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Geodesic tubes and normal flow space forms

By J. C. GONZÁLEZ-DÁVILA∗ (La Laguna) and L. VANHECKE (Leuven)

Abstract. We consider the shape operator of tubular hypersurfaces about geod-
esics in Riemannian manifolds which are equipped with a unit Killing vector field. We
derive some characteristic properties for the special subclass of normal flow space forms.

1. Introduction

Up to local isometries, the two-point homogeneous spaces provide the
simplest examples of locally homogeneous spaces. They may be considered
as space forms in real, Kähler, quaternionic Kähler and Cayley geometry.
In all these cases they can be defined by supposing that some particular
sectional curvatures are locally or globally constant. The Sasakian space
forms play a similar role in Sasakian geometry. One of the important
features of all these space forms is that one can determine explicitly all
the Jacobi vector fields along geodesics and use them to study a lot of
geometric properties of these manifolds.

A key fact in Sasakian geometry is the existence of a unit Killing vector
field on each Sasakian manifold. Several aspects of this geometry may also
be considered on each Riemannian manifold equipped with such a vector
field. This vector field determines an isometric flow on the manifold and for
that reason the corresponding geometry has been called flow geometry or
also generalized Sasakian geometry. We refer to [5], [6] for more details and
further references. In [7] the authors studied the notion of a normal flow
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space form. It turns out that although there are many similarities with
Sasakian geometry, there are also remarkable differences. For example,
there exist normal flow space forms which do not have an analogue in
Sasakian geometry.

Extrinsic and intrinsic geometric properties of geodesic spheres and
tubes about curves or geodesics have been used to characterize all these
space forms. Here, we continue this study and use Jacobi vector fields
to derive characteristic properties of the shape operator of tubes about
geodesics in normal flow space forms.

In Section 2 we collect some preliminaries about flow geometry and
in Section 3 we recall some useful facts about the extrinsic geometry of
tubes about geodesics. The characteristic properties are then derived in
Section 4 and Section 5, based on the explicit expressions for the shape
operator. These expressions are derived by means of the formulas for the
Jacobi vector fields derived for normal flow space forms in [8].

2. Preliminaries about flow geometry

Let (M, g) be an n-dimensional, smooth, connected Riemannian man-
ifold with n ≥ 2. Further, let ∇ denote the Levi Civita connection
of (M, g) and R the Riemannian curvature tensor with sign convention
RUV = ∇[U,V ] − [∇U ,∇V ] for U, V ∈ X(M), the Lie algebra of smooth
vector fields on M .

Further, let Fξ denote the isometric flow [12] on (M, g) generated
by a unit Killing vector field ξ. The flow lines of Fξ are geodesics. A
vector which is orthogonal to ξ is called a transversal or horizontal vector
and a geodesic which is orthogonal to ξ is called a transversal or horizontal
geodesic. Fξ determines locally a Riemannian submersion. In fact, for each
m ∈ M, let U be a small open neighborhood of m such that ξ is regular
on U . Then the mapping π : U → Ũ = U/ξ is a submersion. Further,

let g̃ denote the induced metric on Ũ given by
(
g̃(X̃, Ỹ )

)∗
= g(X̃∗, Ỹ ∗)

for X̃, Ỹ ∈ X(Ũ) and where X̃∗, Ỹ ∗ denote the horizontal lifts of X̃,
Ỹ with respect to the (n − 1)-dimensional horizontal distribution on U
determined by η = 0, η being the dual one-form of ξ with respect to g.
Then π : (U , g|U ) → (Ũ , g̃) is a Riemannian submersion.
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Next, put HU = −∇Uξ and h(U, V ) = g(HU, V ) for all U, V ∈ X(M).
Since ξ is a Killing vector field, h is skew-symmetric and moreover, we have
h = −dη. The Levi Civita connection ∇̃ on (Ũ , g̃) is determined by

(2.1) ∇ eX∗ Ỹ
∗ = (∇̃ eX Ỹ )∗ + h(X̃∗, Ỹ ∗)ξ

for X̃, Ỹ ∈ X(Ũ) and the curvature tensor R of (M, g) satisfies

R(X, ξ, Y, ξ) = g(HX, HY ) = −g(H2X, Y )

for all horizontal vector fields X, Y . Here we use, as usual, the notation
R(X,Y, Z,W ) = g(RXY Z, W ). From this it follows that the ξ-sectional
curvature K(X, ξ) of the two-plane determined by X and ξ is non-negative
for all horizontal X. Moreover, K(X, ξ) is strictly positive for all X if and
only if H is of maximal rank n− 1. In this case, n is necessarily odd and
η is a contact form. Then the flow Fξ is called a contact flow.

Fξ is called a normal flow [5] if, for all horizontal X, Y , the curvature
transformations RXY leave the horizontal subspaces invariant. This is
equivalent to R(X, Y, X, ξ) = 0. It is worthwhile to note here that a
Sasakian manifold is a Riemannian manifold equipped with a normal flow
Fξ such that the ξ-sectional curvature equals 1 (see [1] for more details).
Further, Fξ is normal if and only if

(2.2) (∇UH)V = g(HU,HV )ξ + η(V )H2U

for all U, V ∈ X(M). Then the curvature tensor satisfies

(2.3)

{
RUV ξ = η(V )H2U − η(U)H2V,

RUξV = g(HU,HV )ξ + η(V )H2U,

U, V ∈ X(M). Using this and (2.1), we deduce that the curvature tensors
of ∇ and ∇̃ are related by the formula

(2.4)
(R̃ eX eY Z̃)∗ = R eX∗ eY ∗Z̃∗ − g(HỸ ∗, Z̃∗)HX̃∗

+ g(HX̃∗, Z̃∗)HỸ ∗ + 2g(HX̃∗, Ỹ ∗)HZ̃∗

for all X̃, Ỹ , Z̃ ∈ X(Ũ). Finally, put H̃X̃ = π∗HX̃∗ for X̃ ∈ X(Ũ). Then
Fξ is normal if and only if ∇̃H̃ = 0.
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Next, we collect some facts about locally Killing-transversally sym-
metric spaces. Let m ∈ (M, g) and denote by σ = σm : [−δ, δ] → M a
geodesic flow line through m = σ(0) where δ is sufficiently small. A local
diffeomorphism sm of M defined in a neighborhood U of m is called a (lo-
cal) reflection with respect to σ if for every transversal geodesic γ(s) where
γ(0) lies in the intersection of U and σ, we have (sm ◦ γ)(s) = γ(−s) for
all s with γ(±s) ∈ U , s being the arc length of γ. A Riemannian manifold
(M, g) equipped with a flow Fξ such that each local reflection sm is an
isometry, is called a locally Killing-transversally symmetric space (briefly,
a locally KTS-space) [5]. In this case, Fξ is a normal flow. These spaces
may be characterized as follows.

Proposition 2.1 [5]. The following statements are equivalent:

(i) (M, g, Fξ) is a locally KTS-space;

(ii) Fξ is normal and (∇XR)(X, Y,X, Y ) = 0 for all horizontal X, Y .

Proposition 2.2 [5]. Let Fξ be a normal flow on (M, g). Then

(M, g, Fξ) is a locally KTS-space if and only if each base space Ũ of a

local Riemannian submersion π : U → Ũ = U/ξ is a locally symmetric

space.

Note that locally KTS-spaces are locally homogeneous spaces. More-
over, when η is a contact form, (M, g, Fξ) is called a contact locally KTS-
space. In that case we mention the following useful result.

Proposition 2.3 [6]. Any complete, contact locally KTS-space

(M, g, Fξ) is transversally modelled on a Hermitian symmetric space M̃ .

Moreover, if M̃ = M̃0 × M̃1 × · · · × M̃r is its de Rham decomposition,

where M̃0 = Cp, then there exist r + p real numbers c1, . . . , cr, µ1, . . . , µp

such that on each distinguished chart U ⊂ M , the smooth distributions

Hi, i = 0, 1, . . . , r, obtained by the horizontal lifts of the tangent vectors

of M̃i, verify

(i) H(m) = H0(m)⊕H1(m)⊕ · · · ⊕Hr(m) is an H-invariant orthogonal

decomposition of the horizontal subspace H(m) for each m ∈ U ;

(ii) each sectional curvature K(Hj , ξ), j = 1, . . . , r, is a positive constant

equal to c2
j ;
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(iii) the (1, 1)-tensor field

J = J0 × 1
c1

H̃1 × · · · × 1
cr

H̃r

is a Hermitian structure on (Ũ = U/ξ, g̃), where J0 denotes the almost

complex structure on M̃0 = Cp = E2p(x1, . . . , x2p) and H̃j = H̃ ◦ pj ,

j = 1, . . . , r, with pj : M̃ → M̃j the projection of M̃ on M̃j ;

(iv) H̃0 = H̃ ◦ p0 on E2p(x1, . . . , x2p) is given by

H̃
∂

∂xk
= µk

∂

∂xp+k
, H̃

∂

∂xp+k
= −µk

∂

∂xk
, k = 1, . . . , p.

Finally, we consider the preliminaries about normal flow space forms.
A plane section in TmM, m ∈ M, is called an H-section if there exists
a horizontal X in TmM such that {X,HX} is a basis of the plane sec-
tion. The sectional curvature K(X,HX) of an H-section is called the
H-sectional curvature corresponding to X. In [7] it is proved that the
H- and ξ-sectional curvatures on a complete, contact locally KTS-space
(M, g, Fξ) determine completely its curvature. A Riemannian manifold
equipped with a contact flow Fξ is said to be a flow space form if the
H-sectional curvature is pointwise constant, that is, K(X, HX) is inde-
pendent of X for each horizontal X ∈ TmM and all m ∈ M . Moreover, a
normal flow space form has globally constant H-sectional curvature if and
only if it is a locally KTS-space.

Normal flow space forms have been studied in detail in [7] where two
special cases are considered according to whether the ξ-sectional curvature
is constant or not. If (M, g, Fξ) is a normal flow space form with pointwise
constant H-sectional curvature k and constant ξ-sectional curvature c2,

then (M, c2g, ϕ = c−1H, c−1ξ, cη) is a Sasakian manifold of constant ϕ-
sectional curvature kc−2 and so, (M, g) is obtained by a homothetic change
of metric from Sasakian space forms. See [7] for more information. Hence,
as is proved in [7] and for dimM ≥ 5, the H-sectional curvature is a global
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constant k and the curvature tensor is given by

(2.5)

RUV W =
k + 3c2

4

{
g(U,W )V − g(V,W )U

}

+
k − c2

4

{
η(V )η(W )U − η(U)η(W )V

+ g(V, W )η(U)ξ − g(U,W )η(V )ξ
}

+
k − c2

4c2

{
g(W,HU)HV − g(W,HV )HU − 2g(U,HV )HW

}
.

For dim M = 3 we shall assume that k is also a global constant. Then we
have the same formula for R as in (2.5). In this case (Ũ , g̃) is a Kähler
manifold of constant holomorphic sectional curvature h = k + 3c2. Here
we have, based on [11, Theorem A]:

Theorem 2.1. A Riemannian manifold (M, g) of dimension ≥ 5 equ-

ipped with a normal flow Fξ such that the ξ-sectional curvature is a non-

vanishing constant, is a flow space form if and only if for any horizontal

X, RXHXX is proportional to HX.

This first kind of normal flow space forms will be denoted by
M2n+1(c2, k). We recall that we obtain Sasakian space forms for c2 = 1.

Although there is in the contact case a similarity with the theory of
Sasakian manifolds, there also differences. Indeed, the situation is quite
different when we consider normal flow space forms with non-constant ξ-
sectional curvature, a case which cannot occur in Sasakian geometry. We
recall some facts for this case. When (M, g, Fξ) is a complete manifold
with globally constant H-sectional curvature, it admits two smooth distri-
butions H1 and H2 such that for each m ∈ M , H(m) = H1(m)⊕H2(m) is
an H-invariant decomposition of the horizontal subspace H(m) and each
sectional curvature K(Hi, ξ), i = 1, 2, is a positive constant c2

i (c2
1 > c2

2).
Further, such spaces are precisely the (M2n+1, g) equipped with a normal
contact flow Fξ which is transversally modelled on the Riemannian prod-
uct CPn1(h1)×CHn2(h2) where |h2| < h1, n1+n2 = n and the ξ-sectional
curvatures c2

i , i = 1, 2, are given by

c2
i = (−1)i+1hi

h1 − h2

3(h1 + h2)
.
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In what follows we shall denote these spaces by M(n1, n2; h1, h2). The H-
sectional curvature is the strictly negative constant k = 2h1h2(h1 + h2)−1

and the curvature tensor is given by

RUV W =
2∑

i=1

{
hi

4

(
g(Xi, Zi)Yi − g(Yi, Zi)Xi

)

+(−1)i 3(h1+h2)
4(h1−h2)

(
g(HYi, Zi)HXi−g(HXi, Zi)HYi−2g(HXi, Yi)HZi

)

+ (−1)i hi(h1−h2)
3(h1 + h2)

{(
g(Yi, Zi)η(U)− g(Xi, Zi)η(V )

)
ξ(2.6)

+ η(W )
(
η(V )Xi − η(U)Yi

)}}

+ g(HV, W )HU − g(HU,W )HV − 2g(HU, V )HW

for vector fields U =
2∑

i=1

Xi+η(U)ξ, V =
2∑

i=1

Yi+η(V )ξ, W =
2∑

i=1

Zi+η(W )ξ
on M .

In this context, we finish with the following characterization.

Theorem 2.2 [8]. Let (M, g, Fξ) be a complete, contact locally KTS-

space such that at each point m in M the self-adjoint operator Rξ.ξ (or

equivalently, −H2
m) has two eigenspaces V1(m) and V2(m) with H(m) =

V1(m) ⊕ V2(m) and dimVi(m) = 2ni ≥ 4, i = 1, 2. Then (M, g, Fξ) is

a flow space form (with non-constant ξ-sectional curvature and globally

constant H-sectional curvature) if and only if

‖X1‖−2RX1HX1X1 + ‖X2‖−2RX2HX2X2 and RXH⊥XX

are proportional to HX for all X = X1 +X2 ∈ V1(m)⊕V2(m) and where,

for non-vanishing X1 and X2, H⊥X denotes a vector orthogonal to HX

in the plane spanned by HX1 and HX2.

In what follows we consider H⊥X given by

H⊥X = ‖HX1‖−1‖HX2‖HX1 − ‖HX2‖−1‖HX1‖HX2

for each X = X1 + X2 ∈ H1 ⊕H2 where ‖X1‖ ‖X2‖ 6= 0.
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3. The shape operator of geodesic tubes

In this section we briefly recall some facts about the treatment of
tubular hypersurfaces about geodesics. We refer to [9], [10], [13] for more
details and further references.

Let σ : [a, b] → M be a smooth embedded curve in (M, g) and denote
by σ⊥ the normal bundle of σ. Further, let expσ be the exponential map
of this normal bundle, that is, expσ(σ(t), v) = expσ(t) v for any t ∈ [a, b]
and all v ∈ σ(t)⊥ where σ(t)⊥ denotes the fiber of σ⊥ over σ(t). The set

Uσ(r) = {expσ(t) v | v ∈ σ(t)⊥, ‖v‖ < r, t ∈ [a, b]}

is said to be the (open) tubular neighborhood or the (open) solid tube of
radius r about σ. Since [a, b] is compact and since σ : [a, b] → M is an
embedding, we shall always assume that the radius r of this tube is so
small that expσ is a diffeomorphism between Uσ(r) and the (open) solid
tube Nσ(r) of radius r about the zero section of σ⊥. For each s < r, the
set

Pσ(s) = {p ∈ Uσ(r) | d(σ, p) = s}
is a smooth hypersurface in M which is called the tubular hypersurface
or just the tube of radius s about σ. These tubes determine a foliation of
Uσ(r) by hypersurfaces Pσ(s) and the radial vector field ∂

∂s is a unit vector
field orthogonal to the leaves of this foliation.

In what follows we shall suppose that σ is a unit speed geodesic. Then
Pσ is called a geodesic tube about σ.

Fermi coordinate systems are well-adapted to treat the geometry of
tubes. They are defined as follows. Let σ : [a, b] → M be such a geodesic
and let {e1 = σ′(a), e2, . . . , en} be an orthonormal basis of Tσ(a)M . Fur-
ther, let E1 = σ′ and let E2, . . . , En be the normal vector fields along σ

which are parallel with respect to the Levi Civita connection ∇ and such
that Ei(a) = ei, i = 2, . . . , n. Then the Fermi coordinates (x1, . . . , xn),
with respect to σ(a) and the frame field {E1, . . . , En}, are defined by

x1

(
expσ(t)

n∑

j=2

tjEj

)
= t− a, xi

(
expσ(t)

n∑

j=2

tjEj

)
= ti, i = 2, . . . , n.

Next, let p = expσ(t)(sv), v ∈ σ(t)⊥, ‖v‖ = 1. Then p ∈ Pσ(s).
Further, let γ be the unit speed geodesic connecting σ(t) and p and adapt
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the frame field {E1, . . . , En} along σ such that E2(t) = γ′(0). Moreover,
let {F1, . . . , Fn} be the frame field along γ obtained by parallel translation
of {E1(t), . . . , En(t)}. Now, let X1, X3, . . . , Xn be the Jacobi vector fields
along γ which satisfy the following set of initial conditions:

(3.1)





X1(0) = E1(t), X ′
1(0) =

(
∇γ′

∂

∂x1

)
(σ(t)) = 0,

Xi(0) = 0, X ′
i(0) = Ei(t) i = 3, . . . , n.

Then we have

X1(s) =
∂

∂x1
(γ(s)), Xi(s) = s

∂

∂xi
(γ(s)), i = 3, . . . , n.

Now, define the endomorphism-valued function B : s 7→ B(s) by

(3.2) Xi(s) = BFi(s), i = 1, 3, . . . , n.

Then this function satisfies the Jacobi equation

B′′ + Rγ ◦B = 0

where Rγ = Rγ′.γ
′. The initial values are

B(0) =
(

1 0
0 0

)
, B′(0) =

(
0 0
0 I

)
.

Next, since ∂
∂s is a unit normal vector of Pσ(s) at p, the shape operator

Sσ of Pσ(r) at p is given by

(SσX)(p) =
(
∇X

∂

∂s

)
(p)

for any X tangent to Pσ(s) at p and then it follows from (3.2) that Sσ(p)
is given by

(3.3) Sσ(p) = (B′B−1)(s).

Moreover, by differentiation along γ, we have that Sσ satisfies the following
Riccati type differential equation:

(3.4) S′σ + S2
σ + Rγ = 0.
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4. Quasi-umbilicity and ξ-sectional curvature

A hypersurface N is said to be quasi-umbilical at p ∈ N if its shape
operator S(p) has at least d−1 equal eigenvalues where d = dim N . When
there are exactly d−1 equal eigenvalues we may write S(p) = α1I+α2µ⊗u

where µ is the dual one-form of u and in this case we say that N is quasi-
umbilical with respect to u. We now extend this concept of quasi-umbilicity
and say that N is k-quasi-umbilical at p with respect to u if S(p) has
exactly k different eigenvalues with corresponding eigenspaces orthogonal
to u. Clearly, 1-quasi-umbilical is equivalent to quasi-umbilical.

Now we return to a Riemannian manifold (M, g) equipped with a
flow Fξ and derive some results about the ξ-sectional curvature which are
related to the k-quasi-umbilicity of geodesic tubes. So, let (M, g, Fξ) be a
complete, contact locally KTS-space and let Pσ(s) be a tube of radius s

about a transversal geodesic σ. Then p = γ(s) = expm sξ, m = σ(t), is a
point of Pσ(s). We put u = σ′ and we denote by u also its parallel translate
along γ. According to Proposition 2.3, M is transversally modelled on a
Hermitian symmetric space M̃ = M̃0× M̃1× · · · × M̃r. Let dim M̃i = 2ni.
Further, choose an orthonormal basis {vij | j = 1, . . . , 2ni} of Hi(m),
i = 1, . . . , r, and denote by El, Fij the vector fields along γ obtained by

parallel translating
(

∂
∂xl

)∗
, l = 1, . . . , 2p, and vij . Then it follows from

[8, Theorem 4.1] that every Jacobi vector field, orthogonal to γ, is given
by

X =
p∑

k=1

{
(Ak sin µks + Bk cosµks)Ek

+ (Ap+k sin µks + Bp+k cosµks)Ep+k

}

+
r∑

i=1

2ni∑

j=1

(Cij sin cis + Dij cos cis)Fij

where Al, Bl, Cij and Dij are constants.

In particular, if u ∈ Hi0 for some i0 ∈ {1, . . . , r}, we take {vij ,

j = 1, . . . , 2ni} with vi01 = u. Then, using (3.3), we get by a straight-
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forward calculation

(4.1)

Sσ(p)Ek = µk cot µksEk, k = 1, . . . , p,

Sσ(p)Ep+k = µk cot µksEp+k, k = 1, . . . , p,

Sσ(p)Fi01 = −ci0 tan ci0sFi01,

Sσ(p)Fij = ci cot cisFij , i = 1, . . . , r;

j = 1, . . . , 2ni and (i, j) 6= (i0, 1).

A similar expression holds when u =
(

∂
∂x1

)∗
(m) ∈ H0(m).

We have

Theorem 4.1. A complete, contact locally KTS-space (M, g, Fξ) has

constant ξ-sectional curvature if and only if there exists a horizontal geo-

desic σ such that Pσ(s) is quasi-umbilical with respect to u at p = expm sξ

for all small s.

Proof. First, suppose that (M, g, Fξ) has constant ξ-sectional cur-
vature c2. Let u(m) ∈ Hi0(m) for some i0 = 1, . . . , r. With the same
conventions as in (4.1) we then have

Sσ(p)El = c cot csEl, l = 1, . . . , 2p,

Sσ(p)Fi01 = −c tan csFi01,

Sσ(p)Fij = c cot csFij , i = 1, . . . , r;

j = 1, . . . , 2ni and (i, j) 6= (i0, 1).

A similar expression holds when u(m) =
(

∂
∂x1

)∗
(m) ∈ H0(m). In both

cases we have that Pσ(s) is quasi-umbilical with respect to u at p.
Conversely, let Pσ(s) be a tube about a horizontal geodesic σ and

write u = u1
0 + · · ·+ up

0 + u1 + · · ·+ ur where

uk
0 ∈

{(
∂

∂xk

)∗
(m),

(
∂

∂xp+k

)∗
(m)

}
, ui ∈ Hi(m), i = 1, . . . , r.

We suppose that all uk
0 and ui are different from zero. In the other

cases, we may proceed in a similar way. We take the orthonormal bases
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{‖u1
0‖−1u1

0, . . . , ‖up
0‖−1up

0, u
1⊥
0 , . . . , up⊥

0 } of H0(m) where uk⊥
0 is a unit vec-

tor in {(
∂

∂xk

)∗
(m),

(
∂

∂xp+k

)∗
(m)

}

orthogonal to uk
0 , and {vij , j = 1, . . . , 2ni} of Hi(m), i = 1, . . . , r, where

vi1 = ‖ui‖−1ui. Denote by El, l = 1, . . . , 2p, and Fij the parallel translates
along γ. Then we have, for p = expm sξ,

(4.2)

{
Sσ(p)Ep+k = µk cot µksEp+k, k = 1, . . . , p,

Sσ(p)Fij = ci cot cisFij for (i, j) 6= (i, 1), i = 1, . . . , r.

Hence, if Pσ(s) is quasi-umbilical at p, we must have µ2
1 = · · · = µ2

p = c2
1 =

· · · = c2
r and this implies that the ξ-sectional curvature is constant. ¤

Theorem 4.2. Let (M, g, Fξ) be a (2n + 1)-dimensional, complete,

contact locally KTS-space with non-constant ξ-sectional curvature. Then

the self-adjoint operator Rξ.ξ (or equivalently, −H2
m) has at a point m ∈ M

two eigenspaces V1(m) and V2(m) with H(m) = V1(m) ⊕ V2(m) if and

only if there exists a horizontal geodesic σ through m such that Pσ(s) is

2-quasi-umbilical with respect to u at p = expm sξ.

Proof. First, let λ2
1, λ2

2 be the eigenvalues of Rξ.ξ corresponding to
V1(m) and V2(m) where λ1, λ2 are taken as positive numbers. Let u be
a unit vector in V1(m) and take an orthonormal basis {e1, . . . , e2n+1} of
TmM such that e2n+1 = ξ and where {e1 = u, . . . , ed}, {ed+1, . . . , e2n}
are orthonormal bases of V1(m) and V2(m), respectively. Further, let
{E1, . . . , E2n+1} be the parallel translated frame along the flow line
through m. Following the notation given in Proposition 2.3, H(m) =
H0(m) ⊕ H1(m) ⊕ · · · ⊕ Hr(m) and Hi(m), i = 1, . . . , r, are eigenspaces
of Rξ.ξ with corresponding eigenvalues c2

i at m. Moreover, each plane{(
∂

∂xk

)∗
,
(

∂
∂xp+k

)∗}
is an eigenspace with eigenvalue µ2

k. Hence, using
(4.1), we have

Sσ(p)E1 = −λ1 tan λ1sE1,

Sσ(p)Ej = λ1 cot λ1sEj , j = 2, . . . , d,

Sσ(p)Ek = λ2 cot λ2sEk, k = d + 1, . . . , 2n.

So, Pσ(s) is 2-quasi-umbilical with respect to u at p.
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To prove the converse, we use (4.2). It then follows that Pσ(s) is
2-quasi-umbilical at p if and only if there are at most two different values
for µ2

i and c2
j . But since the ξ-sectional curvature is non-constant, we must

have exactly two different values. This proves the required result. ¤

5. Geodesic tubes and normal flow space forms

In this final section we derive some characterizations of normal flow
space forms by considering the shape operator of tubes about flow lines or
tubes about horizontal geodesics. We start with

5.1 Tubes about flow lines

Let (M, g, Fξ) be a Riemannian manifold equipped with a normal flow
Fξ and let σ be a segment of the flow line through m ∈ M . Further, let
Pσ(s) be the tube of radius s about σ. Let p = expm su where u is a
unit horizontal vector and denote by κσ(p) the normal curvature of the
geodesic of Pσ(s) tangent to v = ‖Hu‖−1Hu at p, that is,

κσ(p) = g(Sσ(p)v, v).

Here, κσ is a real-valued function on each Pσ(s).
Our first result generalizes that for Sasakian space forms given in [4].

Theorem 5.1. A Riemannian manifold (M, g) with dim M=2n+1≥5
and equipped with a normal flow Fξ such that the ξ-sectional curvature
is a non-vanishing constant, is a flow space form if and only if for any
horizontal u, Sσ(p)Hu belongs to the plane {ξ, Hu} for all m and all small
tubes Pσ(s) about the flow line through m. Moreover, h = −(κ2

σ + κ′σ) is
constant on every tube Pσ(s) and k = h− 3c2 is the constant H-sectional
curvature.

Proof. Let (M, g, Fξ) = M(c2, k) and consider an orthonormal basis
{e1, . . . , e2n+1} at a point m of the flow line σ such that e1 = ξ, e2 = u,
e3 = ‖Hu‖−1Hu. Further, let {F1, . . . , F2n+1} be the frame field along
γ(s) = expm su obtained by parallel translating {e1, . . . , e2n+1}. Then it
follows from (3.3) and the explicit expressions of the Jacobi vector fields
on Sasakian space forms given in [2] and adapted to our case, that the
shape operator Sσ has the form

Sσ =
(

A 0
0 fI2n−2

)



104 J. C. González-Dávila and L. Vanhecke

with respect to {F1, F3, . . . , F2n+1}. Here, f =
√

h
2 cot

√
h

2 s for h > 0,
f = 1

s for h = 0 and f =
√−h

2 coth
√−h

2 s for h < 0, h = k + 3c2. Further,
A is a symmetric 2× 2 matrix with entries which depend only on s. Since
the field of planes spanned by ξ and Hu is parallel along γ (as follows from
(2.2)), we obtain that SσHu ∈ span {ξ, Hu}.

Conversely, suppose SσHu ∈ span {ξ, Hu}. Then we have at p:

SσHu = ∇γ′(Hu) = −c2ξ + κσHu.

Hence, we obtain

S2
σHu = −c2κσξ + (c2 + κ2

σ)Hu

and by using (2.2), we also have

S′σHu = (2c2 + κ′σ)Hu + c2κσξ.

So, we obtain from this and the Riccati equation (3.4):

RuHuu = −(3c2 + κ2
σ + κ′σ)Hu.

Since any point p ∈ M belongs to a Pσ(s), we get that RuHuu is propor-
tional to Hu at each point of M and for each horizontal vector u. Then it
follows from Theorem 2.1 that (M, g, Fξ) is a flow space form with constant
H-sectional curvature k = −(3c2 + κ2

σ + κ′σ). ¤
Next, let (M, g, Fξ) = M(n1, n2; h1, h2) be a complete normal flow

space form with non-constant ξ-sectional curvature and globally constant
H-sectional curvature. Using the solutions of the Jacobi equation on nor-
mal flow space forms given in [8], we obtain the shape operator of Pσ(s)
by applying (3.3). Here we have, when σ is a flow line:

A. u = u1 ∈ H1

Let {e1, . . . , e2n+1} be an orthonormal basis at m such that e1 = ξ,
e2 = u1, e3 = ‖Hu1‖−1Hu1 and where {e2, . . . , e2n1+1} and
{e2n1+2, . . . , e2n+1} are orthonormal bases of H1(m) and H2(m), respec-
tively. With respect to the parallel basis {F1, F3, . . . , F2n+1}, Sσ(expm su1)
has the matrix form

Sσ(expm su1) =




A 0 0

0
√

h1

2
cot

√
h1

2
sI2n1−2 0

0 0
1
s
I2n2


 ;
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B. u = u2 ∈ H2

Taking now {e1, . . . , e2n+1} assuming that e1 = ξ, e2 = u2,
e3 = ‖Hu2‖−1Hu2 and with {e4, . . . , e2n1+3}, {e2, e3, e2n1+4, . . . , e2n+1}
as bases of H1(m) and H2(m), respectively, we have

Sσ(expm su2) =




A 0 0

0
1
s
I2n1 0

0 0
√−h2

2
coth

√−h2

2
sI2n2−2




where in both cases A is a 2× 2 matrix.

C. u = u1 + u2 ∈ H1 ⊕H2

In this case, we put

e1 = ξ, e2 = u, e3 = ‖Hu‖−1Hu,

e4 = ‖Hu‖−1H⊥u, e5 = ‖u1‖−1‖u2‖u1 − ‖u2‖−1‖u1‖u2

and we consider the orthonormal basis {e1, . . . , e2n+1} at m such that
{e6, . . . , e2n1+3} and {e2n1+4, . . . , e2n+1} are bases of E1(m) and E2(m),
respectively, where Ei, i = 1, 2, denotes the field of 2(ni − 1)-planes on Hi

along γ and orthogonal to span {ui, Hui}. With respect to the parallel
frame field {F1, F3, . . . , F2n+1}, Sσ(expm su) is of the form

Sσ(expm su) =




B 0 0 0

0
1
s

0 0

0 0 f1I2n1−2 0

0 0 0 f2I2n2−2




where f1 = ‖u1‖
√

h1
2 cot ‖u1‖

√
h1

2 s, f2 = ‖u2‖
√−h2
2 coth ‖u2‖

√−h2
2 s and B is

a symmetric 3× 3 matrix.
Now, we define the real-valued function k on each tube Pσ(s) by

k(p) = −
(
3‖Hu‖2 + κ2

σ + κ′σ
)
(p), p = expm su.

Then we have
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Theorem 5.2. Let (M, g, Fξ) be a complete, contact locally KTS-

space such that at each point m in M the self-adjoint operator Rξ.ξ (or

equivalently, −H2
m) has two eigenspaces V1(m) and V2(m) with H(m) =

V1(m) ⊕ V2(m) and dimVi(m) = 2ni ≥ 4, i = 1, 2. Then (M, g, Fξ) is

a flow space form (with non-constant ξ-sectional curvature and globally

constant H-sectional curvature) if and only if, for all unit vectors ui ∈ Vi

and u ∈ V1 ⊕ V2, the shape operator Sσ of any small tube Pσ about the

flow lines σ satisfies:

(i) Sσ(expm sui)Hui ∈ {ξ, Hui} and Sσ(expm su) preserves the vector

space spanned by {ξ, Hu, H⊥u};
(ii) k(expm su1) = k(expm su2) and N ′

33 + N2
23 + N2

33 = 0 where Nij ,

1 ≤ i, j ≤ 3, are the entries of the matrix associated to Sσ(expm su)
with respect to the orthonormal basis {ξ, ‖Hu‖−1Hu, ‖Hu‖−1H⊥u}.
Proof. Using (i) we derive by a straightforward computation for

i = 1, 2

Sσ(expm sui)Hui = −‖Hui‖2ξ + κσ(expm sui)Hui,

Sσ(expm su)H⊥u = N23Hu + N33H
⊥u,

S2
σ(expm sui)Hui = −‖Hui‖2κσ(expm sui)ξ

+
(
‖Hui‖2 + κ2

σ(expm sui)
)
Hui,

S2
σ(expm su)H⊥u = −‖Hu‖2N23ξ + N23(N22 + N33)Hu

+ (N2
23 + N2

33)H
⊥u.

Moreover, from (2.2) and since H⊥u is parallel along γ, we obtain

S′σHui = ‖Hui‖2κσ(expm sui)ξ +
(
2‖Hui‖2 + κ′σ(expm sui)

)
Hui,

S′σH⊥u = ‖Hu‖2N23ξ + N ′
23Hu + N ′

33H
⊥u.

So, using (3.4), we get

‖ui‖−2RuiHuiui = k(expm sui)Hui,

RuH⊥uu = −
{(

N23(N22 + N33) + N ′
23

)
Hu +

(
N ′

33 + N2
23 + N2

33

)
H⊥u

}
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So, (ii) implies that ‖u1‖−2Ru1Hu1u1 + ‖u2‖−2Ru2Hu2u2 and RuH⊥uu are
proportional to Hu1 + Hu2 and to Hu, respectively. By a same argument
as in the proof of Theorem 5.1, it follows from Theorem 2.2 that (M, g, Fξ)
is a normal flow space form.

The converse follows from the direct computations given above. ¤

5.2 Tubes about horizontal geodesics

Now, we consider small tubes Pσ(s) about a horizontal geodesic σ and
put σ′ = u where u is a unit vector. Next, let γ be the unit speed geodesic
of M meeting σ orthogonally at γ(0) = m and tangent to the horizontal
vector v such that v(m) = ‖Hu‖−1Hu(m).

First we prove the following theorem which generalizes the one for
Sasakian space forms [3].

Theorem 5.3. Let (M, g) be a Riemannian manifold with dim M =
2n + 1 ≥ 5 and equipped with a normal flow Fξ such that the ξ-sectional

curvature is a non-vanishing constant. Then, with the conventions made

above, M is a flow space form if and only if for all horizontal geodesic σ,

the shape operator Sσ along γ preserves the plane spanned by {ξ,Hv}.
Proof. First, let (M, g, Fξ) = M(c2, k) and let {e1, . . . , e2n+1} be

an orthonormal basis at m with initial conditions e1 = u, e2 = v, e3 = ξ.
Again, denote by {F1, . . . , F2n+1} the basis obtained by parallel translation
of {e1, . . . , e2n+1} along γ. Taking into account that Hv = −‖Hu‖u at m,
it follows from (3.3) and the results in [2] (with slight modifications as men-
tioned in Theorem 5.1) that, with respect to the basis {F1, F3, . . . , F2n+1},
Sσ has the following form along γ:

Sσ =
(

A 0

0 fI2n−2

)

where f =
√

h
2 cot

√
h

2 s for h > 0, f = 1
s for h = 0 and f =

√−h
2 coth

√−h
2 s

for h < 0, h = k + 3c2. Here, A is a 2 × 2 matrix with entries depending
on s. Hence, Sσ preserves the field of planes spanned by ξ and Hv because
these planes are parallel.

Conversely, the hypothesis implies that also S2
σ and S′σ preserve the

plane {ξ, Hv}. It then follows as in Theorem 5.1 that RvHvv ∈ {ξ,Hv}
and because of the normality of the flow, RvHvv is proportional to Hv.
So, the result follows from Theorem 2.1. ¤
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Next, we consider complete normal flow space forms with non-constant
ξ-sectional curvature and globally constant H-sectional curvature. Let σi,
i = 1, 2, or σ be the horizontal geodesics through m ∈ M tangent to the
unit vector ui ∈ Hi(m) or u = u1 + u2 ∈ H1(m) ⊕ H2(m), respectively.
Further, let γi, i = 1, 2, or γ denote the unit speed geodesics of M meeting
σi or σ orthogonally at m = σ(t) and tangent to vi or v, respectively,
where vi(m) = ‖Hui‖−1Hui(m) and

v(m) =
(
‖Hu1‖−1 cos θHu1 + ‖Hu2‖−1 sin θHu2

)
(m)

with θ = arctan(−‖Hu1‖/‖Hu2‖). Then H⊥v is proportional to u at m.
Using again the explicit formulas given in [8], we may obtain the shape
operator of the tubes Pσ(s) at the points γi(s) or γ(s). We have

A. u = u1 ∈ H1 Let {e1, . . . , e2n+1} be an orthonormal basis at m

such that e1 = u1, e2 = v1, e3 = ξ and where {e1, e2, e4, . . . , e2n1+1} and
{e2n1+2, . . . , e2n+1} are bases of H1(m) and H2(m), respectively. With
respect to the corresponding parallel frame field {F1, F3, . . . , F2n+1}, we
have:

Sσ(expm sv1) =




A 0 0

0
√

h1

2
cot

√
h1

2
sI2n1−2 0

0 0
1
s
I2n2


 ;

B. u = u2 ∈ H2 Here we take a basis with e1 = u2, e2 = v2, e3 = ξ

and such that {e4, . . . , e2n1+3} and {e1, e2, e2n1+4, . . . , e2n+1} are bases
of H1(m) and H2(m), respectively. Then we have with respect to the
corresponding parallel frame field:

Sσ(expm sv2) =




A 0 0

0
1
s
I2n1 0

0 0
√−h2

2
coth

√−h2

2
sI2n2−2




and where in both cases A is a symmetric 2× 2 matrix.

C. u = u1 + u2 ∈ H1 ⊕H2



Geodesic tubes and normal flow space forms 109

Let {e1, . . . , e2n+1} be an orthonormal basis at m such that

e1 = u, e2 = v, e3 = ‖Hv‖−1Hv,

e4 = ξ, e5 = ‖u1‖−1‖u2‖u1 − ‖u2‖−1‖u1‖u2

and where {e6, . . . , e2n1+3}, {e2n1+4, . . . , e2n+1} are bases of E1(m) and
E2(m), respectively. E1 and E2 are as in 5.1. With respect to the corre-
sponding parallel frame field, Sσ has the form

Sσ(expm sv) =




B 0 0 0

0
1
s

0 0

0 0 f1I2n1−2 0

0 0 0 f2I2n2−2




where f1 = ‖u1‖
√

h1
2 cot ‖u1‖

√
h1

2 s, f2 = ‖u2‖
√−h2
2 coth ‖u2‖

√−h2
2 s and B is

a symmetric 3× 3 matrix.
Then we have

Theorem 5.4. Let (M, g, Fξ) be a complete, contact locally KTS-
space such that at each point m ∈ M the self-adjoint operator Rξ.ξ (or
equivalently, −H2

m) has two eigenspaces V1(m) and V2(m) with H(m) =
V1(m) ⊕ V2(m) and dimVi(m) = 2ni ≥ 4, i = 1, 2. Then (M, g, Fξ) is
a flow space form (with non-constant ξ-sectional curvature and globally
constant H-sectional curvature) if and only if for all unit speed geodesics
σi, σ such that σ′i(0) = ui ∈ Vi(m) and σ′(0) = u ∈ V1(m) ⊕ V2(m) and
with the conventions as above, the following conditions are satisfied by the
shape operators Sσi and Sσ:

(i) Sσi(expm svi) and Sσ(expm sv) preserve the vector spaces spanned by
{ξ, Hvi} and {ξ,Hv, H⊥v}, respectively;

(ii) if M i = (M i
jk)1≤j,k≤2 and N = (Nlm)1≤l,m≤3 denote the correspond-

ing matrices associated to these endomorphisms with respect to the
orthonormal bases {ξ,‖Hvi‖−1Hvi} and {ξ,‖Hv‖−1Hv,‖Hv‖−1H⊥v},
then we have

(M1
12)

2 + (M1
22)

2 + M1
22
′ − 2‖Hv1‖M1

12

= (M2
12)

2 + (M2
22)

2 + M2
22
′ − 2‖Hv2‖M2

12,

3∑

l=1

(Nl3)2 + N ′
33 = 0.
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Proof. When (Mg, Fξ) = M(n1, n2;h1, h2), then the result follows
from the formulas given above.

So, conversely, suppose that (i) is satisfied. Then, we get

S2
σi

(expm svi)Hvi = ‖Hvi‖M i
12

(
M i

11 + M i
22

)
ξ +

(
(M i

12)
2 + (M i

22)
2
)
Hvi,

S2
σ(expm sv)H⊥v =

3∑

l=1

{
‖Hv‖N1lNl3ξ + N2lNl3Hv + (Nl3)2H⊥v

}

and by using (2.2), we also have

S′σi
Hvi = ‖Hvi‖

(
M i

12

′
+ ‖Hvi‖(M i

22 −M i
11)

)
ξ

+
(
M i

22

′ − 2‖Hvi‖M i
12

)
Hvi,

S′σH⊥v = ‖Hv‖
(
N ′

13 + ‖Hv‖N33

)
ξ +

(
N ′

23 − ‖Hv‖N13

)
Hv + H ′

33H
⊥v.

So, taking into account the normality of the flow and using (3.4) together
with the conditions (ii), we obtain that ‖v1‖−2Rv1Hv1v1 +‖v2‖−2Rv2Hv2v2

and RvH⊥vv are proportional to Hv1 + Hv2 and Hv, respectively. Then
it follows from Theorem 2.2 that (M, g, Fξ) is a normal flow space form.

¤
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DEPARTAMENTO DE MATEMÁTICA FUNDAMENTAL
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