈ S(Rn)

(4.7)

lim
t→0

∣∣∣∣
Ttu(x)− u(x)

t
+ (2π)−n/2

∫

Rn

eixξψ(ξ)û(ξ) dξ

∣∣∣∣

= lim
t→0

(2π)−n/2

∣∣∣∣
∫

Rn

eixξ

(
e−tψ(ξ) − 1

t
+ ψ(ξ)

)
û(ξ) dξ

∣∣∣∣ = 0

uniformly for all x ∈ Rn. This shows that S(Rn) ⊂ D(A) and that for
those u the generator admits the representation

(4.8) Au(x) = −(2π)−n/2

∫

Rn

eixξψ(ξ)û(ξ) dξ, x ∈ Rn.

On the other hand, we have also

Au(x) = lim
t→0

Ttu(x)− u(x)
t

= lim
t→0

1
t

(∫

Rn

u(x− y) µt(dy)−
∫

Rn

u(x− y) ε0(dy)
)

and comparing this formula with (4.8) we get

(4.9)
−(2π)−n/2

∫

Rn

eixξψ(ξ)û(ξ) dξ

= lim
t→0

1
t

(∫

Rn

u(x− y) µt(dy)−
∫

Rn

u(x− y) ε0(dy)
)

for all x ∈ Rn and u ∈ S(Rn).
Evaluating carefully the right-hand side of (4.9) one should be able to

derive a representation formula for the negative definite function ψ.

5. The Lévy–Khinchin formula

Going along the lines laid out in the preceding paragraph we will now
prove the following theorem, known as the Lévy–Khinchin formula.
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Theorem 5.1. Let ψ : Rn → C be a continuous negative definite

function. Then there exist a constant c ≥ 0, a vector d ∈ Rn, a symmetric

positive semidefinite quadratic form q(ξ) on Rn and a finite measure µ on

Rn \ {0} such that

ψ(ξ) = c + idξ + q(ξ)(5.1)

+
∫

Rn\{0}

(
1− e−ixξ − ixξ

1 + ‖x‖2
)

1 + ‖x‖2
‖x‖2 µ(dx)

holds.

In order to prove Theorem 5.1 we need some preparations. Recall that
there is a one-to-one correspondence between negative definite functions
ψ and convolution semigroups {µt}t≥0 which is expressed by (2.5),

(5.2) µ̂t(ξ) = (2π)−n/2 e−tψ(ξ), t ≥ 0, ξ ∈ Rn.

Lemma 5.2. There exists a finite measure µ on Rn such that we have

in the sense of weak convergence of measures

(5.3)
1
t

‖x‖2
1 + ‖x‖2 µt(dx) → µ(dx) as t → 0.

In particular, the measures in (5.3) have uniformly (in t > 0) bounded

total mass.

Proof. We want to apply Theorem 2.8. Therefore we have to calcu-
late the Fourier transforms of the measures 1

t
‖x‖2

1+‖x‖2 µt(dx). Note that

‖x‖2
1 + ‖x‖2 =

1
2

∫ ∞

0

(
1− e−λ‖x‖2/2

)
e−λ/2 dλ

=
1
2

∫ ∞

0

∫

Rn

(2πλ)−n/2
(
1− e−ixξ

)
e−‖ξ‖

2/(2λ) e−λ/2 dξ dλ

=
∫

Rn

(
1− e−ixξ

)
g(ξ) dξ,

where

(5.4) g(ξ) =
1
2

∫ ∞

0

(2πλ)−n/2e−‖ξ‖
2/(2λ) e−λ/2 dλ.
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It is easy to see that

(5.5)
∫

Rn

g(ξ) dξ < ∞ and
∫

Rn

‖ξ‖4g(ξ) dξ < ∞.

Hence, we find for the Fourier transform of 1
t

‖x‖2
1+‖x‖2 µt(dx)

1
t

∫

Rn

e−ixη ‖x‖2
1 + ‖x‖2 µt(dx) =

1
t

∫

Rn

∫

Rn

e−ixη
(
1− e−ixξ

)
g(ξ) dξ µt(dx)

=
1
t

∫

Rn

(
e−tψ(η) − e−tψ(ξ+η)

)
g(ξ) dξ.

Using a Taylor expansion we obtain

1
t

∫

Rn

e−ixη ‖x‖2
1 + ‖x‖2 µt(dx) =

∫

Rn

(ψ(ξ + η)− ψ(η))g(ξ) dξ +
1
2
t I(t, η)

where

I(t, η) =
∫

Rn

(R(t, η)−R(t, η + ξ))g(ξ) dξ,

with t2

2 R(t, η) being the remainder of the Taylor expansion of tψ(η) 7→
e−tψ(η) up to order two. We shall prove that for any h > 0

(5.6) sup
t>0

sup
‖η‖<h

|I(t, η)| < ∞.

Indeed,

|I(t, η)| ≤
∫

Rn

(|R(t, η)|+ |R(t, ξ + η)|)g(ξ) dξ

≤
∫

Rn

(|ψ(η)|2 + |ψ(ξ + η)|2)g(ξ) dξ

≤ cψ

∫

Rn

(
1 + ‖η‖4 + ‖ξ‖4)g(ξ) dξ,

and with (5.5) the estimate (5.6) follows. Thus we find that the Fourier
transforms of 1

t
‖x‖2

1+‖x‖2 µt(dx) converge uniformly on compact sets to a
(continuous) positive definite function, and by Theorem 2.8 there exists
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a finite measure µ such that (5.3) holds. The uniform boundedness of
the total masses follows from the above calculations if we set η = 0.

¤

Lemma 5.3. Denote by 1B1(0), resp. 1B2(0) the indicator functions of

the open balls with radius 1, resp., 2 centered at the origin. Fix a function

χ ∈ C∞0 (Rn) such that 1B1(0) ≤ χ ≤ 1B2(0). For k, ` = 1, . . . , n there exist

(signed) measures νk` on Rn with finite total mass such that

(5.7)
1
t

xkx`

1 + ‖x‖2 χ(x) µt(dx) → νk` as t → 0

holds in the sense of weak convergence of measures.

Proof. Using the identity 2xkx` = (xk +x`)2−x2
k−x2

` it is sufficient
to show that 1

t
(xk+x`)

2

1+‖x‖2 χ(x) µt(dx) → ρk` as t → 0 for all k, ` = 1, 2, . . . , n

in the sense of weak convergence of measures. (Clearly, νk` is given by
1
2ρk` − 1

8ρkk − 1
8ρ`` and has finite total mass.)

Since

(xk + x`)2

1 + ‖x‖2 χ(x) ≤ 2 ‖x‖2
1 + ‖x‖2 , 1 ≤ k, ` ≤ n, x ∈ Rn,

Lemma 5.2 shows that the measures 1
t

(xk+x`)
2

1+‖x‖2 χ(x)µt(dx), t > 0, have
uniformly bounded total mass with respect to t, k, `, and χ. Again we
want to apply Theorem 2.8, and for this reason we compute the Fourier
transforms of the these measures. Note that

1
t

∫

Rn

e−ixη (xk + x`)2

1 + ‖x‖2 χ(x) µt(dx)

=
1
t

∫

Rn

e−ixη (xk + x`)2

1 + ‖x‖2 χ(x) (µt − ε0)(dx).

If Φη denotes the function

(5.8) Φη(x) = e−ixη (xk + x`)2

1 + ‖x‖2 χ(x),
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we have Φη ∈ S(Rn) and, using (3.13), we find

1
t

∫

Rn

e−ixη (xk + x`)2

1 + ‖x‖2 χ(x)µt(dx) =
1
t

∫

Rn

Φ̂η(ξ)
(
µ̂t(ξ)− ε̂0(ξ)

)
dξ

= (2π)−n/2 1
t

∫

Rn

Φ̂η(ξ)
(
e−tψ(ξ) − 1

)
dξ.

As in the proof of Lemma 5.2 a Taylor expansion yields

1
t

∫

Rn

e−ixη (xk + x`)2

1 + ‖x‖2 χ(x) µt(dx)

= (2π)−n/2

∫

Rn

Φ̂η(ξ)ψ(ξ) dξ +
1
2
t Ĩ(t, η)

where

Ĩ(t, η) = (2π)−n/2

∫

Rn

Φ̂η(ξ)R(t, ξ) dξ

with the remainder term R(t, ξ) of the Taylor expansion up to order two.
Now

(2π)n/2|Ĩ(t, η)| =
∣∣∣
∫

Rn

Φ̂η(ξ)R(t, ξ) dξ
∣∣∣ =

∣∣∣
∫

Rn

Φ̂0(ξ)R(t, ξ − η) dξ
∣∣∣

≤
∫

Rn

∣∣Φ̂0(ξ)
∣∣|ψ(ξ − η)|2 dξ ≤ cψ

∫

Rn

∣∣Φ̂0(ξ)
∣∣(1 + ‖η‖4 + ‖ξ‖4) dξ

which implies that

(5.9) sup
t>0

sup
‖η‖≤h

|Ĩ(t, η)| < ∞

for all h > 0. Hence, the Fourier transforms of 1
t

(xk+x`)
2

1+‖x‖2 χ(x) µt(dx)
converge as t → 0 uniformly on compact sets, and by Theorem 2.8 the
assertion follows. ¤

Corollary 5.4. Let U be an open neighborhood of the origin 0 ∈ Rn

such that 2U ⊂ B1(0) and let φU ∈ C∞0 (Rn) be a function satisfying
1U ≤ φU ≤ 12U . Then

(5.10) lim
t→0

1
t

∫

Rn

xkx`φU (x)µt(dx) =
∫

Rn

φU (x)νk`(dx)+O((diam2U)2)
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is valid.

Proof. Let χ be the cut-off function introduced in Lemma 5.3. Since
supp φU ⊂ {x ∈ Rn : χ(x) = 1}, we find

1
t

∫

Rn

xkx`φU (x)µt(dx) =
1
t

∫

Rn

(1 + ‖x‖2)φU (x)
xkx`

1 + ‖x‖2 χ(x)µt(dx)

and since (1 + ‖ • ‖2)φU ∈ C0(Rn), it follows from Lemma 5.3 that

lim
t→0

1
t

∫

Rn

xkx`φU (x)µt(dx) =
∫

Rn

(1 + ‖x‖2)φU (x) νk`(dx).

Let |νk,`|(dx) denote the modulus of the signed measure νk`(dx). Then

∣∣∣
∫

Rn

‖x‖2φU (x) νk`(dx)
∣∣∣ ≤

∫

2U

‖x‖2 |νk`|(dx)

≤ (diam2U)2 max
1≤k,`≤n

|νk`|(Rn)

and the assertion follows since the νk` are of bounded total mass. ¤
Let us recall the definition of the set S0(Rn),

S0(Rn) =
{

v ∈ S(Rn) : v̂(0) =
∂

∂ξj
v̂(0) = 0, 1 ≤ j ≤ n

}
.

Define

(5.12)
F :=

{
f : Rn \ {0} → R : f(x) =

1 + ‖x‖2
‖x‖2 v̂(x)

for some v ∈ S0(Rn)
}

.

Lemma 5.5. Let f ∈ F , f(x) = 1+‖x‖2
‖x‖2 v̂(x) with v ∈ S0(Rn). Then

we have

‖x‖2
1 + ‖x‖2 f(x) =

1
2

n∑

k,`=1

xkx`
∂2

∂xk∂x`
v̂(0) + O(‖x‖3).

In particular, the left-hand side of (5.13) has an extension onto Rn.

Proof. By definition we have for x ∈ Rn \ {0}
‖x‖2

1 + ‖x‖2 f(x) = v̂(x) ∈ S0(Rn)



84 Niels Jacob and René L. Schilling

which is a function on Rn. The Taylor expansion of v̂ at 0 ∈ Rn yields

v̂(x) =
1
2

n∑

k,`=1

xkx`
∂2

∂xk∂x`
v̂(0) + R(x)

where we can estimate the remainder by

|R(x)| ≤ n3

6
sup

1≤k,`,m≤n

∥∥∥ ∂3

∂xk∂x`∂xm
v̂
∥∥∥
∞
‖x‖3,

which implies (5.13). ¤

Lemma 5.6. For all f ∈ F , f(x) = 1+‖x‖2
‖x‖2 v̂(x) and v ∈ S0(Rn), we

have

−(2π)−n/2

∫

Rn

ψ(ξ)v(ξ) dξ =
n∑

k,`=1

qk`
∂2

∂xk∂x`
v̂(0) +

∫

Rn\{0}
f(x)µ(dx),

where (qk`)n
k,`=1 is a symmetric, positive semidefinite matrix and µ the

measure constructed in Lemma 5.2.

Proof. Let f and v be as above. Then

1
t

∫

Rn

f(x)
‖x‖2

1 + ‖x‖2 µt(dx) =
1
t

∫

Rn

v̂(x) µt(dx)

=
1
t

∫

Rn

v̂(x) (µt − ε0)(dx) =
1
t

∫

Rn

v(ξ)(µ̂t(ξ)− (2π)−n/2) dξ,

where we used (3.13), the fact that F2v(ξ) = v(−ξ), and that ψ(ξ) =
ψ(−ξ). Therefore,

1
t

∫

Rn

f(x)
‖x‖2

1 + ‖x‖2 µt(dx) = (2π)−n/2 1
t

∫

Rn

v(ξ)
(
e−tψ(ξ) − 1

)
dξ.

Since
∣∣e−tψ(ξ) − 1

∣∣ ≤ t|ψ(ξ)| ≤ cψt(1 + ‖ξ‖2) and v ∈ S(Rn) we can pass
to the limit under the integral sign and get

(5.14) lim
t→0

1
t

∫

Rn

f(x)
‖x‖2

1 + ‖x‖2 µt(dx) = −(2π)−n/2

∫

Rn

v(ξ)ψ(ξ)dξ.
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With φU as in Corollary 5.4 it follows that

1
t

∫

Rn

f(x)
‖x‖2

1 + ‖x‖2 µt(dx) =
1
t

∫

Rn

φU (x)f(x)
‖x‖2

1 + ‖x‖2 µt(dx)

+
1
t

∫

Rn

(1− φU (x))f(x)
‖x‖2

1 + ‖x‖2 µt(dx) = I1(t) + I2(t).

Since (1− φU )f ∈ Cb(Rn), Lemma 5.2 gives

I2(t) →
∫

Rn

(1− φU (x))f(x)µ(dx) as t → 0.

As in the proof of Lemma 5.5. we see

I1(t) =
1
t

∫

Rn

φU (x)
n∑

k,`=1

1
2

xkx`
∂2

∂xk∂x`
v̂(0)µt(dx)

+
1
t

∫

Rn

φU (x)R(x)µt(dx)

where R is a continuous function satisfying |R(x)| ≤ c‖x‖3. Therefore,

R̃(x) :=

{
R(x)(1+‖x‖2)

‖x‖2 , x 6= 0

0, x = 0

is also continuous on Rn and we get

1
t

∫

Rn

φU (x)R(x) µt(dx) =
1
t

∫

Rn

φU (x)R̃(x)
‖x‖2

1 + ‖x‖2 µt(dx).

Since φU (•)R̃(•) is bounded and continuous we find that the limit

(5.16) lim
t→0

1
t

∫

Rn

φU (x)R(x)µt(dx) = hU ∈ R

exists. But supp φU ⊂ 2Ū ⊂ B1(0), thus

∣∣∣1
t

∫

Rn

φU (x)R(x) µt(dx)
∣∣∣ ≤ c

t

∫

2U

‖x‖3 µt(dx)

≤ c̃ diam(2U)
1
t

∫

Rn

‖x‖2
1 + ‖x‖2 µt(dx).
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The last term is, however, uniformly bounded in t > 0. This gives

(5.17) |hU | ≤ c′ diam(2U)

and by Corollary 5.4

lim
t→0

I1(t) =
1
2

n∑

k,`=1

∫

Rn

φU (x) νk`(dx)
∂2

∂xk∂x`
v̂(0) + hU .

So far we have proved

lim
t→0

1
t

∫

Rn

f(x)
‖x‖2

1 + ‖x‖2 µt(dx)

=
1
2

n∑

k,`=1

∫

Rn

φU (x)νk`(dx)
∂2

∂xk∂x`
v̂(0)+

∫

Rn

(1− φU (x))f(x)µ(dx) + hU .

Since the measures νk`, 1 ≤ k, ` ≤ n, are finite we can pass to the limit
U ↓ {0} to obtain

lim
t→0

1
t

∫

Rn

f(x)
‖x‖2

1 + ‖x‖2 µt(dx)

=
1
2

n∑

k,`=1

νk`({0}) ∂2

∂xk∂x`
v̂(0) +

∫

Rn\{0}
f(x)µ(dx)

or in view of (5.14)

(5.18)

−(2π)−n/2

∫

Rn

ψ(ξ)v(ξ) dξ

=
1
2

n∑

k,`=1

νk`({0}) ∂2

∂xk∂x`
v̂(0) +

∫

Rn\{0}
f(x)µ(dx).

It remains to show that the matrix (qk`)n
k,`=1 =

(
(1/2)νk`({0})

)n

k,`=1

is symmetric and positive semidefinite. But for any choice of ξk ∈ R,
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1 ≤ k ≤ n,

n∑

k,`=1

qk`ξkξ` =
n∑

k,`=1

lim
U↓{0}

1
2

∫

Rn

φU (x) νk,`(dx) ξkξ`

=
1
2

n∑

k,`=1

lim
U↓{0}

lim
t→0

1
t

∫

Rn

φU (x) xkx`ξkξ` µt(dx)

=
1
2

lim
U↓{0}

lim
t→0

1
t

∫

Rn

φU (x)
( n∑

k=1

xkξk

)2

µt(dx) ≥ 0,

and the symmetry is obvious. ¤

Proof of Theorem 5.1. Let f ∈ F , f(x) = 1+‖x‖2
‖x‖2 v̂(x) and v ∈

S0(Rn). With µ as in Lemma 5.2 we find

∫

Rn\{0}
f(x)µ(dx) =

∫

Rn\{0}

1 + ‖x‖2
‖x‖2 v̂(x)µ(dx)

= (2π)−n/2

∫

Rn\{0}

∫

Rn

e−ixξv(ξ) dξ
1 + ‖x‖2
‖x‖2 µ(dx)

= (2π)−n/2

∫

Rn\{0}

∫

Rn

(
e−ixξ − 1 +

ixξ

1 + ‖x‖2
)

(5.19)

× v(ξ) dξ
1 + ‖x‖2
‖x‖2 µ(dx),

because v ∈ S0(Rn) implies
∫
Rn v(ξ) dξ =

∫
Rn ξjv(ξ) dξ = 0 for all 1 ≤ j ≤

n. Since
∣∣∣∣e−ixξ − 1 +

ixξ

1 + ‖x‖2
∣∣∣∣ ≤

∣∣e−ixξ − 1 + ixξ
∣∣ +

∣∣∣∣ixξ − ixξ

1 + ‖x‖2
∣∣∣∣

≤ 1
2
‖x‖2‖ξ‖2 +

‖x‖2
1 + ‖x‖2 ‖x‖‖ξ‖,

we find for ‖x‖ ≤ 1 that
∣∣∣∣
(
e−ixξ−1+

ixξ

1 + ‖x‖2
)

1 + ‖x‖2
‖x‖2

∣∣∣∣≤
1
2
(1+‖x‖2)‖ξ‖2+‖x‖‖ξ‖≤‖ξ‖2+‖ξ‖,
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and for ‖x‖ > 1 we have
∣∣∣∣
(

e−ixξ − 1 +
ixξ

1 + ‖x‖2
)

1 + ‖x‖2
‖x‖2

∣∣∣∣ ≤ 4 + ‖ξ‖.

We may, therefore, change the order of integration in (5.19) and obtain

∫

Rn\{0}
f(x) µ(dx)

= (2π)−n/2

∫

Rn

∫

Rn\{0}

(
e−ixξ − 1 +

ixξ

1 + ‖x‖2
)

1 + ‖x‖2
‖x‖2 µ(dx) v(ξ) dξ.

By Lemma 5.6

∫

Rn

ψ(ξ)v(ξ)dξ = −(2π)n/2
n∑

k,`=1

qk`
∂2

∂xk∂x`
v̂(0)− (2π)n/2

∫

Rn\{0}
f(x)µ(dx)

=
∫

Rn

{ n∑

k,`=1

qk`ξkξ` +
∫

Rn\{0}

(
1−e−ixξ− ixξ

1+‖x‖2
)

1+‖x‖2
‖x‖2 µ(dx)

}
v(ξ)dξ.

Applying Lemma 3.3 we find

ψ(ξ) = c + idξ +
n∑

k,`=1

qk`ξkξ`

+
∫

Rn\{0}

(
1− e−ixξ − ixξ

1 + ‖x‖2
)

1 + ‖x‖2
‖x‖2 µ(dx),

with some c ∈ C and d ∈ Cn. For ξ = 0 we know ψ(0) ≥ 0, hence c ∈ R
and c ≥ 0, and, since ψ(ξ) = ψ(−ξ), we see that d ∈ Rn.
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[7] G. Forst, The Lévy–Khinčin representation of negative definite functions,
Z. Wahrscheinlichkeitstheorie verw. Geb. 34 (1976), 313–318.

[8] B. W. Gnedenko und A. N. Kolmogorov, Grenzverteilungen von Summen
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